You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdegraphics/ksvg/impl/libs/art_support/art_misc.c

1842 lines
45 KiB

#include <libart_lgpl/art_vpath.h>
#include <libart_lgpl/art_bpath.h>
#include <libart_lgpl/art_misc.h>
#include <libart_lgpl/art_affine.h>
#include <libart_lgpl/art_svp_render_aa.h>
#include "art_misc.h"
extern double ceil(double x);
extern double floor(double x);
/**
* art_vpath_render_bez: Render a bezier segment into the vpath.
* @p_vpath: Where the pointer to the #ArtVpath structure is stored.
* @pn_points: Pointer to the number of points in *@p_vpath.
* @pn_points_max: Pointer to the number of points allocated.
* @x0: X coordinate of starting bezier point.
* @y0: Y coordinate of starting bezier point.
* @x1: X coordinate of first bezier control point.
* @y1: Y coordinate of first bezier control point.
* @x2: X coordinate of second bezier control point.
* @y2: Y coordinate of second bezier control point.
* @x3: X coordinate of ending bezier point.
* @y3: Y coordinate of ending bezier point.
* @flatness: Flatness control.
*
* Renders a bezier segment into the vector path, reallocating and
* updating *@p_vpath and *@pn_vpath_max as necessary. *@pn_vpath is
* incremented by the number of vector points added.
*
* This step includes (@x0, @y0) but not (@x3, @y3).
*
* The @flatness argument guides the amount of subdivision. The Adobe
* PostScript reference manual defines flatness as the maximum
* deviation between the any point on the vpath approximation and the
* corresponding point on the "true" curve, and we follow this
* definition here. A value of 0.25 should ensure high quality for aa
* rendering.
**/
void
ksvg_art_vpath_render_bez (ArtVpath **p_vpath, int *pn, int *pn_max,
double x0, double y0,
double x1, double y1,
double x2, double y2,
double x3, double y3,
double flatness)
{
double x3_0, y3_0;
double z3_0_dot;
double z1_dot, z2_dot;
double z1_perp, z2_perp;
double max_perp_sq;
double x_m, y_m;
double xa1, ya1;
double xa2, ya2;
double xb1, yb1;
double xb2, yb2;
/* It's possible to optimize this routine a fair amount.
First, once the _dot conditions are met, they will also be met in
all further subdivisions. So we might recurse to a different
routine that only checks the _perp conditions.
Second, the distance _should_ decrease according to fairly
predictable rules (a factor of 4 with each subdivision). So it might
be possible to note that the distance is within a factor of 4 of
acceptable, and subdivide once. But proving this might be hard.
Third, at the last subdivision, x_m and y_m can be computed more
expeditiously (as in the routine above).
Finally, if we were able to subdivide by, say 2 or 3, this would
allow considerably finer-grain control, i.e. fewer points for the
same flatness tolerance. This would speed things up downstream.
In any case, this routine is unlikely to be the bottleneck. It's
just that I have this undying quest for more speed...
*/
x3_0 = x3 - x0;
y3_0 = y3 - y0;
/* z3_0_dot is dist z0-z3 squared */
z3_0_dot = x3_0 * x3_0 + y3_0 * y3_0;
/* todo: this test is far from satisfactory. */
if (z3_0_dot < 0.001)
goto nosubdivide;
/* we can avoid subdivision if:
z1 has distance no more than flatness from the z0-z3 line
z1 is no more z0'ward than flatness past z0-z3
z1 is more z0'ward than z3'ward on the line traversing z0-z3
and correspondingly for z2 */
/* perp is distance from line, multiplied by dist z0-z3 */
max_perp_sq = flatness * flatness * z3_0_dot;
z1_perp = (y1 - y0) * x3_0 - (x1 - x0) * y3_0;
if (z1_perp * z1_perp > max_perp_sq)
goto subdivide;
z2_perp = (y3 - y2) * x3_0 - (x3 - x2) * y3_0;
if (z2_perp * z2_perp > max_perp_sq)
goto subdivide;
z1_dot = (x1 - x0) * x3_0 + (y1 - y0) * y3_0;
if (z1_dot < 0 && z1_dot * z1_dot > max_perp_sq)
goto subdivide;
z2_dot = (x3 - x2) * x3_0 + (y3 - y2) * y3_0;
if (z2_dot < 0 && z2_dot * z2_dot > max_perp_sq)
goto subdivide;
if (z1_dot + z1_dot > z3_0_dot)
goto subdivide;
if (z2_dot + z2_dot > z3_0_dot)
goto subdivide;
nosubdivide:
/* don't subdivide */
art_vpath_add_point (p_vpath, pn, pn_max,
ART_LINETO, x3, y3);
return;
subdivide:
xa1 = (x0 + x1) * 0.5;
ya1 = (y0 + y1) * 0.5;
xa2 = (x0 + 2 * x1 + x2) * 0.25;
ya2 = (y0 + 2 * y1 + y2) * 0.25;
xb1 = (x1 + 2 * x2 + x3) * 0.25;
yb1 = (y1 + 2 * y2 + y3) * 0.25;
xb2 = (x2 + x3) * 0.5;
yb2 = (y2 + y3) * 0.5;
x_m = (xa2 + xb1) * 0.5;
y_m = (ya2 + yb1) * 0.5;
#ifdef VERBOSE
printf ("%g,%g %g,%g %g,%g %g,%g\n", xa1, ya1, xa2, ya2,
xb1, yb1, xb2, yb2);
#endif
ksvg_art_vpath_render_bez (p_vpath, pn, pn_max,
x0, y0, xa1, ya1, xa2, ya2, x_m, y_m, flatness);
ksvg_art_vpath_render_bez (p_vpath, pn, pn_max,
x_m, y_m, xb1, yb1, xb2, yb2, x3, y3, flatness);
}
#define RENDER_LEVEL 4
#define RENDER_SIZE (1 << (RENDER_LEVEL))
/**
* ksvg_art_bez_path_to_vec: Create vpath from bezier path.
* @bez: Bezier path.
* @flatness: Flatness control.
*
* Creates a vector path closely approximating the bezier path defined by
* @bez. The @flatness argument controls the amount of subdivision. In
* general, the resulting vpath deviates by at most @flatness pixels
* from the "ideal" path described by @bez.
*
* Return value: Newly allocated vpath.
**/
ArtVpath *
ksvg_art_bez_path_to_vec(const ArtBpath *bez, double flatness)
{
ArtVpath *vec;
int vec_n, vec_n_max;
int bez_index;
double x, y;
vec_n = 0;
vec_n_max = RENDER_SIZE;
vec = art_new (ArtVpath, vec_n_max);
/* Initialization is unnecessary because of the precondition that the
bezier path does not begin with LINETO or CURVETO, but is here
to make the code warning-free. */
x = 0;
y = 0;
bez_index = 0;
do
{
#ifdef VERBOSE
printf ("%s %g %g\n",
bez[bez_index].code == ART_CURVETO ? "curveto" :
bez[bez_index].code == ART_LINETO ? "lineto" :
bez[bez_index].code == ART_MOVETO ? "moveto" :
bez[bez_index].code == ART_MOVETO_OPEN ? "moveto-open" :
"end", bez[bez_index].x3, bez[bez_index].y3);
#endif
/* make sure space for at least one more code */
if (vec_n >= vec_n_max)
art_expand (vec, ArtVpath, vec_n_max);
switch (bez[bez_index].code)
{
case ART_MOVETO_OPEN:
case ART_MOVETO:
case ART_LINETO:
x = bez[bez_index].x3;
y = bez[bez_index].y3;
vec[vec_n].code = bez[bez_index].code;
vec[vec_n].x = x;
vec[vec_n].y = y;
vec_n++;
break;
case ART_END:
vec[vec_n].code = ART_END;
vec[vec_n].x = 0;
vec[vec_n].y = 0;
vec_n++;
break;
case ART_END2:
vec[vec_n].code = (ArtPathcode)ART_END2;
vec[vec_n].x = bez[bez_index].x3;
vec[vec_n].y = bez[bez_index].y3;
vec_n++;
break;
case ART_CURVETO:
#ifdef VERBOSE
printf ("%g,%g %g,%g %g,%g %g,%g\n", x, y,
bez[bez_index].x1, bez[bez_index].y1,
bez[bez_index].x2, bez[bez_index].y2,
bez[bez_index].x3, bez[bez_index].y3);
#endif
ksvg_art_vpath_render_bez (&vec, &vec_n, &vec_n_max,
x, y,
bez[bez_index].x1, bez[bez_index].y1,
bez[bez_index].x2, bez[bez_index].y2,
bez[bez_index].x3, bez[bez_index].y3,
flatness);
x = bez[bez_index].x3;
y = bez[bez_index].y3;
break;
}
}
while (bez[bez_index++].code != ART_END);
return vec;
}
/* Private functions for the rgb affine image compositors - primarily,
* the determination of runs, eliminating the need for source image
* bbox calculation in the inner loop. */
/* Determine a "run", such that the inverse affine of all pixels from
* (x0, y) inclusive to (x1, y) exclusive fit within the bounds
* of the source image.
*
* Initial values of x0, x1, and result values stored in first two
* pointer arguments.
* */
#define EPSILON 1e-6
void ksvg_art_rgb_affine_run (int *p_x0, int *p_x1, int y,
int src_width, int src_height,
const double affine[6])
{
int x0, x1;
double z;
double x_intercept;
int xi;
x0 = *p_x0;
x1 = *p_x1;
/* do left and right edges */
if (affine[0] > EPSILON)
{
z = affine[2] * (y + 0.5) + affine[4];
x_intercept = -z / affine[0];
xi = ceil (x_intercept + EPSILON - 0.5);
if (xi > x0)
x0 = xi;
x_intercept = (-z + src_width) / affine[0];
xi = ceil (x_intercept - EPSILON - 0.5);
if (xi < x1)
x1 = xi;
}
else if (affine[0] < -EPSILON)
{
z = affine[2] * (y + 0.5) + affine[4];
x_intercept = (-z + src_width) / affine[0];
xi = ceil (x_intercept + EPSILON - 0.5);
if (xi > x0)
x0 = xi;
x_intercept = -z / affine[0];
xi = ceil (x_intercept - EPSILON - 0.5);
if (xi < x1)
x1 = xi;
}
else
{
z = affine[2] * (y + 0.5) + affine[4];
if (z < 0 || z >= src_width)
{
*p_x1 = *p_x0;
return;
}
}
/* do top and bottom edges */
if (affine[1] > EPSILON)
{
z = affine[3] * (y + 0.5) + affine[5];
x_intercept = -z / affine[1];
xi = ceil (x_intercept + EPSILON - 0.5);
if (xi > x0)
x0 = xi;
x_intercept = (-z + src_height) / affine[1];
xi = ceil (x_intercept - EPSILON - 0.5);
if (xi < x1)
x1 = xi;
}
else if (affine[1] < -EPSILON)
{
z = affine[3] * (y + 0.5) + affine[5];
x_intercept = (-z + src_height) / affine[1];
xi = ceil (x_intercept + EPSILON - 0.5);
if (xi > x0)
x0 = xi;
x_intercept = -z / affine[1];
xi = ceil (x_intercept - EPSILON - 0.5);
if (xi < x1)
x1 = xi;
}
else
{
z = affine[3] * (y + 0.5) + affine[5];
if (z < 0 || z >= src_height)
{
*p_x1 = *p_x0;
return;
}
}
*p_x0 = x0;
*p_x1 = x1;
}
/**
* ksvg_art_rgb_affine: Affine transform source RGB image and composite.
* @dst: Destination image RGB buffer.
* @x0: Left coordinate of destination rectangle.
* @y0: Top coordinate of destination rectangle.
* @x1: Right coordinate of destination rectangle.
* @y1: Bottom coordinate of destination rectangle.
* @dst_rowstride: Rowstride of @dst buffer.
* @src: Source image RGB buffer.
* @src_width: Width of source image.
* @src_height: Height of source image.
* @src_rowstride: Rowstride of @src buffer.
* @affine: Affine transform.
* @level: Filter level.
* @alphagamma: #ArtAlphaGamma for gamma-correcting the compositing.
* @alpha: Alpha, range 0..256.
*
* Affine transform the source image stored in @src, compositing over
* the area of destination image @dst specified by the rectangle
* (@x0, @y0) - (@x1, @y1). As usual in libart, the left and top edges
* of this rectangle are included, and the right and bottom edges are
* excluded.
*
* The @alphagamma parameter specifies that the alpha compositing be done
* in a gamma-corrected color space. Since the source image is opaque RGB,
* this argument only affects the edges. In the current implementation,
* it is ignored.
*
* The @level parameter specifies the speed/quality tradeoff of the
* image interpolation. Currently, only ART_FILTER_NEAREST is
* implemented.
*
* KSVG additions : we have changed this function to support an alpha level as well.
* also we made sure compositing an rgba image over an rgb buffer works.
**/
void ksvg_art_rgb_affine (art_u8 *dst, int x0, int y0, int x1, int y1, int dst_rowstride,
const art_u8 *src,
int src_width, int src_height, int src_rowstride,
const double affine[6],
ArtFilterLevel level,
ArtAlphaGamma *alphagamma,
int alpha)
{
/* Note: this is a slow implementation, and is missing all filter
levels other than NEAREST. It is here for clarity of presentation
and to establish the interface. */
int x, y;
double inv[6];
art_u8 *dst_p, *dst_linestart;
const art_u8 *src_p;
ArtPoint pt, src_pt;
int src_x, src_y;
int run_x0, run_x1;
dst_linestart = dst;
art_affine_invert (inv, affine);
if(alpha == 255)
for (y = y0; y < y1; y++)
{
pt.y = y + 0.5;
run_x0 = x0;
run_x1 = x1;
ksvg_art_rgb_affine_run (&run_x0, &run_x1, y, src_width, src_height,
inv);
dst_p = dst_linestart + (run_x0 - x0) * 3;
for (x = run_x0; x < run_x1; x++)
{
pt.x = x + 0.5;
art_affine_point (&src_pt, &pt, inv);
src_x = floor (src_pt.x);
src_y = floor (src_pt.y);
src_p = src + (src_y * src_rowstride) + src_x * 4;
dst_p[0] = dst_p[0] + (((src_p[2] - dst_p[0]) * src_p[3] + 0x80) >> 8);
dst_p[1] = dst_p[1] + (((src_p[1] - dst_p[1]) * src_p[3] + 0x80) >> 8);
dst_p[2] = dst_p[2] + (((src_p[0] - dst_p[2]) * src_p[3] + 0x80) >> 8);
dst_p += 3;
}
dst_linestart += dst_rowstride;
}
else
for (y = y0; y < y1; y++)
{
pt.y = y + 0.5;
run_x0 = x0;
run_x1 = x1;
ksvg_art_rgb_affine_run (&run_x0, &run_x1, y, src_width, src_height,
inv);
dst_p = dst_linestart + (run_x0 - x0) * 3;
for (x = run_x0; x < run_x1; x++)
{
pt.x = x + 0.5;
art_affine_point (&src_pt, &pt, inv);
src_x = floor (src_pt.x);
src_y = floor (src_pt.y);
src_p = src + (src_y * src_rowstride) + src_x * 4;
dst_p[0] = dst_p[0] + (((src_p[2] - dst_p[0]) * alpha + 0x80) >> 8);
dst_p[1] = dst_p[1] + (((src_p[1] - dst_p[1]) * alpha + 0x80) >> 8);
dst_p[2] = dst_p[2] + (((src_p[0] - dst_p[2]) * alpha + 0x80) >> 8);
dst_p += 3;
}
dst_linestart += dst_rowstride;
}
}
typedef struct _ksvgArtRgbAffineClipAlphaData ksvgArtRgbAffineClipAlphaData;
struct _ksvgArtRgbAffineClipAlphaData
{
int alphatab[256];
art_u8 alpha;
art_u8 *dst;
int dst_rowstride;
int x0, x1;
double inv[6];
const art_u8 *src;
int src_width;
int src_height;
int src_rowstride;
const art_u8 *tqmask;
int y0;
};
static
void ksvg_art_rgb_affine_clip_run(art_u8 *dst_p, int x0, int x1, int y, const double inv[6],
int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height)
{
const art_u8 *src_p;
ArtPoint pt, src_pt;
int src_x, src_y;
int x;
if(alpha > 255)
alpha = 255;
pt.y = y;
for(x = x0; x < x1; x++)
{
pt.x = x;
art_affine_point(&src_pt, &pt, inv);
src_x = (int)(src_pt.x);
src_y = (int)(src_pt.y);
if(src_x >= 0 && src_x < src_width && src_y >= 0 && src_y < src_height)
{
int s;
int d;
int tmp;
int srcAlpha;
src_p = src + (src_y * src_rowstride) + src_x * 4;
srcAlpha = alpha * src_p[3] + 0x80;
srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8;
d = *dst_p;
s = src_p[2];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
d = *dst_p;
s = src_p[1];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
d = *dst_p;
s = src_p[0];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
}
else
dst_p += 3;
}
}
static void
ksvg_art_rgb_affine_clip_callback (void *callback_data, int y,
int start, ArtSVPRenderAAStep *steps, int n_steps)
{
ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data;
art_u8 *linebuf;
int run_x0, run_x1;
art_u32 running_sum = start;
int x0, x1;
int k;
int *alphatab;
int alpha;
linebuf = data->dst;
x0 = data->x0;
x1 = data->x1;
alphatab = data->alphatab;
if(n_steps > 0)
{
run_x1 = steps[0].x;
if(run_x1 > x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_affine_clip_run(linebuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
for(k = 0; k < n_steps - 1; k++)
{
running_sum += steps[k].delta;
run_x0 = run_x1;
run_x1 = steps[k + 1].x;
if(run_x1 > run_x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_affine_clip_run(linebuf + (run_x0 - x0) * 3, run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
running_sum += steps[k].delta;
if(x1 > run_x1)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_affine_clip_run(linebuf + (run_x1 - x0) * 3, run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
else
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_affine_clip_run(linebuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
data->dst += data->dst_rowstride;
}
static
void ksvg_art_rgb_affine_clip_tqmask_run(art_u8 *dst_p, const art_u8 *tqmask, int x0, int x1, int y, const double inv[6],
int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height)
{
const art_u8 *src_p;
ArtPoint pt, src_pt;
int src_x, src_y;
int x;
if(alpha > 255)
alpha = 255;
pt.y = y;
for(x = x0; x < x1; x++)
{
pt.x = x;
art_affine_point(&src_pt, &pt, inv);
src_x = (int)(src_pt.x);
src_y = (int)(src_pt.y);
if(src_x >= 0 && src_x < src_width && src_y >= 0 && src_y < src_height)
{
int s;
int d;
int tmp;
int srcAlpha;
src_p = src + (src_y * src_rowstride) + src_x * 4;
srcAlpha = alpha * src_p[3] + 0x80;
srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8;
srcAlpha = (srcAlpha * *tqmask++) + 0x80;
srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8;
d = *dst_p;
s = src_p[2];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
d = *dst_p;
s = src_p[1];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
d = *dst_p;
s = src_p[0];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
}
else
{
dst_p += 3;
tqmask++;
}
}
}
static void
ksvg_art_rgb_affine_clip_tqmask_callback (void *callback_data, int y,
int start, ArtSVPRenderAAStep *steps, int n_steps)
{
ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data;
art_u8 *linebuf;
int run_x0, run_x1;
art_u32 running_sum = start;
int x0, x1;
int k;
int *alphatab;
int alpha;
const art_u8 *tqmaskbuf;
linebuf = data->dst;
x0 = data->x0;
x1 = data->x1;
alphatab = data->alphatab;
tqmaskbuf = data->tqmask + (y - data->y0) * (x1 - x0);
if(n_steps > 0)
{
run_x1 = steps[0].x;
if(run_x1 > x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_affine_clip_tqmask_run(linebuf, tqmaskbuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
for(k = 0; k < n_steps - 1; k++)
{
running_sum += steps[k].delta;
run_x0 = run_x1;
run_x1 = steps[k + 1].x;
if(run_x1 > run_x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_affine_clip_tqmask_run(linebuf + (run_x0 - x0) * 3, tqmaskbuf + (run_x0 - x0), run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
running_sum += steps[k].delta;
if(x1 > run_x1)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_affine_clip_tqmask_run(linebuf + (run_x1 - x0) * 3, tqmaskbuf + (run_x1 - x0), run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
else
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_affine_clip_tqmask_run(linebuf, tqmaskbuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
data->dst += data->dst_rowstride;
}
static
void ksvg_art_rgba_affine_clip_run(art_u8 *dst_p, int x0, int x1, int y, const double inv[6],
int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height)
{
const art_u8 *src_p;
ArtPoint pt, src_pt;
int src_x, src_y;
int x;
if(alpha > 255)
alpha = 255;
pt.y = y;
for(x = x0; x < x1; x++)
{
pt.x = x;
art_affine_point(&src_pt, &pt, inv);
src_x = (int)(src_pt.x);
src_y = (int)(src_pt.y);
if(src_x >= 0 && src_x < src_width && src_y >= 0 && src_y < src_height)
{
int s;
int d;
int tmp;
int srcAlpha;
src_p = src + (src_y * src_rowstride) + src_x * 4;
srcAlpha = alpha * src_p[3] + 0x80;
srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8;
d = *dst_p;
s = src_p[2];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
d = *dst_p;
s = src_p[1];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
d = *dst_p;
s = src_p[0];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
d = *dst_p;
tmp = srcAlpha * (255 - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
}
else
dst_p += 4;
}
}
static void
ksvg_art_rgba_affine_clip_callback (void *callback_data, int y,
int start, ArtSVPRenderAAStep *steps, int n_steps)
{
ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data;
art_u8 *linebuf;
int run_x0, run_x1;
art_u32 running_sum = start;
int x0, x1;
int k;
int *alphatab;
int alpha;
linebuf = data->dst;
x0 = data->x0;
x1 = data->x1;
alphatab = data->alphatab;
if(n_steps > 0)
{
run_x1 = steps[0].x;
if(run_x1 > x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_affine_clip_run(linebuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
for(k = 0; k < n_steps - 1; k++)
{
running_sum += steps[k].delta;
run_x0 = run_x1;
run_x1 = steps[k + 1].x;
if(run_x1 > run_x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_affine_clip_run(linebuf + (run_x0 - x0) * 4, run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
running_sum += steps[k].delta;
if(x1 > run_x1)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_affine_clip_run(linebuf + (run_x1 - x0) * 4, run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
else
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_affine_clip_run(linebuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
data->dst += data->dst_rowstride;
}
static
void ksvg_art_rgba_affine_clip_tqmask_run(art_u8 *dst_p, const art_u8 *tqmask, int x0, int x1, int y, const double inv[6],
int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height)
{
const art_u8 *src_p;
ArtPoint pt, src_pt;
int src_x, src_y;
int x;
if(alpha > 255)
alpha = 255;
pt.y = y;
for(x = x0; x < x1; x++)
{
pt.x = x;
art_affine_point(&src_pt, &pt, inv);
src_x = (int)(src_pt.x);
src_y = (int)(src_pt.y);
if(src_x >= 0 && src_x < src_width && src_y >= 0 && src_y < src_height)
{
int s;
int d;
int tmp;
int srcAlpha;
src_p = src + (src_y * src_rowstride) + src_x * 4;
srcAlpha = alpha * src_p[3] + 0x80;
srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8;
srcAlpha = (srcAlpha * *tqmask++) + 0x80;
srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8;
d = *dst_p;
s = src_p[2];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
d = *dst_p;
s = src_p[1];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
d = *dst_p;
s = src_p[0];
tmp = srcAlpha * (s - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
d = *dst_p;
tmp = srcAlpha * (255 - d) + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
*dst_p++ = d + tmp;
}
else
{
dst_p += 4;
tqmask++;
}
}
}
static void
ksvg_art_rgba_affine_clip_tqmask_callback (void *callback_data, int y,
int start, ArtSVPRenderAAStep *steps, int n_steps)
{
ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data;
art_u8 *linebuf;
int run_x0, run_x1;
art_u32 running_sum = start;
int x0, x1;
int k;
int *alphatab;
int alpha;
const art_u8 *tqmaskbuf;
linebuf = data->dst;
x0 = data->x0;
x1 = data->x1;
alphatab = data->alphatab;
tqmaskbuf = data->tqmask + (y - data->y0) * (x1 - x0);
if(n_steps > 0)
{
run_x1 = steps[0].x;
if(run_x1 > x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_affine_clip_tqmask_run(linebuf, tqmaskbuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
for(k = 0; k < n_steps - 1; k++)
{
running_sum += steps[k].delta;
run_x0 = run_x1;
run_x1 = steps[k + 1].x;
if(run_x1 > run_x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_affine_clip_tqmask_run(linebuf + (run_x0 - x0) * 4, tqmaskbuf + (run_x0 - x0), run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
running_sum += steps[k].delta;
if(x1 > run_x1)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_affine_clip_tqmask_run(linebuf + (run_x1 - x0) * 4, tqmaskbuf + (run_x1 - x0), run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
else
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_affine_clip_tqmask_run(linebuf, tqmaskbuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
data->dst += data->dst_rowstride;
}
/**
* ksvg_art_rgb_affine_clip: Affine transform source RGB image and composite, with clipping path.
* @svp: Clipping path.
* @dst: Destination image RGB buffer.
* @x0: Left coordinate of destination rectangle.
* @y0: Top coordinate of destination rectangle.
* @x1: Right coordinate of destination rectangle.
* @y1: Bottom coordinate of destination rectangle.
* @dst_rowstride: Rowstride of @dst buffer.
* @src: Source image RGB buffer.
* @src_width: Width of source image.
* @src_height: Height of source image.
* @src_rowstride: Rowstride of @src buffer.
* @affine: Affine transform.
* @level: Filter level.
* @alphagamma: #ArtAlphaGamma for gamma-correcting the compositing.
* @alpha: Alpha, range 0..256.
*
* Affine transform the source image stored in @src, compositing over
* the area of destination image @dst specified by the rectangle
* (@x0, @y0) - (@x1, @y1). As usual in libart, the left and top edges
* of this rectangle are included, and the right and bottom edges are
* excluded.
*
* The @alphagamma parameter specifies that the alpha compositing be done
* in a gamma-corrected color space. Since the source image is opaque RGB,
* this argument only affects the edges. In the current implementation,
* it is ignored.
*
* The @level parameter specifies the speed/quality tradeoff of the
* image interpolation. Currently, only ART_FILTER_NEAREST is
* implemented.
*
* KSVG additions : we have changed this function to support an alpha level as well.
* also we made sure compositing an rgba image over an rgb buffer works.
**/
void ksvg_art_rgb_affine_clip(const ArtSVP *svp, art_u8 *dst, int x0, int y0, int x1, int y1, int dst_rowstride, int dst_channels,
const art_u8 *src,
int src_width, int src_height, int src_rowstride,
const double affine[6],
int alpha, const art_u8 *tqmask)
{
ksvgArtRgbAffineClipAlphaData data;
int i;
int a, da;
data.alpha = alpha;
a = 0x8000;
da = (alpha * 66051 + 0x80) >> 8; /* 66051 equals 2 ^ 32 / (255 * 255) */
for(i = 0; i < 256; i++)
{
data.alphatab[i] = a >> 16;
a += da;
}
data.dst = dst;
data.dst_rowstride = dst_rowstride;
data.x0 = x0;
data.x1 = x1;
data.y0 = y0;
data.tqmask = tqmask;
art_affine_invert(data.inv, affine);
data.src = src;
data.src_width = src_width;
data.src_height = src_height;
data.src_rowstride = src_rowstride;
if(dst_channels == 3)
{
if(tqmask)
art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgb_affine_clip_tqmask_callback, &data);
else
art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgb_affine_clip_callback, &data);
}
else
{
if(tqmask)
art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgba_affine_clip_tqmask_callback, &data);
else
art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgba_affine_clip_callback, &data);
}
}
static
void ksvg_art_rgb_texture_run(art_u8 *dst_p, int x0, int x1, int y, const double inv[6],
int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height)
{
const art_u8 *src_p;
ArtPoint pt, src_pt;
int src_x, src_y;
int x;
int srcAlpha;
if(alpha > 255)
alpha = 255;
/* TODO: optimise and filter? */
pt.y = y + 0.5;
for(x = x0; x < x1; x++)
{
int s;
int d;
int tmp;
int tmp2;
pt.x = x + 0.5;
art_affine_point(&src_pt, &pt, inv);
src_x = (int)floor(src_pt.x);
src_y = (int)floor(src_pt.y);
if(src_x < 0)
{
/* Can't assume % behaviour with negative values */
src_x += ((src_x / -src_width) + 1) * src_width;
}
if(src_y < 0)
{
src_y += ((src_y / -src_height) + 1) * src_height;
}
src_x %= src_width;
src_y %= src_height;
src_p = src + (src_y * src_rowstride) + src_x * 4;
/* Pattern source is in RGBA format, premultiplied.
* alpha represents fill/stroke/group opacity.
*
* Multiply source alpha by 'alpha' then composite over.
* For each channel, d = d + alpha * (s - srcAlpha * d).
*/
srcAlpha = src_p[3];
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = alpha * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = alpha * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = alpha * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
}
}
static void
ksvg_art_rgb_texture_callback (void *callback_data, int y,
int start, ArtSVPRenderAAStep *steps, int n_steps)
{
ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data;
art_u8 *linebuf;
int run_x0, run_x1;
art_u32 running_sum = start;
int x0, x1;
int k;
int *alphatab;
int alpha;
linebuf = data->dst;
x0 = data->x0;
x1 = data->x1;
alphatab = data->alphatab;
if(n_steps > 0)
{
run_x1 = steps[0].x;
if(run_x1 > x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_texture_run(linebuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
for(k = 0; k < n_steps - 1; k++)
{
running_sum += steps[k].delta;
run_x0 = run_x1;
run_x1 = steps[k + 1].x;
if(run_x1 > run_x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_texture_run(linebuf + (run_x0 - x0) * 3, run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
running_sum += steps[k].delta;
if(x1 > run_x1)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_texture_run(linebuf + (run_x1 - x0) * 3, run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
else
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_texture_run(linebuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
data->dst += data->dst_rowstride;
}
static
void ksvg_art_rgb_texture_tqmask_run(art_u8 *dst_p, const art_u8 *tqmask, int x0, int x1, int y, const double inv[6],
int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height)
{
const art_u8 *src_p;
ArtPoint pt, src_pt;
int src_x, src_y;
int x;
int srcAlpha;
if(alpha > 255)
alpha = 255;
/* TODO: optimise and filter? */
pt.y = y + 0.5;
for(x = x0; x < x1; x++)
{
int s;
int d;
int am;
int tmp;
int tmp2;
pt.x = x + 0.5;
art_affine_point(&src_pt, &pt, inv);
src_x = (int)floor(src_pt.x);
src_y = (int)floor(src_pt.y);
if(src_x < 0)
{
/* Can't assume % behaviour with negative values */
src_x += ((src_x / -src_width) + 1) * src_width;
}
if(src_y < 0)
{
src_y += ((src_y / -src_height) + 1) * src_height;
}
src_x %= src_width;
src_y %= src_height;
src_p = src + (src_y * src_rowstride) + src_x * 4;
/* Pattern source is in RGBA format, premultiplied.
* alpha represents fill/stroke/group opacity.
*
* Multiply source alpha by 'alpha' and tqmask value then composite over.
* For each channel, d = d + alpha * tqmask * (s - srcAlpha * d).
*/
am = (alpha * *tqmask++) + 0x80;
am = (am + (am >> 8)) >> 8;
srcAlpha = src_p[3];
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = am * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = am * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = am * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
}
}
static void
ksvg_art_rgb_texture_tqmask_callback (void *callback_data, int y,
int start, ArtSVPRenderAAStep *steps, int n_steps)
{
ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data;
art_u8 *linebuf;
int run_x0, run_x1;
art_u32 running_sum = start;
int x0, x1;
int k;
int *alphatab;
int alpha;
const art_u8 *tqmaskbuf;
linebuf = data->dst;
x0 = data->x0;
x1 = data->x1;
alphatab = data->alphatab;
tqmaskbuf = data->tqmask + (y - data->y0) * (x1 - x0);
if(n_steps > 0)
{
run_x1 = steps[0].x;
if(run_x1 > x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_texture_tqmask_run(linebuf, tqmaskbuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
for(k = 0; k < n_steps - 1; k++)
{
running_sum += steps[k].delta;
run_x0 = run_x1;
run_x1 = steps[k + 1].x;
if(run_x1 > run_x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_texture_tqmask_run(linebuf + (run_x0 - x0) * 3, tqmaskbuf + (run_x0 - x0), run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
running_sum += steps[k].delta;
if(x1 > run_x1)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_texture_tqmask_run(linebuf + (run_x1 - x0) * 3, tqmaskbuf + (run_x1 - x0), run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
else
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgb_texture_tqmask_run(linebuf, tqmaskbuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
data->dst += data->dst_rowstride;
}
static
void ksvg_art_rgba_texture_run(art_u8 *dst_p, int x0, int x1, int y, const double inv[6],
int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height)
{
const art_u8 *src_p;
ArtPoint pt, src_pt;
int src_x, src_y;
int x;
int srcAlpha;
if(alpha > 255)
alpha = 255;
/* TODO: optimise and filter? */
pt.y = y + 0.5;
for(x = x0; x < x1; x++)
{
int s;
int d;
int tmp;
int tmp2;
pt.x = x + 0.5;
art_affine_point(&src_pt, &pt, inv);
src_x = (int)floor(src_pt.x);
src_y = (int)floor(src_pt.y);
if(src_x < 0)
{
/* Can't assume % behaviour with negative values */
src_x += ((src_x / -src_width) + 1) * src_width;
}
if(src_y < 0)
{
src_y += ((src_y / -src_height) + 1) * src_height;
}
src_x %= src_width;
src_y %= src_height;
src_p = src + (src_y * src_rowstride) + src_x * 4;
/* Pattern source is in RGBA format, premultiplied.
* alpha represents fill/stroke/group opacity.
*
* Multiply source alpha by 'alpha' then composite over.
* For each colour channel, d = d + alpha * (s - srcAlpha * d).
*/
srcAlpha = src_p[3];
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = alpha * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = alpha * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = alpha * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
/* dstAlpha = dstAlpha + srcAlpha * alpha * (1 - dstAlpha) */
d = *dst_p;
tmp = srcAlpha * alpha + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = tmp * (255 - d) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
src_p++;
}
}
static void
ksvg_art_rgba_texture_callback (void *callback_data, int y,
int start, ArtSVPRenderAAStep *steps, int n_steps)
{
ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data;
art_u8 *linebuf;
int run_x0, run_x1;
art_u32 running_sum = start;
int x0, x1;
int k;
int *alphatab;
int alpha;
linebuf = data->dst;
x0 = data->x0;
x1 = data->x1;
alphatab = data->alphatab;
if(n_steps > 0)
{
run_x1 = steps[0].x;
if(run_x1 > x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_texture_run(linebuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
for(k = 0; k < n_steps - 1; k++)
{
running_sum += steps[k].delta;
run_x0 = run_x1;
run_x1 = steps[k + 1].x;
if(run_x1 > run_x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_texture_run(linebuf + (run_x0 - x0) * 4, run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
running_sum += steps[k].delta;
if(x1 > run_x1)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_texture_run(linebuf + (run_x1 - x0) * 4, run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
else
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_texture_run(linebuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
data->dst += data->dst_rowstride;
}
static
void ksvg_art_rgba_texture_tqmask_run(art_u8 *dst_p, const art_u8 *tqmask, int x0, int x1, int y, const double inv[6],
int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height)
{
const art_u8 *src_p;
ArtPoint pt, src_pt;
int src_x, src_y;
int x;
int srcAlpha;
if(alpha > 255)
alpha = 255;
/* TODO: optimise and filter? */
pt.y = y + 0.5;
for(x = x0; x < x1; x++)
{
int s;
int d;
int am;
int tmp;
int tmp2;
pt.x = x + 0.5;
art_affine_point(&src_pt, &pt, inv);
src_x = (int)floor(src_pt.x);
src_y = (int)floor(src_pt.y);
if(src_x < 0)
{
/* Can't assume % behaviour with negative values */
src_x += ((src_x / -src_width) + 1) * src_width;
}
if(src_y < 0)
{
src_y += ((src_y / -src_height) + 1) * src_height;
}
src_x %= src_width;
src_y %= src_height;
src_p = src + (src_y * src_rowstride) + src_x * 4;
/* Pattern source is in RGBA format, premultiplied.
* alpha represents fill/stroke/group opacity.
*
* Multiply source alpha by 'alpha' and tqmask value then composite over.
* For each channel, d = d + alpha * tqmask * (s - srcAlpha * d).
*/
am = (alpha * *tqmask++) + 0x80;
am = (am + (am >> 8)) >> 8;
srcAlpha = src_p[3];
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = am * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = am * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
d = *dst_p;
s = *src_p++;
tmp = srcAlpha * d + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = am * (s - tmp) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
/* dstAlpha = dstAlpha + srcAlpha * alpha * tqmask * (1 - dstAlpha) */
d = *dst_p;
tmp = srcAlpha * am + 0x80;
tmp = (tmp + (tmp >> 8)) >> 8;
tmp2 = tmp * (255 - d) + 0x80;
tmp2 = (tmp2 + (tmp2 >> 8)) >> 8;
*dst_p++ = d + tmp2;
src_p++;
}
}
static void
ksvg_art_rgba_texture_tqmask_callback (void *callback_data, int y,
int start, ArtSVPRenderAAStep *steps, int n_steps)
{
ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data;
art_u8 *linebuf;
int run_x0, run_x1;
art_u32 running_sum = start;
int x0, x1;
int k;
int *alphatab;
int alpha;
const art_u8 *tqmaskbuf;
linebuf = data->dst;
x0 = data->x0;
x1 = data->x1;
alphatab = data->alphatab;
tqmaskbuf = data->tqmask + (y - data->y0) * (x1 - x0);
if(n_steps > 0)
{
run_x1 = steps[0].x;
if(run_x1 > x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_texture_tqmask_run(linebuf, tqmaskbuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
for(k = 0; k < n_steps - 1; k++)
{
running_sum += steps[k].delta;
run_x0 = run_x1;
run_x1 = steps[k + 1].x;
if(run_x1 > run_x0)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_texture_tqmask_run(linebuf + (run_x0 - x0) * 4, tqmaskbuf + (run_x0 - x0), run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
running_sum += steps[k].delta;
if(x1 > run_x1)
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_texture_tqmask_run(linebuf + (run_x1 - x0) * 4, tqmaskbuf + (run_x1 - x0), run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
}
else
{
alpha = (running_sum >> 16) & 0xff;
if(alpha)
ksvg_art_rgba_texture_tqmask_run(linebuf, tqmaskbuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height);
}
data->dst += data->dst_rowstride;
}
/**
* ksvg_art_rgb_texture: Affine transform source RGB image and composite, with clipping path.
* @svp: Clipping path.
* @dst: Destination image RGB buffer.
* @x0: Left coordinate of destination rectangle.
* @y0: Top coordinate of destination rectangle.
* @x1: Right coordinate of destination rectangle.
* @y1: Bottom coordinate of destination rectangle.
* @dst_rowstride: Rowstride of @dst buffer.
* @src: Source image RGB buffer.
* @src_width: Width of source image.
* @src_height: Height of source image.
* @src_rowstride: Rowstride of @src buffer.
* @affine: Affine transform.
* @level: Filter level.
* @alphagamma: #ArtAlphaGamma for gamma-correcting the compositing.
* @alpha: Alpha, range 0..256.
*
* Affine transform the source image stored in @src, compositing over
* the area of destination image @dst specified by the rectangle
* (@x0, @y0) - (@x1, @y1). As usual in libart, the left and top edges
* of this rectangle are included, and the right and bottom edges are
* excluded.
*
* The @alphagamma parameter specifies that the alpha compositing be done
* in a gamma-corrected color space. Since the source image is opaque RGB,
* this argument only affects the edges. In the current implementation,
* it is ignored.
*
* The @level parameter specifies the speed/quality tradeoff of the
* image interpolation. Currently, only ART_FILTER_NEAREST is
* implemented.
*
* KSVG additions : we have changed this function to support an alpha level as well.
* also we made sure compositing an rgba image over an rgb buffer works.
**/
void ksvg_art_rgb_texture(const ArtSVP *svp, art_u8 *dst, int x0, int y0, int x1, int y1, int dst_rowstride,
int dst_channels,
const art_u8 *src,
int src_width, int src_height, int src_rowstride,
const double affine[6],
ArtFilterLevel level,
ArtAlphaGamma *alphaGamma,
int alpha,
const art_u8 *tqmask)
{
ksvgArtRgbAffineClipAlphaData data;
int i;
int a, da;
data.alpha = alpha;
a = 0x8000;
da = (alpha * 66051 + 0x80) >> 8; /* 66051 equals 2 ^ 32 / (255 * 255) */
for(i = 0; i < 256; i++)
{
data.alphatab[i] = a >> 16;
a += da;
}
data.dst = dst;
data.dst_rowstride = dst_rowstride;
data.x0 = x0;
data.x1 = x1;
data.inv[0] = affine[0];
data.inv[1] = affine[1];
data.inv[2] = affine[2];
data.inv[3] = affine[3];
data.inv[4] = affine[4];
data.inv[5] = affine[5];
data.src = src;
data.src_width = src_width;
data.src_height = src_height;
data.src_rowstride = src_rowstride;
data.tqmask = tqmask;
data.y0 = y0;
if(tqmask)
{
if(dst_channels == 3)
art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgb_texture_tqmask_callback, &data);
else
art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgba_texture_tqmask_callback, &data);
}
else
{
if(dst_channels == 3)
art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgb_texture_callback, &data);
else
art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgba_texture_callback, &data);
}
}
/**
* ksvg_art_svp_move: moves an svp relatively to the current position.
* @svp: SVP to move.
* @dx: relative amount to move horizontally.
* @dy: relative amount to move vertically.
*
* Note : this function always moves the svp, not taking into account render buffer
* boundaries.
**/
void ksvg_art_svp_move(ArtSVP *svp, int dx, int dy)
{
int i, j;
ArtSVPSeg *seg;
if(dx == 0 && dy == 0) return;
for(i = 0;i < svp->n_segs;i++)
{
seg = &svp->segs[i];
for(j = 0;j < seg->n_points;j++)
{
seg->points[j].x += dx;
seg->points[j].y += dy;
}
seg->bbox.x0 += dx;
seg->bbox.y0 += dy;
seg->bbox.x1 += dx;
seg->bbox.y1 += dy;
}
}