#include #include #include #include #include #include "art_misc.h" extern double ceil(double x); extern double floor(double x); /** * art_vpath_render_bez: Render a bezier segment into the vpath. * @p_vpath: Where the pointer to the #ArtVpath structure is stored. * @pn_points: Pointer to the number of points in *@p_vpath. * @pn_points_max: Pointer to the number of points allocated. * @x0: X coordinate of starting bezier point. * @y0: Y coordinate of starting bezier point. * @x1: X coordinate of first bezier control point. * @y1: Y coordinate of first bezier control point. * @x2: X coordinate of second bezier control point. * @y2: Y coordinate of second bezier control point. * @x3: X coordinate of ending bezier point. * @y3: Y coordinate of ending bezier point. * @flatness: Flatness control. * * Renders a bezier segment into the vector path, reallocating and * updating *@p_vpath and *@pn_vpath_max as necessary. *@pn_vpath is * incremented by the number of vector points added. * * This step includes (@x0, @y0) but not (@x3, @y3). * * The @flatness argument guides the amount of subdivision. The Adobe * PostScript reference manual defines flatness as the maximum * deviation between the any point on the vpath approximation and the * corresponding point on the "true" curve, and we follow this * definition here. A value of 0.25 should ensure high quality for aa * rendering. **/ void ksvg_art_vpath_render_bez (ArtVpath **p_vpath, int *pn, int *pn_max, double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3, double flatness) { double x3_0, y3_0; double z3_0_dot; double z1_dot, z2_dot; double z1_perp, z2_perp; double max_perp_sq; double x_m, y_m; double xa1, ya1; double xa2, ya2; double xb1, yb1; double xb2, yb2; /* It's possible to optimize this routine a fair amount. First, once the _dot conditions are met, they will also be met in all further subdivisions. So we might recurse to a different routine that only checks the _perp conditions. Second, the distance _should_ decrease according to fairly predictable rules (a factor of 4 with each subdivision). So it might be possible to note that the distance is within a factor of 4 of acceptable, and subdivide once. But proving this might be hard. Third, at the last subdivision, x_m and y_m can be computed more expeditiously (as in the routine above). Finally, if we were able to subdivide by, say 2 or 3, this would allow considerably finer-grain control, i.e. fewer points for the same flatness tolerance. This would speed things up downstream. In any case, this routine is unlikely to be the bottleneck. It's just that I have this undying quest for more speed... */ x3_0 = x3 - x0; y3_0 = y3 - y0; /* z3_0_dot is dist z0-z3 squared */ z3_0_dot = x3_0 * x3_0 + y3_0 * y3_0; /* todo: this test is far from satisfactory. */ if (z3_0_dot < 0.001) goto nosubdivide; /* we can avoid subdivision if: z1 has distance no more than flatness from the z0-z3 line z1 is no more z0'ward than flatness past z0-z3 z1 is more z0'ward than z3'ward on the line traversing z0-z3 and correspondingly for z2 */ /* perp is distance from line, multiplied by dist z0-z3 */ max_perp_sq = flatness * flatness * z3_0_dot; z1_perp = (y1 - y0) * x3_0 - (x1 - x0) * y3_0; if (z1_perp * z1_perp > max_perp_sq) goto subdivide; z2_perp = (y3 - y2) * x3_0 - (x3 - x2) * y3_0; if (z2_perp * z2_perp > max_perp_sq) goto subdivide; z1_dot = (x1 - x0) * x3_0 + (y1 - y0) * y3_0; if (z1_dot < 0 && z1_dot * z1_dot > max_perp_sq) goto subdivide; z2_dot = (x3 - x2) * x3_0 + (y3 - y2) * y3_0; if (z2_dot < 0 && z2_dot * z2_dot > max_perp_sq) goto subdivide; if (z1_dot + z1_dot > z3_0_dot) goto subdivide; if (z2_dot + z2_dot > z3_0_dot) goto subdivide; nosubdivide: /* don't subdivide */ art_vpath_add_point (p_vpath, pn, pn_max, ART_LINETO, x3, y3); return; subdivide: xa1 = (x0 + x1) * 0.5; ya1 = (y0 + y1) * 0.5; xa2 = (x0 + 2 * x1 + x2) * 0.25; ya2 = (y0 + 2 * y1 + y2) * 0.25; xb1 = (x1 + 2 * x2 + x3) * 0.25; yb1 = (y1 + 2 * y2 + y3) * 0.25; xb2 = (x2 + x3) * 0.5; yb2 = (y2 + y3) * 0.5; x_m = (xa2 + xb1) * 0.5; y_m = (ya2 + yb1) * 0.5; #ifdef VERBOSE printf ("%g,%g %g,%g %g,%g %g,%g\n", xa1, ya1, xa2, ya2, xb1, yb1, xb2, yb2); #endif ksvg_art_vpath_render_bez (p_vpath, pn, pn_max, x0, y0, xa1, ya1, xa2, ya2, x_m, y_m, flatness); ksvg_art_vpath_render_bez (p_vpath, pn, pn_max, x_m, y_m, xb1, yb1, xb2, yb2, x3, y3, flatness); } #define RENDER_LEVEL 4 #define RENDER_SIZE (1 << (RENDER_LEVEL)) /** * ksvg_art_bez_path_to_vec: Create vpath from bezier path. * @bez: Bezier path. * @flatness: Flatness control. * * Creates a vector path closely approximating the bezier path defined by * @bez. The @flatness argument controls the amount of subdivision. In * general, the resulting vpath deviates by at most @flatness pixels * from the "ideal" path described by @bez. * * Return value: Newly allocated vpath. **/ ArtVpath * ksvg_art_bez_path_to_vec(const ArtBpath *bez, double flatness) { ArtVpath *vec; int vec_n, vec_n_max; int bez_index; double x, y; vec_n = 0; vec_n_max = RENDER_SIZE; vec = art_new (ArtVpath, vec_n_max); /* Initialization is unnecessary because of the precondition that the bezier path does not begin with LINETO or CURVETO, but is here to make the code warning-free. */ x = 0; y = 0; bez_index = 0; do { #ifdef VERBOSE printf ("%s %g %g\n", bez[bez_index].code == ART_CURVETO ? "curveto" : bez[bez_index].code == ART_LINETO ? "lineto" : bez[bez_index].code == ART_MOVETO ? "moveto" : bez[bez_index].code == ART_MOVETO_OPEN ? "moveto-open" : "end", bez[bez_index].x3, bez[bez_index].y3); #endif /* make sure space for at least one more code */ if (vec_n >= vec_n_max) art_expand (vec, ArtVpath, vec_n_max); switch (bez[bez_index].code) { case ART_MOVETO_OPEN: case ART_MOVETO: case ART_LINETO: x = bez[bez_index].x3; y = bez[bez_index].y3; vec[vec_n].code = bez[bez_index].code; vec[vec_n].x = x; vec[vec_n].y = y; vec_n++; break; case ART_END: vec[vec_n].code = ART_END; vec[vec_n].x = 0; vec[vec_n].y = 0; vec_n++; break; case ART_END2: vec[vec_n].code = (ArtPathcode)ART_END2; vec[vec_n].x = bez[bez_index].x3; vec[vec_n].y = bez[bez_index].y3; vec_n++; break; case ART_CURVETO: #ifdef VERBOSE printf ("%g,%g %g,%g %g,%g %g,%g\n", x, y, bez[bez_index].x1, bez[bez_index].y1, bez[bez_index].x2, bez[bez_index].y2, bez[bez_index].x3, bez[bez_index].y3); #endif ksvg_art_vpath_render_bez (&vec, &vec_n, &vec_n_max, x, y, bez[bez_index].x1, bez[bez_index].y1, bez[bez_index].x2, bez[bez_index].y2, bez[bez_index].x3, bez[bez_index].y3, flatness); x = bez[bez_index].x3; y = bez[bez_index].y3; break; } } while (bez[bez_index++].code != ART_END); return vec; } /* Private functions for the rgb affine image compositors - primarily, * the determination of runs, eliminating the need for source image * bbox calculation in the inner loop. */ /* Determine a "run", such that the inverse affine of all pixels from * (x0, y) inclusive to (x1, y) exclusive fit within the bounds * of the source image. * * Initial values of x0, x1, and result values stored in first two * pointer arguments. * */ #define EPSILON 1e-6 void ksvg_art_rgb_affine_run (int *p_x0, int *p_x1, int y, int src_width, int src_height, const double affine[6]) { int x0, x1; double z; double x_intercept; int xi; x0 = *p_x0; x1 = *p_x1; /* do left and right edges */ if (affine[0] > EPSILON) { z = affine[2] * (y + 0.5) + affine[4]; x_intercept = -z / affine[0]; xi = ceil (x_intercept + EPSILON - 0.5); if (xi > x0) x0 = xi; x_intercept = (-z + src_width) / affine[0]; xi = ceil (x_intercept - EPSILON - 0.5); if (xi < x1) x1 = xi; } else if (affine[0] < -EPSILON) { z = affine[2] * (y + 0.5) + affine[4]; x_intercept = (-z + src_width) / affine[0]; xi = ceil (x_intercept + EPSILON - 0.5); if (xi > x0) x0 = xi; x_intercept = -z / affine[0]; xi = ceil (x_intercept - EPSILON - 0.5); if (xi < x1) x1 = xi; } else { z = affine[2] * (y + 0.5) + affine[4]; if (z < 0 || z >= src_width) { *p_x1 = *p_x0; return; } } /* do top and bottom edges */ if (affine[1] > EPSILON) { z = affine[3] * (y + 0.5) + affine[5]; x_intercept = -z / affine[1]; xi = ceil (x_intercept + EPSILON - 0.5); if (xi > x0) x0 = xi; x_intercept = (-z + src_height) / affine[1]; xi = ceil (x_intercept - EPSILON - 0.5); if (xi < x1) x1 = xi; } else if (affine[1] < -EPSILON) { z = affine[3] * (y + 0.5) + affine[5]; x_intercept = (-z + src_height) / affine[1]; xi = ceil (x_intercept + EPSILON - 0.5); if (xi > x0) x0 = xi; x_intercept = -z / affine[1]; xi = ceil (x_intercept - EPSILON - 0.5); if (xi < x1) x1 = xi; } else { z = affine[3] * (y + 0.5) + affine[5]; if (z < 0 || z >= src_height) { *p_x1 = *p_x0; return; } } *p_x0 = x0; *p_x1 = x1; } /** * ksvg_art_rgb_affine: Affine transform source RGB image and composite. * @dst: Destination image RGB buffer. * @x0: Left coordinate of destination rectangle. * @y0: Top coordinate of destination rectangle. * @x1: Right coordinate of destination rectangle. * @y1: Bottom coordinate of destination rectangle. * @dst_rowstride: Rowstride of @dst buffer. * @src: Source image RGB buffer. * @src_width: Width of source image. * @src_height: Height of source image. * @src_rowstride: Rowstride of @src buffer. * @affine: Affine transform. * @level: Filter level. * @alphagamma: #ArtAlphaGamma for gamma-correcting the compositing. * @alpha: Alpha, range 0..256. * * Affine transform the source image stored in @src, compositing over * the area of destination image @dst specified by the rectangle * (@x0, @y0) - (@x1, @y1). As usual in libart, the left and top edges * of this rectangle are included, and the right and bottom edges are * excluded. * * The @alphagamma parameter specifies that the alpha compositing be done * in a gamma-corrected color space. Since the source image is opaque RGB, * this argument only affects the edges. In the current implementation, * it is ignored. * * The @level parameter specifies the speed/quality tradeoff of the * image interpolation. Currently, only ART_FILTER_NEAREST is * implemented. * * KSVG additions : we have changed this function to support an alpha level as well. * also we made sure compositing an rgba image over an rgb buffer works. **/ void ksvg_art_rgb_affine (art_u8 *dst, int x0, int y0, int x1, int y1, int dst_rowstride, const art_u8 *src, int src_width, int src_height, int src_rowstride, const double affine[6], ArtFilterLevel level, ArtAlphaGamma *alphagamma, int alpha) { /* Note: this is a slow implementation, and is missing all filter levels other than NEAREST. It is here for clarity of presentation and to establish the interface. */ int x, y; double inv[6]; art_u8 *dst_p, *dst_linestart; const art_u8 *src_p; ArtPoint pt, src_pt; int src_x, src_y; int run_x0, run_x1; dst_linestart = dst; art_affine_invert (inv, affine); if(alpha == 255) for (y = y0; y < y1; y++) { pt.y = y + 0.5; run_x0 = x0; run_x1 = x1; ksvg_art_rgb_affine_run (&run_x0, &run_x1, y, src_width, src_height, inv); dst_p = dst_linestart + (run_x0 - x0) * 3; for (x = run_x0; x < run_x1; x++) { pt.x = x + 0.5; art_affine_point (&src_pt, &pt, inv); src_x = floor (src_pt.x); src_y = floor (src_pt.y); src_p = src + (src_y * src_rowstride) + src_x * 4; dst_p[0] = dst_p[0] + (((src_p[2] - dst_p[0]) * src_p[3] + 0x80) >> 8); dst_p[1] = dst_p[1] + (((src_p[1] - dst_p[1]) * src_p[3] + 0x80) >> 8); dst_p[2] = dst_p[2] + (((src_p[0] - dst_p[2]) * src_p[3] + 0x80) >> 8); dst_p += 3; } dst_linestart += dst_rowstride; } else for (y = y0; y < y1; y++) { pt.y = y + 0.5; run_x0 = x0; run_x1 = x1; ksvg_art_rgb_affine_run (&run_x0, &run_x1, y, src_width, src_height, inv); dst_p = dst_linestart + (run_x0 - x0) * 3; for (x = run_x0; x < run_x1; x++) { pt.x = x + 0.5; art_affine_point (&src_pt, &pt, inv); src_x = floor (src_pt.x); src_y = floor (src_pt.y); src_p = src + (src_y * src_rowstride) + src_x * 4; dst_p[0] = dst_p[0] + (((src_p[2] - dst_p[0]) * alpha + 0x80) >> 8); dst_p[1] = dst_p[1] + (((src_p[1] - dst_p[1]) * alpha + 0x80) >> 8); dst_p[2] = dst_p[2] + (((src_p[0] - dst_p[2]) * alpha + 0x80) >> 8); dst_p += 3; } dst_linestart += dst_rowstride; } } typedef struct _ksvgArtRgbAffineClipAlphaData ksvgArtRgbAffineClipAlphaData; struct _ksvgArtRgbAffineClipAlphaData { int alphatab[256]; art_u8 alpha; art_u8 *dst; int dst_rowstride; int x0, x1; double inv[6]; const art_u8 *src; int src_width; int src_height; int src_rowstride; const art_u8 *tqmask; int y0; }; static void ksvg_art_rgb_affine_clip_run(art_u8 *dst_p, int x0, int x1, int y, const double inv[6], int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height) { const art_u8 *src_p; ArtPoint pt, src_pt; int src_x, src_y; int x; if(alpha > 255) alpha = 255; pt.y = y; for(x = x0; x < x1; x++) { pt.x = x; art_affine_point(&src_pt, &pt, inv); src_x = (int)(src_pt.x); src_y = (int)(src_pt.y); if(src_x >= 0 && src_x < src_width && src_y >= 0 && src_y < src_height) { int s; int d; int tmp; int srcAlpha; src_p = src + (src_y * src_rowstride) + src_x * 4; srcAlpha = alpha * src_p[3] + 0x80; srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8; d = *dst_p; s = src_p[2]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; d = *dst_p; s = src_p[1]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; d = *dst_p; s = src_p[0]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; } else dst_p += 3; } } static void ksvg_art_rgb_affine_clip_callback (void *callback_data, int y, int start, ArtSVPRenderAAStep *steps, int n_steps) { ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data; art_u8 *linebuf; int run_x0, run_x1; art_u32 running_sum = start; int x0, x1; int k; int *alphatab; int alpha; linebuf = data->dst; x0 = data->x0; x1 = data->x1; alphatab = data->alphatab; if(n_steps > 0) { run_x1 = steps[0].x; if(run_x1 > x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_affine_clip_run(linebuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } for(k = 0; k < n_steps - 1; k++) { running_sum += steps[k].delta; run_x0 = run_x1; run_x1 = steps[k + 1].x; if(run_x1 > run_x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_affine_clip_run(linebuf + (run_x0 - x0) * 3, run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } running_sum += steps[k].delta; if(x1 > run_x1) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_affine_clip_run(linebuf + (run_x1 - x0) * 3, run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } else { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_affine_clip_run(linebuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } data->dst += data->dst_rowstride; } static void ksvg_art_rgb_affine_clip_tqmask_run(art_u8 *dst_p, const art_u8 *tqmask, int x0, int x1, int y, const double inv[6], int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height) { const art_u8 *src_p; ArtPoint pt, src_pt; int src_x, src_y; int x; if(alpha > 255) alpha = 255; pt.y = y; for(x = x0; x < x1; x++) { pt.x = x; art_affine_point(&src_pt, &pt, inv); src_x = (int)(src_pt.x); src_y = (int)(src_pt.y); if(src_x >= 0 && src_x < src_width && src_y >= 0 && src_y < src_height) { int s; int d; int tmp; int srcAlpha; src_p = src + (src_y * src_rowstride) + src_x * 4; srcAlpha = alpha * src_p[3] + 0x80; srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8; srcAlpha = (srcAlpha * *tqmask++) + 0x80; srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8; d = *dst_p; s = src_p[2]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; d = *dst_p; s = src_p[1]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; d = *dst_p; s = src_p[0]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; } else { dst_p += 3; tqmask++; } } } static void ksvg_art_rgb_affine_clip_tqmask_callback (void *callback_data, int y, int start, ArtSVPRenderAAStep *steps, int n_steps) { ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data; art_u8 *linebuf; int run_x0, run_x1; art_u32 running_sum = start; int x0, x1; int k; int *alphatab; int alpha; const art_u8 *tqmaskbuf; linebuf = data->dst; x0 = data->x0; x1 = data->x1; alphatab = data->alphatab; tqmaskbuf = data->tqmask + (y - data->y0) * (x1 - x0); if(n_steps > 0) { run_x1 = steps[0].x; if(run_x1 > x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_affine_clip_tqmask_run(linebuf, tqmaskbuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } for(k = 0; k < n_steps - 1; k++) { running_sum += steps[k].delta; run_x0 = run_x1; run_x1 = steps[k + 1].x; if(run_x1 > run_x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_affine_clip_tqmask_run(linebuf + (run_x0 - x0) * 3, tqmaskbuf + (run_x0 - x0), run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } running_sum += steps[k].delta; if(x1 > run_x1) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_affine_clip_tqmask_run(linebuf + (run_x1 - x0) * 3, tqmaskbuf + (run_x1 - x0), run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } else { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_affine_clip_tqmask_run(linebuf, tqmaskbuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } data->dst += data->dst_rowstride; } static void ksvg_art_rgba_affine_clip_run(art_u8 *dst_p, int x0, int x1, int y, const double inv[6], int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height) { const art_u8 *src_p; ArtPoint pt, src_pt; int src_x, src_y; int x; if(alpha > 255) alpha = 255; pt.y = y; for(x = x0; x < x1; x++) { pt.x = x; art_affine_point(&src_pt, &pt, inv); src_x = (int)(src_pt.x); src_y = (int)(src_pt.y); if(src_x >= 0 && src_x < src_width && src_y >= 0 && src_y < src_height) { int s; int d; int tmp; int srcAlpha; src_p = src + (src_y * src_rowstride) + src_x * 4; srcAlpha = alpha * src_p[3] + 0x80; srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8; d = *dst_p; s = src_p[2]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; d = *dst_p; s = src_p[1]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; d = *dst_p; s = src_p[0]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; d = *dst_p; tmp = srcAlpha * (255 - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; } else dst_p += 4; } } static void ksvg_art_rgba_affine_clip_callback (void *callback_data, int y, int start, ArtSVPRenderAAStep *steps, int n_steps) { ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data; art_u8 *linebuf; int run_x0, run_x1; art_u32 running_sum = start; int x0, x1; int k; int *alphatab; int alpha; linebuf = data->dst; x0 = data->x0; x1 = data->x1; alphatab = data->alphatab; if(n_steps > 0) { run_x1 = steps[0].x; if(run_x1 > x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_affine_clip_run(linebuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } for(k = 0; k < n_steps - 1; k++) { running_sum += steps[k].delta; run_x0 = run_x1; run_x1 = steps[k + 1].x; if(run_x1 > run_x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_affine_clip_run(linebuf + (run_x0 - x0) * 4, run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } running_sum += steps[k].delta; if(x1 > run_x1) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_affine_clip_run(linebuf + (run_x1 - x0) * 4, run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } else { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_affine_clip_run(linebuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } data->dst += data->dst_rowstride; } static void ksvg_art_rgba_affine_clip_tqmask_run(art_u8 *dst_p, const art_u8 *tqmask, int x0, int x1, int y, const double inv[6], int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height) { const art_u8 *src_p; ArtPoint pt, src_pt; int src_x, src_y; int x; if(alpha > 255) alpha = 255; pt.y = y; for(x = x0; x < x1; x++) { pt.x = x; art_affine_point(&src_pt, &pt, inv); src_x = (int)(src_pt.x); src_y = (int)(src_pt.y); if(src_x >= 0 && src_x < src_width && src_y >= 0 && src_y < src_height) { int s; int d; int tmp; int srcAlpha; src_p = src + (src_y * src_rowstride) + src_x * 4; srcAlpha = alpha * src_p[3] + 0x80; srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8; srcAlpha = (srcAlpha * *tqmask++) + 0x80; srcAlpha = (srcAlpha + (srcAlpha >> 8)) >> 8; d = *dst_p; s = src_p[2]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; d = *dst_p; s = src_p[1]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; d = *dst_p; s = src_p[0]; tmp = srcAlpha * (s - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; d = *dst_p; tmp = srcAlpha * (255 - d) + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; *dst_p++ = d + tmp; } else { dst_p += 4; tqmask++; } } } static void ksvg_art_rgba_affine_clip_tqmask_callback (void *callback_data, int y, int start, ArtSVPRenderAAStep *steps, int n_steps) { ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data; art_u8 *linebuf; int run_x0, run_x1; art_u32 running_sum = start; int x0, x1; int k; int *alphatab; int alpha; const art_u8 *tqmaskbuf; linebuf = data->dst; x0 = data->x0; x1 = data->x1; alphatab = data->alphatab; tqmaskbuf = data->tqmask + (y - data->y0) * (x1 - x0); if(n_steps > 0) { run_x1 = steps[0].x; if(run_x1 > x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_affine_clip_tqmask_run(linebuf, tqmaskbuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } for(k = 0; k < n_steps - 1; k++) { running_sum += steps[k].delta; run_x0 = run_x1; run_x1 = steps[k + 1].x; if(run_x1 > run_x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_affine_clip_tqmask_run(linebuf + (run_x0 - x0) * 4, tqmaskbuf + (run_x0 - x0), run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } running_sum += steps[k].delta; if(x1 > run_x1) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_affine_clip_tqmask_run(linebuf + (run_x1 - x0) * 4, tqmaskbuf + (run_x1 - x0), run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } else { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_affine_clip_tqmask_run(linebuf, tqmaskbuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } data->dst += data->dst_rowstride; } /** * ksvg_art_rgb_affine_clip: Affine transform source RGB image and composite, with clipping path. * @svp: Clipping path. * @dst: Destination image RGB buffer. * @x0: Left coordinate of destination rectangle. * @y0: Top coordinate of destination rectangle. * @x1: Right coordinate of destination rectangle. * @y1: Bottom coordinate of destination rectangle. * @dst_rowstride: Rowstride of @dst buffer. * @src: Source image RGB buffer. * @src_width: Width of source image. * @src_height: Height of source image. * @src_rowstride: Rowstride of @src buffer. * @affine: Affine transform. * @level: Filter level. * @alphagamma: #ArtAlphaGamma for gamma-correcting the compositing. * @alpha: Alpha, range 0..256. * * Affine transform the source image stored in @src, compositing over * the area of destination image @dst specified by the rectangle * (@x0, @y0) - (@x1, @y1). As usual in libart, the left and top edges * of this rectangle are included, and the right and bottom edges are * excluded. * * The @alphagamma parameter specifies that the alpha compositing be done * in a gamma-corrected color space. Since the source image is opaque RGB, * this argument only affects the edges. In the current implementation, * it is ignored. * * The @level parameter specifies the speed/quality tradeoff of the * image interpolation. Currently, only ART_FILTER_NEAREST is * implemented. * * KSVG additions : we have changed this function to support an alpha level as well. * also we made sure compositing an rgba image over an rgb buffer works. **/ void ksvg_art_rgb_affine_clip(const ArtSVP *svp, art_u8 *dst, int x0, int y0, int x1, int y1, int dst_rowstride, int dst_channels, const art_u8 *src, int src_width, int src_height, int src_rowstride, const double affine[6], int alpha, const art_u8 *tqmask) { ksvgArtRgbAffineClipAlphaData data; int i; int a, da; data.alpha = alpha; a = 0x8000; da = (alpha * 66051 + 0x80) >> 8; /* 66051 equals 2 ^ 32 / (255 * 255) */ for(i = 0; i < 256; i++) { data.alphatab[i] = a >> 16; a += da; } data.dst = dst; data.dst_rowstride = dst_rowstride; data.x0 = x0; data.x1 = x1; data.y0 = y0; data.tqmask = tqmask; art_affine_invert(data.inv, affine); data.src = src; data.src_width = src_width; data.src_height = src_height; data.src_rowstride = src_rowstride; if(dst_channels == 3) { if(tqmask) art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgb_affine_clip_tqmask_callback, &data); else art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgb_affine_clip_callback, &data); } else { if(tqmask) art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgba_affine_clip_tqmask_callback, &data); else art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgba_affine_clip_callback, &data); } } static void ksvg_art_rgb_texture_run(art_u8 *dst_p, int x0, int x1, int y, const double inv[6], int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height) { const art_u8 *src_p; ArtPoint pt, src_pt; int src_x, src_y; int x; int srcAlpha; if(alpha > 255) alpha = 255; /* TODO: optimise and filter? */ pt.y = y + 0.5; for(x = x0; x < x1; x++) { int s; int d; int tmp; int tmp2; pt.x = x + 0.5; art_affine_point(&src_pt, &pt, inv); src_x = (int)floor(src_pt.x); src_y = (int)floor(src_pt.y); if(src_x < 0) { /* Can't assume % behaviour with negative values */ src_x += ((src_x / -src_width) + 1) * src_width; } if(src_y < 0) { src_y += ((src_y / -src_height) + 1) * src_height; } src_x %= src_width; src_y %= src_height; src_p = src + (src_y * src_rowstride) + src_x * 4; /* Pattern source is in RGBA format, premultiplied. * alpha represents fill/stroke/group opacity. * * Multiply source alpha by 'alpha' then composite over. * For each channel, d = d + alpha * (s - srcAlpha * d). */ srcAlpha = src_p[3]; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = alpha * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = alpha * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = alpha * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; } } static void ksvg_art_rgb_texture_callback (void *callback_data, int y, int start, ArtSVPRenderAAStep *steps, int n_steps) { ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data; art_u8 *linebuf; int run_x0, run_x1; art_u32 running_sum = start; int x0, x1; int k; int *alphatab; int alpha; linebuf = data->dst; x0 = data->x0; x1 = data->x1; alphatab = data->alphatab; if(n_steps > 0) { run_x1 = steps[0].x; if(run_x1 > x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_texture_run(linebuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } for(k = 0; k < n_steps - 1; k++) { running_sum += steps[k].delta; run_x0 = run_x1; run_x1 = steps[k + 1].x; if(run_x1 > run_x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_texture_run(linebuf + (run_x0 - x0) * 3, run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } running_sum += steps[k].delta; if(x1 > run_x1) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_texture_run(linebuf + (run_x1 - x0) * 3, run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } else { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_texture_run(linebuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } data->dst += data->dst_rowstride; } static void ksvg_art_rgb_texture_tqmask_run(art_u8 *dst_p, const art_u8 *tqmask, int x0, int x1, int y, const double inv[6], int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height) { const art_u8 *src_p; ArtPoint pt, src_pt; int src_x, src_y; int x; int srcAlpha; if(alpha > 255) alpha = 255; /* TODO: optimise and filter? */ pt.y = y + 0.5; for(x = x0; x < x1; x++) { int s; int d; int am; int tmp; int tmp2; pt.x = x + 0.5; art_affine_point(&src_pt, &pt, inv); src_x = (int)floor(src_pt.x); src_y = (int)floor(src_pt.y); if(src_x < 0) { /* Can't assume % behaviour with negative values */ src_x += ((src_x / -src_width) + 1) * src_width; } if(src_y < 0) { src_y += ((src_y / -src_height) + 1) * src_height; } src_x %= src_width; src_y %= src_height; src_p = src + (src_y * src_rowstride) + src_x * 4; /* Pattern source is in RGBA format, premultiplied. * alpha represents fill/stroke/group opacity. * * Multiply source alpha by 'alpha' and tqmask value then composite over. * For each channel, d = d + alpha * tqmask * (s - srcAlpha * d). */ am = (alpha * *tqmask++) + 0x80; am = (am + (am >> 8)) >> 8; srcAlpha = src_p[3]; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = am * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = am * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = am * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; } } static void ksvg_art_rgb_texture_tqmask_callback (void *callback_data, int y, int start, ArtSVPRenderAAStep *steps, int n_steps) { ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data; art_u8 *linebuf; int run_x0, run_x1; art_u32 running_sum = start; int x0, x1; int k; int *alphatab; int alpha; const art_u8 *tqmaskbuf; linebuf = data->dst; x0 = data->x0; x1 = data->x1; alphatab = data->alphatab; tqmaskbuf = data->tqmask + (y - data->y0) * (x1 - x0); if(n_steps > 0) { run_x1 = steps[0].x; if(run_x1 > x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_texture_tqmask_run(linebuf, tqmaskbuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } for(k = 0; k < n_steps - 1; k++) { running_sum += steps[k].delta; run_x0 = run_x1; run_x1 = steps[k + 1].x; if(run_x1 > run_x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_texture_tqmask_run(linebuf + (run_x0 - x0) * 3, tqmaskbuf + (run_x0 - x0), run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } running_sum += steps[k].delta; if(x1 > run_x1) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_texture_tqmask_run(linebuf + (run_x1 - x0) * 3, tqmaskbuf + (run_x1 - x0), run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } else { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgb_texture_tqmask_run(linebuf, tqmaskbuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } data->dst += data->dst_rowstride; } static void ksvg_art_rgba_texture_run(art_u8 *dst_p, int x0, int x1, int y, const double inv[6], int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height) { const art_u8 *src_p; ArtPoint pt, src_pt; int src_x, src_y; int x; int srcAlpha; if(alpha > 255) alpha = 255; /* TODO: optimise and filter? */ pt.y = y + 0.5; for(x = x0; x < x1; x++) { int s; int d; int tmp; int tmp2; pt.x = x + 0.5; art_affine_point(&src_pt, &pt, inv); src_x = (int)floor(src_pt.x); src_y = (int)floor(src_pt.y); if(src_x < 0) { /* Can't assume % behaviour with negative values */ src_x += ((src_x / -src_width) + 1) * src_width; } if(src_y < 0) { src_y += ((src_y / -src_height) + 1) * src_height; } src_x %= src_width; src_y %= src_height; src_p = src + (src_y * src_rowstride) + src_x * 4; /* Pattern source is in RGBA format, premultiplied. * alpha represents fill/stroke/group opacity. * * Multiply source alpha by 'alpha' then composite over. * For each colour channel, d = d + alpha * (s - srcAlpha * d). */ srcAlpha = src_p[3]; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = alpha * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = alpha * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = alpha * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; /* dstAlpha = dstAlpha + srcAlpha * alpha * (1 - dstAlpha) */ d = *dst_p; tmp = srcAlpha * alpha + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = tmp * (255 - d) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; src_p++; } } static void ksvg_art_rgba_texture_callback (void *callback_data, int y, int start, ArtSVPRenderAAStep *steps, int n_steps) { ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data; art_u8 *linebuf; int run_x0, run_x1; art_u32 running_sum = start; int x0, x1; int k; int *alphatab; int alpha; linebuf = data->dst; x0 = data->x0; x1 = data->x1; alphatab = data->alphatab; if(n_steps > 0) { run_x1 = steps[0].x; if(run_x1 > x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_texture_run(linebuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } for(k = 0; k < n_steps - 1; k++) { running_sum += steps[k].delta; run_x0 = run_x1; run_x1 = steps[k + 1].x; if(run_x1 > run_x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_texture_run(linebuf + (run_x0 - x0) * 4, run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } running_sum += steps[k].delta; if(x1 > run_x1) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_texture_run(linebuf + (run_x1 - x0) * 4, run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } else { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_texture_run(linebuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } data->dst += data->dst_rowstride; } static void ksvg_art_rgba_texture_tqmask_run(art_u8 *dst_p, const art_u8 *tqmask, int x0, int x1, int y, const double inv[6], int alpha, const art_u8 *src, int src_rowstride, int src_width, int src_height) { const art_u8 *src_p; ArtPoint pt, src_pt; int src_x, src_y; int x; int srcAlpha; if(alpha > 255) alpha = 255; /* TODO: optimise and filter? */ pt.y = y + 0.5; for(x = x0; x < x1; x++) { int s; int d; int am; int tmp; int tmp2; pt.x = x + 0.5; art_affine_point(&src_pt, &pt, inv); src_x = (int)floor(src_pt.x); src_y = (int)floor(src_pt.y); if(src_x < 0) { /* Can't assume % behaviour with negative values */ src_x += ((src_x / -src_width) + 1) * src_width; } if(src_y < 0) { src_y += ((src_y / -src_height) + 1) * src_height; } src_x %= src_width; src_y %= src_height; src_p = src + (src_y * src_rowstride) + src_x * 4; /* Pattern source is in RGBA format, premultiplied. * alpha represents fill/stroke/group opacity. * * Multiply source alpha by 'alpha' and tqmask value then composite over. * For each channel, d = d + alpha * tqmask * (s - srcAlpha * d). */ am = (alpha * *tqmask++) + 0x80; am = (am + (am >> 8)) >> 8; srcAlpha = src_p[3]; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = am * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = am * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; d = *dst_p; s = *src_p++; tmp = srcAlpha * d + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = am * (s - tmp) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; /* dstAlpha = dstAlpha + srcAlpha * alpha * tqmask * (1 - dstAlpha) */ d = *dst_p; tmp = srcAlpha * am + 0x80; tmp = (tmp + (tmp >> 8)) >> 8; tmp2 = tmp * (255 - d) + 0x80; tmp2 = (tmp2 + (tmp2 >> 8)) >> 8; *dst_p++ = d + tmp2; src_p++; } } static void ksvg_art_rgba_texture_tqmask_callback (void *callback_data, int y, int start, ArtSVPRenderAAStep *steps, int n_steps) { ksvgArtRgbAffineClipAlphaData *data = (ksvgArtRgbAffineClipAlphaData *)callback_data; art_u8 *linebuf; int run_x0, run_x1; art_u32 running_sum = start; int x0, x1; int k; int *alphatab; int alpha; const art_u8 *tqmaskbuf; linebuf = data->dst; x0 = data->x0; x1 = data->x1; alphatab = data->alphatab; tqmaskbuf = data->tqmask + (y - data->y0) * (x1 - x0); if(n_steps > 0) { run_x1 = steps[0].x; if(run_x1 > x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_texture_tqmask_run(linebuf, tqmaskbuf, x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } for(k = 0; k < n_steps - 1; k++) { running_sum += steps[k].delta; run_x0 = run_x1; run_x1 = steps[k + 1].x; if(run_x1 > run_x0) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_texture_tqmask_run(linebuf + (run_x0 - x0) * 4, tqmaskbuf + (run_x0 - x0), run_x0, run_x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } running_sum += steps[k].delta; if(x1 > run_x1) { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_texture_tqmask_run(linebuf + (run_x1 - x0) * 4, tqmaskbuf + (run_x1 - x0), run_x1, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } } else { alpha = (running_sum >> 16) & 0xff; if(alpha) ksvg_art_rgba_texture_tqmask_run(linebuf, tqmaskbuf, x0, x1, y, data->inv, alphatab[alpha], data->src, data->src_rowstride, data->src_width, data->src_height); } data->dst += data->dst_rowstride; } /** * ksvg_art_rgb_texture: Affine transform source RGB image and composite, with clipping path. * @svp: Clipping path. * @dst: Destination image RGB buffer. * @x0: Left coordinate of destination rectangle. * @y0: Top coordinate of destination rectangle. * @x1: Right coordinate of destination rectangle. * @y1: Bottom coordinate of destination rectangle. * @dst_rowstride: Rowstride of @dst buffer. * @src: Source image RGB buffer. * @src_width: Width of source image. * @src_height: Height of source image. * @src_rowstride: Rowstride of @src buffer. * @affine: Affine transform. * @level: Filter level. * @alphagamma: #ArtAlphaGamma for gamma-correcting the compositing. * @alpha: Alpha, range 0..256. * * Affine transform the source image stored in @src, compositing over * the area of destination image @dst specified by the rectangle * (@x0, @y0) - (@x1, @y1). As usual in libart, the left and top edges * of this rectangle are included, and the right and bottom edges are * excluded. * * The @alphagamma parameter specifies that the alpha compositing be done * in a gamma-corrected color space. Since the source image is opaque RGB, * this argument only affects the edges. In the current implementation, * it is ignored. * * The @level parameter specifies the speed/quality tradeoff of the * image interpolation. Currently, only ART_FILTER_NEAREST is * implemented. * * KSVG additions : we have changed this function to support an alpha level as well. * also we made sure compositing an rgba image over an rgb buffer works. **/ void ksvg_art_rgb_texture(const ArtSVP *svp, art_u8 *dst, int x0, int y0, int x1, int y1, int dst_rowstride, int dst_channels, const art_u8 *src, int src_width, int src_height, int src_rowstride, const double affine[6], ArtFilterLevel level, ArtAlphaGamma *alphaGamma, int alpha, const art_u8 *tqmask) { ksvgArtRgbAffineClipAlphaData data; int i; int a, da; data.alpha = alpha; a = 0x8000; da = (alpha * 66051 + 0x80) >> 8; /* 66051 equals 2 ^ 32 / (255 * 255) */ for(i = 0; i < 256; i++) { data.alphatab[i] = a >> 16; a += da; } data.dst = dst; data.dst_rowstride = dst_rowstride; data.x0 = x0; data.x1 = x1; data.inv[0] = affine[0]; data.inv[1] = affine[1]; data.inv[2] = affine[2]; data.inv[3] = affine[3]; data.inv[4] = affine[4]; data.inv[5] = affine[5]; data.src = src; data.src_width = src_width; data.src_height = src_height; data.src_rowstride = src_rowstride; data.tqmask = tqmask; data.y0 = y0; if(tqmask) { if(dst_channels == 3) art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgb_texture_tqmask_callback, &data); else art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgba_texture_tqmask_callback, &data); } else { if(dst_channels == 3) art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgb_texture_callback, &data); else art_svp_render_aa(svp, x0, y0, x1, y1, ksvg_art_rgba_texture_callback, &data); } } /** * ksvg_art_svp_move: moves an svp relatively to the current position. * @svp: SVP to move. * @dx: relative amount to move horizontally. * @dy: relative amount to move vertically. * * Note : this function always moves the svp, not taking into account render buffer * boundaries. **/ void ksvg_art_svp_move(ArtSVP *svp, int dx, int dy) { int i, j; ArtSVPSeg *seg; if(dx == 0 && dy == 0) return; for(i = 0;i < svp->n_segs;i++) { seg = &svp->segs[i]; for(j = 0;j < seg->n_points;j++) { seg->points[j].x += dx; seg->points[j].y += dy; } seg->bbox.x0 += dx; seg->bbox.y0 += dy; seg->bbox.x1 += dx; seg->bbox.y1 += dy; } }