You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1645 lines
39 KiB
1645 lines
39 KiB
/*
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
xrdp: A Remote Desktop Protocol server.
|
|
Copyright (C) Jay Sorg 2004-2005
|
|
|
|
ssl calls
|
|
|
|
*/
|
|
|
|
#include "rdesktop.h"
|
|
|
|
#define APP_CC
|
|
|
|
/*****************************************************************************/
|
|
static void * g_malloc(int size, int zero)
|
|
{
|
|
void * p;
|
|
|
|
p = xmalloc(size);
|
|
if (zero)
|
|
{
|
|
memset(p, 0, size);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static void g_free(void * in)
|
|
{
|
|
xfree(in);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/*****************************************************************************/
|
|
/* rc4 stuff */
|
|
/* An implementation of the ARC4 algorithm
|
|
*
|
|
* Copyright (C) 2001-2003 Christophe Devine
|
|
*/
|
|
struct rc4_state
|
|
{
|
|
int x;
|
|
int y;
|
|
int m[256];
|
|
};
|
|
|
|
/*****************************************************************************/
|
|
void* APP_CC
|
|
ssl_rc4_info_create(void)
|
|
{
|
|
return g_malloc(sizeof(struct rc4_state), 1);;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
void APP_CC
|
|
ssl_rc4_info_delete(void* rc4_info)
|
|
{
|
|
g_free(rc4_info);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
void APP_CC
|
|
ssl_rc4_set_key(void* rc4_info, char* key, int len)
|
|
{
|
|
int i;
|
|
int j;
|
|
int k;
|
|
int a;
|
|
int* m;
|
|
struct rc4_state* s;
|
|
|
|
s = (struct rc4_state*)rc4_info;
|
|
s->x = 0;
|
|
s->y = 0;
|
|
m = s->m;
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
m[i] = i;
|
|
}
|
|
j = 0;
|
|
k = 0;
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
a = m[i];
|
|
j = (unsigned char)(j + a + key[k]);
|
|
m[i] = m[j];
|
|
m[j] = a;
|
|
k++;
|
|
if (k >= len)
|
|
{
|
|
k = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
void APP_CC
|
|
ssl_rc4_crypt(void* rc4_info, char* in_data, char* out_data, int len)
|
|
{
|
|
int i;
|
|
int x;
|
|
int y;
|
|
int a;
|
|
int b;
|
|
int* m;
|
|
struct rc4_state* s;
|
|
|
|
s = (struct rc4_state*)rc4_info;
|
|
x = s->x;
|
|
y = s->y;
|
|
m = s->m;
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
x = (unsigned char)(x + 1);
|
|
a = m[x];
|
|
y = (unsigned char)(y + a);
|
|
b = m[y];
|
|
m[x] = b;
|
|
m[y] = a;
|
|
out_data[i] = in_data[i] ^ (m[(unsigned char)(a + b)]);
|
|
}
|
|
s->x = x;
|
|
s->y = y;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/*****************************************************************************/
|
|
/* sha1 stuff */
|
|
/* FIPS-180-1 compliant SHA-1 implementation
|
|
*
|
|
* Copyright (C) 2001-2003 Christophe Devine
|
|
*/
|
|
struct sha1_context
|
|
{
|
|
int total[2];
|
|
int state[5];
|
|
char buffer[64];
|
|
};
|
|
|
|
/*****************************************************************************/
|
|
void* APP_CC
|
|
ssl_sha1_info_create(void)
|
|
{
|
|
return g_malloc(sizeof(struct sha1_context), 1);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
void APP_CC
|
|
ssl_sha1_info_delete(void* sha1_info)
|
|
{
|
|
g_free(sha1_info);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
void APP_CC
|
|
ssl_sha1_clear(void* sha1_info)
|
|
{
|
|
struct sha1_context* ctx;
|
|
|
|
ctx = (struct sha1_context*)sha1_info;
|
|
memset(ctx, 0, sizeof(struct sha1_context));
|
|
ctx->state[0] = 0x67452301;
|
|
ctx->state[1] = 0xEFCDAB89;
|
|
ctx->state[2] = 0x98BADCFE;
|
|
ctx->state[3] = 0x10325476;
|
|
ctx->state[4] = 0xC3D2E1F0;
|
|
}
|
|
|
|
#undef GET_UINT32
|
|
#define GET_UINT32(n, b, i) \
|
|
{ \
|
|
(n) = ((b)[(i) + 0] << 24) | \
|
|
((b)[(i) + 1] << 16) | \
|
|
((b)[(i) + 2] << 8) | \
|
|
((b)[(i) + 3] << 0); \
|
|
}
|
|
|
|
#undef PUT_UINT32
|
|
#define PUT_UINT32(n, b, i) \
|
|
{ \
|
|
(b)[(i) + 0] = ((n) >> 24); \
|
|
(b)[(i) + 1] = ((n) >> 16); \
|
|
(b)[(i) + 2] = ((n) >> 8); \
|
|
(b)[(i) + 3] = ((n) >> 0); \
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static void APP_CC
|
|
sha1_process(struct sha1_context* ctx, char* in_data)
|
|
{
|
|
int temp;
|
|
int W[16];
|
|
int A;
|
|
int B;
|
|
int C;
|
|
int D;
|
|
int E;
|
|
unsigned char* data;
|
|
|
|
data = (unsigned char*)in_data;
|
|
|
|
GET_UINT32(W[0], data, 0);
|
|
GET_UINT32(W[1], data, 4);
|
|
GET_UINT32(W[2], data, 8);
|
|
GET_UINT32(W[3], data, 12);
|
|
GET_UINT32(W[4], data, 16);
|
|
GET_UINT32(W[5], data, 20);
|
|
GET_UINT32(W[6], data, 24);
|
|
GET_UINT32(W[7], data, 28);
|
|
GET_UINT32(W[8], data, 32);
|
|
GET_UINT32(W[9], data, 36);
|
|
GET_UINT32(W[10], data, 40);
|
|
GET_UINT32(W[11], data, 44);
|
|
GET_UINT32(W[12], data, 48);
|
|
GET_UINT32(W[13], data, 52);
|
|
GET_UINT32(W[14], data, 56);
|
|
GET_UINT32(W[15], data, 60);
|
|
|
|
#define S(x, n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
|
|
|
|
#define R(t) \
|
|
( \
|
|
temp = W[(t - 3) & 0x0F] ^ \
|
|
W[(t - 8) & 0x0F] ^ \
|
|
W[(t - 14) & 0x0F] ^ \
|
|
W[(t - 0) & 0x0F], \
|
|
(W[t & 0x0F] = S(temp, 1)) \
|
|
)
|
|
|
|
#undef P
|
|
#define P(a, b, c, d, e, x) \
|
|
{ \
|
|
e += S(a, 5) + F(b, c, d) + K + x; \
|
|
b = S(b, 30); \
|
|
}
|
|
|
|
A = ctx->state[0];
|
|
B = ctx->state[1];
|
|
C = ctx->state[2];
|
|
D = ctx->state[3];
|
|
E = ctx->state[4];
|
|
|
|
#define F(x, y, z) (z ^ (x & (y ^ z)))
|
|
#define K 0x5A827999
|
|
|
|
P(A, B, C, D, E, W[0]);
|
|
P(E, A, B, C, D, W[1]);
|
|
P(D, E, A, B, C, W[2]);
|
|
P(C, D, E, A, B, W[3]);
|
|
P(B, C, D, E, A, W[4]);
|
|
P(A, B, C, D, E, W[5]);
|
|
P(E, A, B, C, D, W[6]);
|
|
P(D, E, A, B, C, W[7]);
|
|
P(C, D, E, A, B, W[8]);
|
|
P(B, C, D, E, A, W[9]);
|
|
P(A, B, C, D, E, W[10]);
|
|
P(E, A, B, C, D, W[11]);
|
|
P(D, E, A, B, C, W[12]);
|
|
P(C, D, E, A, B, W[13]);
|
|
P(B, C, D, E, A, W[14]);
|
|
P(A, B, C, D, E, W[15]);
|
|
P(E, A, B, C, D, R(16));
|
|
P(D, E, A, B, C, R(17));
|
|
P(C, D, E, A, B, R(18));
|
|
P(B, C, D, E, A, R(19));
|
|
|
|
#undef K
|
|
#undef F
|
|
|
|
#define F(x, y, z) (x ^ y ^ z)
|
|
#define K 0x6ED9EBA1
|
|
|
|
P(A, B, C, D, E, R(20));
|
|
P(E, A, B, C, D, R(21));
|
|
P(D, E, A, B, C, R(22));
|
|
P(C, D, E, A, B, R(23));
|
|
P(B, C, D, E, A, R(24));
|
|
P(A, B, C, D, E, R(25));
|
|
P(E, A, B, C, D, R(26));
|
|
P(D, E, A, B, C, R(27));
|
|
P(C, D, E, A, B, R(28));
|
|
P(B, C, D, E, A, R(29));
|
|
P(A, B, C, D, E, R(30));
|
|
P(E, A, B, C, D, R(31));
|
|
P(D, E, A, B, C, R(32));
|
|
P(C, D, E, A, B, R(33));
|
|
P(B, C, D, E, A, R(34));
|
|
P(A, B, C, D, E, R(35));
|
|
P(E, A, B, C, D, R(36));
|
|
P(D, E, A, B, C, R(37));
|
|
P(C, D, E, A, B, R(38));
|
|
P(B, C, D, E, A, R(39));
|
|
|
|
#undef K
|
|
#undef F
|
|
|
|
#define F(x, y, z) ((x & y) | (z & (x | y)))
|
|
#define K 0x8F1BBCDC
|
|
|
|
P(A, B, C, D, E, R(40));
|
|
P(E, A, B, C, D, R(41));
|
|
P(D, E, A, B, C, R(42));
|
|
P(C, D, E, A, B, R(43));
|
|
P(B, C, D, E, A, R(44));
|
|
P(A, B, C, D, E, R(45));
|
|
P(E, A, B, C, D, R(46));
|
|
P(D, E, A, B, C, R(47));
|
|
P(C, D, E, A, B, R(48));
|
|
P(B, C, D, E, A, R(49));
|
|
P(A, B, C, D, E, R(50));
|
|
P(E, A, B, C, D, R(51));
|
|
P(D, E, A, B, C, R(52));
|
|
P(C, D, E, A, B, R(53));
|
|
P(B, C, D, E, A, R(54));
|
|
P(A, B, C, D, E, R(55));
|
|
P(E, A, B, C, D, R(56));
|
|
P(D, E, A, B, C, R(57));
|
|
P(C, D, E, A, B, R(58));
|
|
P(B, C, D, E, A, R(59));
|
|
|
|
#undef K
|
|
#undef F
|
|
|
|
#define F(x, y, z) (x ^ y ^ z)
|
|
#define K 0xCA62C1D6
|
|
|
|
P(A, B, C, D, E, R(60));
|
|
P(E, A, B, C, D, R(61));
|
|
P(D, E, A, B, C, R(62));
|
|
P(C, D, E, A, B, R(63));
|
|
P(B, C, D, E, A, R(64));
|
|
P(A, B, C, D, E, R(65));
|
|
P(E, A, B, C, D, R(66));
|
|
P(D, E, A, B, C, R(67));
|
|
P(C, D, E, A, B, R(68));
|
|
P(B, C, D, E, A, R(69));
|
|
P(A, B, C, D, E, R(70));
|
|
P(E, A, B, C, D, R(71));
|
|
P(D, E, A, B, C, R(72));
|
|
P(C, D, E, A, B, R(73));
|
|
P(B, C, D, E, A, R(74));
|
|
P(A, B, C, D, E, R(75));
|
|
P(E, A, B, C, D, R(76));
|
|
P(D, E, A, B, C, R(77));
|
|
P(C, D, E, A, B, R(78));
|
|
P(B, C, D, E, A, R(79));
|
|
|
|
#undef K
|
|
#undef F
|
|
|
|
ctx->state[0] += A;
|
|
ctx->state[1] += B;
|
|
ctx->state[2] += C;
|
|
ctx->state[3] += D;
|
|
ctx->state[4] += E;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
void APP_CC
|
|
ssl_sha1_transform(void* sha1_info, char* data, int len)
|
|
{
|
|
int left;
|
|
int fill;
|
|
struct sha1_context* ctx;
|
|
|
|
ctx = (struct sha1_context*)sha1_info;
|
|
if (len == 0)
|
|
{
|
|
return;
|
|
}
|
|
left = ctx->total[0] & 0x3F;
|
|
fill = 64 - left;
|
|
ctx->total[0] += len;
|
|
ctx->total[0] &= 0xFFFFFFFF;
|
|
if (ctx->total[0] < len)
|
|
{
|
|
ctx->total[1]++;
|
|
}
|
|
if (left && (len >= fill))
|
|
{
|
|
memcpy(ctx->buffer + left, data, fill);
|
|
sha1_process(ctx, ctx->buffer);
|
|
len -= fill;
|
|
data += fill;
|
|
left = 0;
|
|
}
|
|
while (len >= 64)
|
|
{
|
|
sha1_process(ctx, data);
|
|
len -= 64;
|
|
data += 64;
|
|
}
|
|
if (len != 0)
|
|
{
|
|
memcpy(ctx->buffer + left, data, len);
|
|
}
|
|
}
|
|
|
|
static unsigned char sha1_padding[64] =
|
|
{
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
/*****************************************************************************/
|
|
void APP_CC
|
|
ssl_sha1_complete(void* sha1_info, char* data)
|
|
{
|
|
int last;
|
|
int padn;
|
|
int high;
|
|
int low;
|
|
char msglen[8];
|
|
struct sha1_context* ctx;
|
|
|
|
ctx = (struct sha1_context*)sha1_info;
|
|
high = (ctx->total[0] >> 29) | (ctx->total[1] << 3);
|
|
low = (ctx->total[0] << 3);
|
|
PUT_UINT32(high, msglen, 0);
|
|
PUT_UINT32(low, msglen, 4);
|
|
last = ctx->total[0] & 0x3F;
|
|
padn = (last < 56) ? (56 - last) : (120 - last);
|
|
ssl_sha1_transform(ctx, sha1_padding, padn);
|
|
ssl_sha1_transform(ctx, msglen, 8);
|
|
PUT_UINT32(ctx->state[0], data, 0);
|
|
PUT_UINT32(ctx->state[1], data, 4);
|
|
PUT_UINT32(ctx->state[2], data, 8);
|
|
PUT_UINT32(ctx->state[3], data, 12);
|
|
PUT_UINT32(ctx->state[4], data, 16);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/*****************************************************************************/
|
|
/* md5 stuff */
|
|
/* RFC 1321 compliant MD5 implementation
|
|
*
|
|
* Copyright (C) 2001-2003 Christophe Devine
|
|
*/
|
|
|
|
struct md5_context
|
|
{
|
|
int total[2];
|
|
int state[4];
|
|
char buffer[64];
|
|
};
|
|
|
|
/*****************************************************************************/
|
|
void* APP_CC
|
|
ssl_md5_info_create(void)
|
|
{
|
|
return g_malloc(sizeof(struct md5_context), 1);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
void APP_CC
|
|
ssl_md5_info_delete(void* md5_info)
|
|
{
|
|
g_free(md5_info);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
void APP_CC
|
|
ssl_md5_clear(void* md5_info)
|
|
{
|
|
struct md5_context* ctx;
|
|
|
|
ctx = (struct md5_context*)md5_info;
|
|
memset(ctx, 0, sizeof(struct md5_context));
|
|
ctx->state[0] = 0x67452301;
|
|
ctx->state[1] = 0xEFCDAB89;
|
|
ctx->state[2] = 0x98BADCFE;
|
|
ctx->state[3] = 0x10325476;
|
|
}
|
|
|
|
#undef GET_UINT32
|
|
#define GET_UINT32(n, b, i) \
|
|
{ \
|
|
(n) = ((b)[(i) + 0] << 0) | \
|
|
((b)[(i) + 1] << 8) | \
|
|
((b)[(i) + 2] << 16) | \
|
|
((b)[(i) + 3] << 24); \
|
|
}
|
|
|
|
#undef PUT_UINT32
|
|
#define PUT_UINT32(n, b, i) \
|
|
{ \
|
|
(b)[(i) + 0] = ((n) >> 0); \
|
|
(b)[(i) + 1] = ((n) >> 8); \
|
|
(b)[(i) + 2] = ((n) >> 16); \
|
|
(b)[(i) + 3] = ((n) >> 24); \
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static void
|
|
md5_process(struct md5_context* ctx, char* in_data)
|
|
{
|
|
int X[16];
|
|
int A;
|
|
int B;
|
|
int C;
|
|
int D;
|
|
unsigned char* data;
|
|
|
|
data = (unsigned char*)in_data;
|
|
GET_UINT32(X[0], data, 0);
|
|
GET_UINT32(X[1], data, 4);
|
|
GET_UINT32(X[2], data, 8);
|
|
GET_UINT32(X[3], data, 12);
|
|
GET_UINT32(X[4], data, 16);
|
|
GET_UINT32(X[5], data, 20);
|
|
GET_UINT32(X[6], data, 24);
|
|
GET_UINT32(X[7], data, 28);
|
|
GET_UINT32(X[8], data, 32);
|
|
GET_UINT32(X[9], data, 36);
|
|
GET_UINT32(X[10], data, 40);
|
|
GET_UINT32(X[11], data, 44);
|
|
GET_UINT32(X[12], data, 48);
|
|
GET_UINT32(X[13], data, 52);
|
|
GET_UINT32(X[14], data, 56);
|
|
GET_UINT32(X[15], data, 60);
|
|
|
|
#define S(x, n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
|
|
|
|
#undef P
|
|
#define P(a, b, c, d, k, s, t) \
|
|
{ \
|
|
a += F(b, c, d) + X[k] + t; \
|
|
a = S(a, s) + b; \
|
|
}
|
|
|
|
A = ctx->state[0];
|
|
B = ctx->state[1];
|
|
C = ctx->state[2];
|
|
D = ctx->state[3];
|
|
|
|
#define F(x, y, z) (z ^ (x & (y ^ z)))
|
|
|
|
P(A, B, C, D, 0, 7, 0xD76AA478);
|
|
P(D, A, B, C, 1, 12, 0xE8C7B756);
|
|
P(C, D, A, B, 2, 17, 0x242070DB);
|
|
P(B, C, D, A, 3, 22, 0xC1BDCEEE);
|
|
P(A, B, C, D, 4, 7, 0xF57C0FAF);
|
|
P(D, A, B, C, 5, 12, 0x4787C62A);
|
|
P(C, D, A, B, 6, 17, 0xA8304613);
|
|
P(B, C, D, A, 7, 22, 0xFD469501);
|
|
P(A, B, C, D, 8, 7, 0x698098D8);
|
|
P(D, A, B, C, 9, 12, 0x8B44F7AF);
|
|
P(C, D, A, B, 10, 17, 0xFFFF5BB1);
|
|
P(B, C, D, A, 11, 22, 0x895CD7BE);
|
|
P(A, B, C, D, 12, 7, 0x6B901122);
|
|
P(D, A, B, C, 13, 12, 0xFD987193);
|
|
P(C, D, A, B, 14, 17, 0xA679438E);
|
|
P(B, C, D, A, 15, 22, 0x49B40821);
|
|
|
|
#undef F
|
|
|
|
#define F(x, y, z) (y ^ (z & (x ^ y)))
|
|
|
|
P(A, B, C, D, 1, 5, 0xF61E2562);
|
|
P(D, A, B, C, 6, 9, 0xC040B340);
|
|
P(C, D, A, B, 11, 14, 0x265E5A51);
|
|
P(B, C, D, A, 0, 20, 0xE9B6C7AA);
|
|
P(A, B, C, D, 5, 5, 0xD62F105D);
|
|
P(D, A, B, C, 10, 9, 0x02441453);
|
|
P(C, D, A, B, 15, 14, 0xD8A1E681);
|
|
P(B, C, D, A, 4, 20, 0xE7D3FBC8);
|
|
P(A, B, C, D, 9, 5, 0x21E1CDE6);
|
|
P(D, A, B, C, 14, 9, 0xC33707D6);
|
|
P(C, D, A, B, 3, 14, 0xF4D50D87);
|
|
P(B, C, D, A, 8, 20, 0x455A14ED);
|
|
P(A, B, C, D, 13, 5, 0xA9E3E905);
|
|
P(D, A, B, C, 2, 9, 0xFCEFA3F8);
|
|
P(C, D, A, B, 7, 14, 0x676F02D9);
|
|
P(B, C, D, A, 12, 20, 0x8D2A4C8A);
|
|
|
|
#undef F
|
|
|
|
#define F(x, y, z) (x ^ y ^ z)
|
|
|
|
P(A, B, C, D, 5, 4, 0xFFFA3942);
|
|
P(D, A, B, C, 8, 11, 0x8771F681);
|
|
P(C, D, A, B, 11, 16, 0x6D9D6122);
|
|
P(B, C, D, A, 14, 23, 0xFDE5380C);
|
|
P(A, B, C, D, 1, 4, 0xA4BEEA44);
|
|
P(D, A, B, C, 4, 11, 0x4BDECFA9);
|
|
P(C, D, A, B, 7, 16, 0xF6BB4B60);
|
|
P(B, C, D, A, 10, 23, 0xBEBFBC70);
|
|
P(A, B, C, D, 13, 4, 0x289B7EC6);
|
|
P(D, A, B, C, 0, 11, 0xEAA127FA);
|
|
P(C, D, A, B, 3, 16, 0xD4EF3085);
|
|
P(B, C, D, A, 6, 23, 0x04881D05);
|
|
P(A, B, C, D, 9, 4, 0xD9D4D039);
|
|
P(D, A, B, C, 12, 11, 0xE6DB99E5);
|
|
P(C, D, A, B, 15, 16, 0x1FA27CF8);
|
|
P(B, C, D, A, 2, 23, 0xC4AC5665);
|
|
|
|
#undef F
|
|
|
|
#define F(x, y, z) (y ^ (x | ~z))
|
|
|
|
P(A, B, C, D, 0, 6, 0xF4292244);
|
|
P(D, A, B, C, 7, 10, 0x432AFF97);
|
|
P(C, D, A, B, 14, 15, 0xAB9423A7);
|
|
P(B, C, D, A, 5, 21, 0xFC93A039);
|
|
P(A, B, C, D, 12, 6, 0x655B59C3);
|
|
P(D, A, B, C, 3, 10, 0x8F0CCC92);
|
|
P(C, D, A, B, 10, 15, 0xFFEFF47D);
|
|
P(B, C, D, A, 1, 21, 0x85845DD1);
|
|
P(A, B, C, D, 8, 6, 0x6FA87E4F);
|
|
P(D, A, B, C, 15, 10, 0xFE2CE6E0);
|
|
P(C, D, A, B, 6, 15, 0xA3014314);
|
|
P(B, C, D, A, 13, 21, 0x4E0811A1);
|
|
P(A, B, C, D, 4, 6, 0xF7537E82);
|
|
P(D, A, B, C, 11, 10, 0xBD3AF235);
|
|
P(C, D, A, B, 2, 15, 0x2AD7D2BB);
|
|
P(B, C, D, A, 9, 21, 0xEB86D391);
|
|
|
|
#undef F
|
|
|
|
ctx->state[0] += A;
|
|
ctx->state[1] += B;
|
|
ctx->state[2] += C;
|
|
ctx->state[3] += D;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
void APP_CC
|
|
ssl_md5_transform(void* md5_info, char* data, int len)
|
|
{
|
|
int left;
|
|
int fill;
|
|
struct md5_context* ctx;
|
|
|
|
ctx = (struct md5_context*)md5_info;
|
|
if (len == 0)
|
|
{
|
|
return;
|
|
}
|
|
left = ctx->total[0] & 0x3F;
|
|
fill = 64 - left;
|
|
ctx->total[0] += len;
|
|
ctx->total[0] &= 0xFFFFFFFF;
|
|
if (ctx->total[0] < len)
|
|
{
|
|
ctx->total[1]++;
|
|
}
|
|
if (left && (len >= fill))
|
|
{
|
|
memcpy(ctx->buffer + left, data, fill);
|
|
md5_process(ctx, ctx->buffer);
|
|
len -= fill;
|
|
data += fill;
|
|
left = 0;
|
|
}
|
|
while (len >= 64)
|
|
{
|
|
md5_process(ctx, data);
|
|
len -= 64;
|
|
data += 64;
|
|
}
|
|
if (len != 0)
|
|
{
|
|
memcpy(ctx->buffer + left, data, len);
|
|
}
|
|
}
|
|
|
|
static unsigned char md5_padding[64] =
|
|
{
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
/*****************************************************************************/
|
|
void APP_CC
|
|
ssl_md5_complete(void* md5_info, char* data)
|
|
{
|
|
int last;
|
|
int padn;
|
|
int high;
|
|
int low;
|
|
char msglen[8];
|
|
struct md5_context* ctx;
|
|
|
|
ctx = (struct md5_context*)md5_info;
|
|
high = (ctx->total[0] >> 29) | (ctx->total[1] << 3);
|
|
low = (ctx->total[0] << 3);
|
|
PUT_UINT32(low, msglen, 0);
|
|
PUT_UINT32(high, msglen, 4);
|
|
last = ctx->total[0] & 0x3F;
|
|
padn = (last < 56) ? (56 - last) : (120 - last);
|
|
ssl_md5_transform(ctx, md5_padding, padn);
|
|
ssl_md5_transform(ctx, msglen, 8);
|
|
PUT_UINT32(ctx->state[0], data, 0);
|
|
PUT_UINT32(ctx->state[1], data, 4);
|
|
PUT_UINT32(ctx->state[2], data, 8);
|
|
PUT_UINT32(ctx->state[3], data, 12);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/*****************************************************************************/
|
|
/* big number stuff */
|
|
/******************* SHORT COPYRIGHT NOTICE*************************
|
|
This source code is part of the BigDigits multiple-precision
|
|
arithmetic library Version 1.0 originally written by David Ireland,
|
|
copyright (c) 2001 D.I. Management Services Pty Limited, all rights
|
|
reserved. It is provided "as is" with no warranties. You may use
|
|
this software under the terms of the full copyright notice
|
|
"bigdigitsCopyright.txt" that should have been included with
|
|
this library. To obtain a copy send an email to
|
|
<code@di-mgt.com.au> or visit <www.di-mgt.com.au/crypto.html>.
|
|
This notice must be retained in any copy.
|
|
****************** END OF COPYRIGHT NOTICE*************************/
|
|
/************************* COPYRIGHT NOTICE*************************
|
|
This source code is part of the BigDigits multiple-precision
|
|
arithmetic library Version 1.0 originally written by David Ireland,
|
|
copyright (c) 2001 D.I. Management Services Pty Limited, all rights
|
|
reserved. You are permitted to use compiled versions of this code as
|
|
part of your own executable files and to distribute unlimited copies
|
|
of such executable files for any purposes including commercial ones
|
|
provided you keep the copyright notices intact in the source code
|
|
and that you ensure that the following characters remain in any
|
|
object or executable files you distribute:
|
|
|
|
"Contains multiple-precision arithmetic code originally written
|
|
by David Ireland, copyright (c) 2001 by D.I. Management Services
|
|
Pty Limited <www.di-mgt.com.au>, and is used with permission."
|
|
|
|
David Ireland and DI Management Services Pty Limited make no
|
|
representations concerning either the merchantability of this
|
|
software or the suitability of this software for any particular
|
|
purpose. It is provided "as is" without express or implied warranty
|
|
of any kind.
|
|
|
|
Please forward any comments and bug reports to <code@di-mgt.com.au>.
|
|
The latest version of the source code can be downloaded from
|
|
www.di-mgt.com.au/crypto.html.
|
|
****************** END OF COPYRIGHT NOTICE*************************/
|
|
|
|
typedef unsigned int DIGIT_T;
|
|
#define HIBITMASK 0x80000000
|
|
#define MAX_DIG_LEN 51
|
|
#define MAX_DIGIT 0xffffffff
|
|
#define BITS_PER_DIGIT 32
|
|
#define MAX_HALF_DIGIT 0xffff
|
|
#define B_J (MAX_HALF_DIGIT + 1)
|
|
#define LOHALF(x) ((DIGIT_T)((x) & 0xffff))
|
|
#define HIHALF(x) ((DIGIT_T)((x) >> 16 & 0xffff))
|
|
#define TOHIGH(x) ((DIGIT_T)((x) << 16))
|
|
|
|
#define mpNEXTBITMASK(mask, n) \
|
|
{ \
|
|
if (mask == 1) \
|
|
{ \
|
|
mask = HIBITMASK; \
|
|
n--; \
|
|
} \
|
|
else \
|
|
{ \
|
|
mask >>= 1; \
|
|
} \
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static DIGIT_T APP_CC
|
|
mpAdd(DIGIT_T* w, DIGIT_T* u, DIGIT_T* v, unsigned int ndigits)
|
|
{
|
|
/* Calculates w = u + v
|
|
where w, u, v are multiprecision integers of ndigits each
|
|
Returns carry if overflow. Carry = 0 or 1.
|
|
|
|
Ref: Knuth Vol 2 Ch 4.3.1 p 266 Algorithm A. */
|
|
DIGIT_T k;
|
|
unsigned int j;
|
|
|
|
/* Step A1. Initialise */
|
|
k = 0;
|
|
for (j = 0; j < ndigits; j++)
|
|
{
|
|
/* Step A2. Add digits w_j = (u_j + v_j + k)
|
|
Set k = 1 if carry (overflow) occurs */
|
|
w[j] = u[j] + k;
|
|
if (w[j] < k)
|
|
{
|
|
k = 1;
|
|
}
|
|
else
|
|
{
|
|
k = 0;
|
|
}
|
|
w[j] += v[j];
|
|
if (w[j] < v[j])
|
|
{
|
|
k++;
|
|
}
|
|
} /* Step A3. Loop on j */
|
|
return k; /* w_n = k */
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static void APP_CC
|
|
mpSetDigit(DIGIT_T* a, DIGIT_T d, unsigned int ndigits)
|
|
{ /* Sets a = d where d is a single digit */
|
|
unsigned int i;
|
|
|
|
for (i = 1; i < ndigits; i++)
|
|
{
|
|
a[i] = 0;
|
|
}
|
|
a[0] = d;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static int APP_CC
|
|
mpCompare(DIGIT_T* a, DIGIT_T* b, unsigned int ndigits)
|
|
{
|
|
/* Returns sign of (a - b) */
|
|
if (ndigits == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
while (ndigits--)
|
|
{
|
|
if (a[ndigits] > b[ndigits])
|
|
{
|
|
return 1; /* GT */
|
|
}
|
|
if (a[ndigits] < b[ndigits])
|
|
{
|
|
return -1; /* LT */
|
|
}
|
|
}
|
|
return 0; /* EQ */
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static void APP_CC
|
|
mpSetZero(DIGIT_T* a, unsigned int ndigits)
|
|
{ /* Sets a = 0 */
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ndigits; i++)
|
|
{
|
|
a[i] = 0;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static void APP_CC
|
|
mpSetEqual(DIGIT_T* a, DIGIT_T* b, unsigned int ndigits)
|
|
{ /* Sets a = b */
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ndigits; i++)
|
|
{
|
|
a[i] = b[i];
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static unsigned int APP_CC
|
|
mpSizeof(DIGIT_T* a, unsigned int ndigits)
|
|
{ /* Returns size of significant digits in a */
|
|
while (ndigits--)
|
|
{
|
|
if (a[ndigits] != 0)
|
|
{
|
|
return (++ndigits);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static DIGIT_T APP_CC
|
|
mpShiftLeft(DIGIT_T* a, DIGIT_T* b, unsigned int x, unsigned int ndigits)
|
|
{ /* Computes a = b << x */
|
|
unsigned int i;
|
|
unsigned int y;
|
|
DIGIT_T mask;
|
|
DIGIT_T carry;
|
|
DIGIT_T nextcarry;
|
|
|
|
/* Check input - NB unspecified result */
|
|
if (x >= BITS_PER_DIGIT)
|
|
{
|
|
return 0;
|
|
}
|
|
/* Construct mask */
|
|
mask = HIBITMASK;
|
|
for (i = 1; i < x; i++)
|
|
{
|
|
mask = (mask >> 1) | mask;
|
|
}
|
|
if (x == 0)
|
|
{
|
|
mask = 0x0;
|
|
}
|
|
y = BITS_PER_DIGIT - x;
|
|
carry = 0;
|
|
for (i = 0; i < ndigits; i++)
|
|
{
|
|
nextcarry = (b[i] & mask) >> y;
|
|
a[i] = b[i] << x | carry;
|
|
carry = nextcarry;
|
|
}
|
|
return carry;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static DIGIT_T APP_CC
|
|
mpShiftRight(DIGIT_T* a, DIGIT_T* b, unsigned int x, unsigned int ndigits)
|
|
{ /* Computes a = b >> x */
|
|
unsigned int i;
|
|
unsigned int y;
|
|
DIGIT_T mask;
|
|
DIGIT_T carry;
|
|
DIGIT_T nextcarry;
|
|
|
|
/* Check input - NB unspecified result */
|
|
if (x >= BITS_PER_DIGIT)
|
|
{
|
|
return 0;
|
|
}
|
|
/* Construct mask */
|
|
mask = 0x1;
|
|
for (i = 1; i < x; i++)
|
|
{
|
|
mask = (mask << 1) | mask;
|
|
}
|
|
if (x == 0)
|
|
{
|
|
mask = 0x0;
|
|
}
|
|
y = BITS_PER_DIGIT - x;
|
|
carry = 0;
|
|
i = ndigits;
|
|
while (i--)
|
|
{
|
|
nextcarry = (b[i] & mask) << y;
|
|
a[i] = b[i] >> x | carry;
|
|
carry = nextcarry;
|
|
}
|
|
return carry;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static void APP_CC
|
|
spMultSub(DIGIT_T* uu, DIGIT_T qhat, DIGIT_T v1, DIGIT_T v0)
|
|
{
|
|
/* Compute uu = uu - q(v1v0)
|
|
where uu = u3u2u1u0, u3 = 0
|
|
and u_n, v_n are all half-digits
|
|
even though v1, v2 are passed as full digits. */
|
|
DIGIT_T p0;
|
|
DIGIT_T p1;
|
|
DIGIT_T t;
|
|
|
|
p0 = qhat * v0;
|
|
p1 = qhat * v1;
|
|
t = p0 + TOHIGH(LOHALF(p1));
|
|
uu[0] -= t;
|
|
if (uu[0] > MAX_DIGIT - t)
|
|
{
|
|
uu[1]--; /* Borrow */
|
|
}
|
|
uu[1] -= HIHALF(p1);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static int APP_CC
|
|
spMultiply(DIGIT_T* p, DIGIT_T x, DIGIT_T y)
|
|
{ /* Computes p = x * y */
|
|
/* Ref: Arbitrary Precision Computation
|
|
http://numbers.computation.free.fr/Constants/constants.html
|
|
|
|
high p1 p0 low
|
|
+--------+--------+--------+--------+
|
|
| x1*y1 | x0*y0 |
|
|
+--------+--------+--------+--------+
|
|
+-+--------+--------+
|
|
|1| (x0*y1 + x1*y1) |
|
|
+-+--------+--------+
|
|
^carry from adding (x0*y1+x1*y1) together
|
|
+-+
|
|
|1|< carry from adding LOHALF t
|
|
+-+ to high half of p0 */
|
|
DIGIT_T x0;
|
|
DIGIT_T y0;
|
|
DIGIT_T x1;
|
|
DIGIT_T y1;
|
|
DIGIT_T t;
|
|
DIGIT_T u;
|
|
DIGIT_T carry;
|
|
|
|
/* Split each x,y into two halves
|
|
x = x0 + B * x1
|
|
y = y0 + B * y1
|
|
where B = 2^16, half the digit size
|
|
Product is
|
|
xy = x0y0 + B(x0y1 + x1y0) + B^2(x1y1) */
|
|
|
|
x0 = LOHALF(x);
|
|
x1 = HIHALF(x);
|
|
y0 = LOHALF(y);
|
|
y1 = HIHALF(y);
|
|
|
|
/* Calc low part - no carry */
|
|
p[0] = x0 * y0;
|
|
|
|
/* Calc middle part */
|
|
t = x0 * y1;
|
|
u = x1 * y0;
|
|
t += u;
|
|
if (t < u)
|
|
{
|
|
carry = 1;
|
|
}
|
|
else
|
|
{
|
|
carry = 0;
|
|
}
|
|
/* This carry will go to high half of p[1]
|
|
+ high half of t into low half of p[1] */
|
|
carry = TOHIGH(carry) + HIHALF(t);
|
|
|
|
/* Add low half of t to high half of p[0] */
|
|
t = TOHIGH(t);
|
|
p[0] += t;
|
|
if (p[0] < t)
|
|
{
|
|
carry++;
|
|
}
|
|
|
|
p[1] = x1 * y1;
|
|
p[1] += carry;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static DIGIT_T APP_CC
|
|
spDivide(DIGIT_T* q, DIGIT_T* r, DIGIT_T* u, DIGIT_T v)
|
|
{ /* Computes quotient q = u / v, remainder r = u mod v
|
|
where u is a double digit
|
|
and q, v, r are single precision digits.
|
|
Returns high digit of quotient (max value is 1)
|
|
Assumes normalised such that v1 >= b/2
|
|
where b is size of HALF_DIGIT
|
|
i.e. the most significant bit of v should be one
|
|
|
|
In terms of half-digits in Knuth notation:
|
|
(q2q1q0) = (u4u3u2u1u0) / (v1v0)
|
|
(r1r0) = (u4u3u2u1u0) mod (v1v0)
|
|
for m = 2, n = 2 where u4 = 0
|
|
q2 is either 0 or 1.
|
|
We set q = (q1q0) and return q2 as "overflow' */
|
|
DIGIT_T qhat;
|
|
DIGIT_T rhat;
|
|
DIGIT_T t;
|
|
DIGIT_T v0;
|
|
DIGIT_T v1;
|
|
DIGIT_T u0;
|
|
DIGIT_T u1;
|
|
DIGIT_T u2;
|
|
DIGIT_T u3;
|
|
DIGIT_T uu[2];
|
|
DIGIT_T q2;
|
|
|
|
/* Check for normalisation */
|
|
if (!(v & HIBITMASK))
|
|
{
|
|
*q = *r = 0;
|
|
return MAX_DIGIT;
|
|
}
|
|
|
|
/* Split up into half-digits */
|
|
v0 = LOHALF(v);
|
|
v1 = HIHALF(v);
|
|
u0 = LOHALF(u[0]);
|
|
u1 = HIHALF(u[0]);
|
|
u2 = LOHALF(u[1]);
|
|
u3 = HIHALF(u[1]);
|
|
|
|
/* Do three rounds of Knuth Algorithm D Vol 2 p272 */
|
|
|
|
/* ROUND 1. Set j = 2 and calculate q2 */
|
|
/* Estimate qhat = (u4u3)/v1 = 0 or 1
|
|
then set (u4u3u2) -= qhat(v1v0)
|
|
where u4 = 0. */
|
|
qhat = u3 / v1;
|
|
if (qhat > 0)
|
|
{
|
|
rhat = u3 - qhat * v1;
|
|
t = TOHIGH(rhat) | u2;
|
|
if (qhat * v0 > t)
|
|
{
|
|
qhat--;
|
|
}
|
|
}
|
|
uu[1] = 0; /* (u4) */
|
|
uu[0] = u[1]; /* (u3u2) */
|
|
if (qhat > 0)
|
|
{
|
|
/* (u4u3u2) -= qhat(v1v0) where u4 = 0 */
|
|
spMultSub(uu, qhat, v1, v0);
|
|
if (HIHALF(uu[1]) != 0)
|
|
{ /* Add back */
|
|
qhat--;
|
|
uu[0] += v;
|
|
uu[1] = 0;
|
|
}
|
|
}
|
|
q2 = qhat;
|
|
/* ROUND 2. Set j = 1 and calculate q1 */
|
|
/* Estimate qhat = (u3u2) / v1
|
|
then set (u3u2u1) -= qhat(v1v0) */
|
|
t = uu[0];
|
|
qhat = t / v1;
|
|
rhat = t - qhat * v1;
|
|
/* Test on v0 */
|
|
t = TOHIGH(rhat) | u1;
|
|
if ((qhat == B_J) || (qhat * v0 > t))
|
|
{
|
|
qhat--;
|
|
rhat += v1;
|
|
t = TOHIGH(rhat) | u1;
|
|
if ((rhat < B_J) && (qhat * v0 > t))
|
|
{
|
|
qhat--;
|
|
}
|
|
}
|
|
/* Multiply and subtract
|
|
(u3u2u1)' = (u3u2u1) - qhat(v1v0) */
|
|
uu[1] = HIHALF(uu[0]); /* (0u3) */
|
|
uu[0] = TOHIGH(LOHALF(uu[0])) | u1; /* (u2u1) */
|
|
spMultSub(uu, qhat, v1, v0);
|
|
if (HIHALF(uu[1]) != 0)
|
|
{ /* Add back */
|
|
qhat--;
|
|
uu[0] += v;
|
|
uu[1] = 0;
|
|
}
|
|
/* q1 = qhat */
|
|
*q = TOHIGH(qhat);
|
|
/* ROUND 3. Set j = 0 and calculate q0 */
|
|
/* Estimate qhat = (u2u1) / v1
|
|
then set (u2u1u0) -= qhat(v1v0) */
|
|
t = uu[0];
|
|
qhat = t / v1;
|
|
rhat = t - qhat * v1;
|
|
/* Test on v0 */
|
|
t = TOHIGH(rhat) | u0;
|
|
if ((qhat == B_J) || (qhat * v0 > t))
|
|
{
|
|
qhat--;
|
|
rhat += v1;
|
|
t = TOHIGH(rhat) | u0;
|
|
if ((rhat < B_J) && (qhat * v0 > t))
|
|
{
|
|
qhat--;
|
|
}
|
|
}
|
|
/* Multiply and subtract
|
|
(u2u1u0)" = (u2u1u0)' - qhat(v1v0) */
|
|
uu[1] = HIHALF(uu[0]); /* (0u2) */
|
|
uu[0] = TOHIGH(LOHALF(uu[0])) | u0; /* (u1u0) */
|
|
spMultSub(uu, qhat, v1, v0);
|
|
if (HIHALF(uu[1]) != 0)
|
|
{ /* Add back */
|
|
qhat--;
|
|
uu[0] += v;
|
|
uu[1] = 0;
|
|
}
|
|
/* q0 = qhat */
|
|
*q |= LOHALF(qhat);
|
|
/* Remainder is in (u1u0) i.e. uu[0] */
|
|
*r = uu[0];
|
|
return q2;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static int APP_CC
|
|
QhatTooBig(DIGIT_T qhat, DIGIT_T rhat, DIGIT_T vn2, DIGIT_T ujn2)
|
|
{ /* Returns true if Qhat is too big
|
|
i.e. if (Qhat * Vn-2) > (b.Rhat + Uj+n-2) */
|
|
DIGIT_T t[2];
|
|
|
|
spMultiply(t, qhat, vn2);
|
|
if (t[1] < rhat)
|
|
{
|
|
return 0;
|
|
}
|
|
else if (t[1] > rhat)
|
|
{
|
|
return 1;
|
|
}
|
|
else if (t[0] > ujn2)
|
|
{
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static DIGIT_T APP_CC
|
|
mpShortDiv(DIGIT_T* q, DIGIT_T* u, DIGIT_T v, unsigned int ndigits)
|
|
{
|
|
/* Calculates quotient q = u div v
|
|
Returns remainder r = u mod v
|
|
where q, u are multiprecision integers of ndigits each
|
|
and d, v are single precision digits.
|
|
|
|
Makes no assumptions about normalisation.
|
|
|
|
Ref: Knuth Vol 2 Ch 4.3.1 Exercise 16 p625 */
|
|
unsigned int j;
|
|
unsigned int shift;
|
|
DIGIT_T t[2];
|
|
DIGIT_T r;
|
|
DIGIT_T bitmask;
|
|
DIGIT_T overflow;
|
|
DIGIT_T* uu;
|
|
|
|
if (ndigits == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
if (v == 0)
|
|
{
|
|
return 0; /* Divide by zero error */
|
|
}
|
|
/* Normalise first */
|
|
/* Requires high bit of V
|
|
to be set, so find most signif. bit then shift left,
|
|
i.e. d = 2^shift, u' = u * d, v' = v * d. */
|
|
bitmask = HIBITMASK;
|
|
for (shift = 0; shift < BITS_PER_DIGIT; shift++)
|
|
{
|
|
if (v & bitmask)
|
|
{
|
|
break;
|
|
}
|
|
bitmask >>= 1;
|
|
}
|
|
v <<= shift;
|
|
overflow = mpShiftLeft(q, u, shift, ndigits);
|
|
uu = q;
|
|
/* Step S1 - modified for extra digit. */
|
|
r = overflow; /* New digit Un */
|
|
j = ndigits;
|
|
while (j--)
|
|
{
|
|
/* Step S2. */
|
|
t[1] = r;
|
|
t[0] = uu[j];
|
|
overflow = spDivide(&q[j], &r, t, v);
|
|
}
|
|
/* Unnormalise */
|
|
r >>= shift;
|
|
return r;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static DIGIT_T APP_CC
|
|
mpMultSub(DIGIT_T wn, DIGIT_T* w, DIGIT_T* v, DIGIT_T q, unsigned int n)
|
|
{ /* Compute w = w - qv
|
|
where w = (WnW[n-1]...W[0])
|
|
return modified Wn. */
|
|
DIGIT_T k;
|
|
DIGIT_T t[2];
|
|
unsigned int i;
|
|
|
|
if (q == 0) /* No change */
|
|
{
|
|
return wn;
|
|
}
|
|
k = 0;
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
spMultiply(t, q, v[i]);
|
|
w[i] -= k;
|
|
if (w[i] > MAX_DIGIT - k)
|
|
{
|
|
k = 1;
|
|
}
|
|
else
|
|
{
|
|
k = 0;
|
|
}
|
|
w[i] -= t[0];
|
|
if (w[i] > MAX_DIGIT - t[0])
|
|
{
|
|
k++;
|
|
}
|
|
k += t[1];
|
|
}
|
|
/* Cope with Wn not stored in array w[0..n-1] */
|
|
wn -= k;
|
|
return wn;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static int APP_CC
|
|
mpDivide(DIGIT_T* q, DIGIT_T* r, DIGIT_T* u, unsigned int udigits,
|
|
DIGIT_T* v, unsigned int vdigits)
|
|
{ /* Computes quotient q = u / v and remainder r = u mod v
|
|
where q, r, u are multiple precision digits
|
|
all of udigits and the divisor v is vdigits.
|
|
|
|
Ref: Knuth Vol 2 Ch 4.3.1 p 272 Algorithm D.
|
|
|
|
Do without extra storage space, i.e. use r[] for
|
|
normalised u[], unnormalise v[] at end, and cope with
|
|
extra digit Uj+n added to u after normalisation.
|
|
|
|
WARNING: this trashes q and r first, so cannot do
|
|
u = u / v or v = u mod v. */
|
|
unsigned int shift;
|
|
int n;
|
|
int m;
|
|
int j;
|
|
int qhatOK;
|
|
int cmp;
|
|
DIGIT_T bitmask;
|
|
DIGIT_T overflow;
|
|
DIGIT_T qhat;
|
|
DIGIT_T rhat;
|
|
DIGIT_T t[2];
|
|
DIGIT_T* uu;
|
|
DIGIT_T* ww;
|
|
|
|
/* Clear q and r */
|
|
mpSetZero(q, udigits);
|
|
mpSetZero(r, udigits);
|
|
/* Work out exact sizes of u and v */
|
|
n = (int)mpSizeof(v, vdigits);
|
|
m = (int)mpSizeof(u, udigits);
|
|
m -= n;
|
|
/* Catch special cases */
|
|
if (n == 0)
|
|
{
|
|
return -1; /* Error: divide by zero */
|
|
}
|
|
if (n == 1)
|
|
{ /* Use short division instead */
|
|
r[0] = mpShortDiv(q, u, v[0], udigits);
|
|
return 0;
|
|
}
|
|
if (m < 0)
|
|
{ /* v > u, so just set q = 0 and r = u */
|
|
mpSetEqual(r, u, udigits);
|
|
return 0;
|
|
}
|
|
if (m == 0)
|
|
{ /* u and v are the same length */
|
|
cmp = mpCompare(u, v, (unsigned int)n);
|
|
if (cmp < 0)
|
|
{ /* v > u, as above */
|
|
mpSetEqual(r, u, udigits);
|
|
return 0;
|
|
}
|
|
else if (cmp == 0)
|
|
{ /* v == u, so set q = 1 and r = 0 */
|
|
mpSetDigit(q, 1, udigits);
|
|
return 0;
|
|
}
|
|
}
|
|
/* In Knuth notation, we have:
|
|
Given
|
|
u = (Um+n-1 ... U1U0)
|
|
v = (Vn-1 ... V1V0)
|
|
Compute
|
|
q = u/v = (QmQm-1 ... Q0)
|
|
r = u mod v = (Rn-1 ... R1R0) */
|
|
/* Step D1. Normalise */
|
|
/* Requires high bit of Vn-1
|
|
to be set, so find most signif. bit then shift left,
|
|
i.e. d = 2^shift, u' = u * d, v' = v * d. */
|
|
bitmask = HIBITMASK;
|
|
for (shift = 0; shift < BITS_PER_DIGIT; shift++)
|
|
{
|
|
if (v[n - 1] & bitmask)
|
|
{
|
|
break;
|
|
}
|
|
bitmask >>= 1;
|
|
}
|
|
/* Normalise v in situ - NB only shift non-zero digits */
|
|
overflow = mpShiftLeft(v, v, shift, n);
|
|
/* Copy normalised dividend u*d into r */
|
|
overflow = mpShiftLeft(r, u, shift, n + m);
|
|
uu = r; /* Use ptr to keep notation constant */
|
|
t[0] = overflow; /* New digit Um+n */
|
|
/* Step D2. Initialise j. Set j = m */
|
|
for (j = m; j >= 0; j--)
|
|
{
|
|
/* Step D3. Calculate Qhat = (b.Uj+n + Uj+n-1)/Vn-1 */
|
|
qhatOK = 0;
|
|
t[1] = t[0]; /* This is Uj+n */
|
|
t[0] = uu[j+n-1];
|
|
overflow = spDivide(&qhat, &rhat, t, v[n - 1]);
|
|
/* Test Qhat */
|
|
if (overflow)
|
|
{ /* Qhat = b */
|
|
qhat = MAX_DIGIT;
|
|
rhat = uu[j + n - 1];
|
|
rhat += v[n - 1];
|
|
if (rhat < v[n - 1]) /* Overflow */
|
|
{
|
|
qhatOK = 1;
|
|
}
|
|
}
|
|
if (!qhatOK && QhatTooBig(qhat, rhat, v[n - 2], uu[j + n - 2]))
|
|
{ /* Qhat.Vn-2 > b.Rhat + Uj+n-2 */
|
|
qhat--;
|
|
rhat += v[n - 1];
|
|
if (!(rhat < v[n - 1]))
|
|
{
|
|
if (QhatTooBig(qhat, rhat, v[n - 2], uu[j + n - 2]))
|
|
{
|
|
qhat--;
|
|
}
|
|
}
|
|
}
|
|
/* Step D4. Multiply and subtract */
|
|
ww = &uu[j];
|
|
overflow = mpMultSub(t[1], ww, v, qhat, (unsigned int)n);
|
|
/* Step D5. Test remainder. Set Qj = Qhat */
|
|
q[j] = qhat;
|
|
if (overflow)
|
|
{ /* Step D6. Add back if D4 was negative */
|
|
q[j]--;
|
|
overflow = mpAdd(ww, ww, v, (unsigned int)n);
|
|
}
|
|
t[0] = uu[j + n - 1]; /* Uj+n on next round */
|
|
} /* Step D7. Loop on j */
|
|
/* Clear high digits in uu */
|
|
for (j = n; j < m+n; j++)
|
|
{
|
|
uu[j] = 0;
|
|
}
|
|
/* Step D8. Unnormalise. */
|
|
mpShiftRight(r, r, shift, n);
|
|
mpShiftRight(v, v, shift, n);
|
|
return 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static int APP_CC
|
|
mpModulo(DIGIT_T* r, DIGIT_T* u, unsigned int udigits,
|
|
DIGIT_T* v, unsigned int vdigits)
|
|
{
|
|
/* Calculates r = u mod v
|
|
where r, v are multiprecision integers of length vdigits
|
|
and u is a multiprecision integer of length udigits.
|
|
r may overlap v.
|
|
|
|
Note that r here is only vdigits long,
|
|
whereas in mpDivide it is udigits long.
|
|
|
|
Use remainder from mpDivide function. */
|
|
/* Double-length temp variable for divide fn */
|
|
DIGIT_T qq[MAX_DIG_LEN * 2];
|
|
/* Use a double-length temp for r to allow overlap of r and v */
|
|
DIGIT_T rr[MAX_DIG_LEN * 2];
|
|
|
|
/* rr[2n] = u[2n] mod v[n] */
|
|
mpDivide(qq, rr, u, udigits, v, vdigits);
|
|
mpSetEqual(r, rr, vdigits);
|
|
mpSetZero(rr, udigits);
|
|
mpSetZero(qq, udigits);
|
|
return 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static int APP_CC
|
|
mpMultiply(DIGIT_T* w, DIGIT_T* u, DIGIT_T* v, unsigned int ndigits)
|
|
{
|
|
/* Computes product w = u * v
|
|
where u, v are multiprecision integers of ndigits each
|
|
and w is a multiprecision integer of 2*ndigits
|
|
Ref: Knuth Vol 2 Ch 4.3.1 p 268 Algorithm M. */
|
|
DIGIT_T k;
|
|
DIGIT_T t[2];
|
|
unsigned int i;
|
|
unsigned int j;
|
|
unsigned int m;
|
|
unsigned int n;
|
|
|
|
n = ndigits;
|
|
m = n;
|
|
/* Step M1. Initialise */
|
|
for (i = 0; i < 2 * m; i++)
|
|
{
|
|
w[i] = 0;
|
|
}
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
/* Step M2. Zero multiplier? */
|
|
if (v[j] == 0)
|
|
{
|
|
w[j + m] = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Step M3. Initialise i */
|
|
k = 0;
|
|
for (i = 0; i < m; i++)
|
|
{
|
|
/* Step M4. Multiply and add */
|
|
/* t = u_i * v_j + w_(i+j) + k */
|
|
spMultiply(t, u[i], v[j]);
|
|
t[0] += k;
|
|
if (t[0] < k)
|
|
{
|
|
t[1]++;
|
|
}
|
|
t[0] += w[i + j];
|
|
if (t[0] < w[i+j])
|
|
{
|
|
t[1]++;
|
|
}
|
|
w[i + j] = t[0];
|
|
k = t[1];
|
|
}
|
|
/* Step M5. Loop on i, set w_(j+m) = k */
|
|
w[j + m] = k;
|
|
}
|
|
} /* Step M6. Loop on j */
|
|
return 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static int APP_CC
|
|
mpModMult(DIGIT_T* a, DIGIT_T* x, DIGIT_T* y,
|
|
DIGIT_T* m, unsigned int ndigits)
|
|
{ /* Computes a = (x * y) mod m */
|
|
/* Double-length temp variable */
|
|
DIGIT_T p[MAX_DIG_LEN * 2];
|
|
|
|
/* Calc p[2n] = x * y */
|
|
mpMultiply(p, x, y, ndigits);
|
|
/* Then modulo */
|
|
mpModulo(a, p, ndigits * 2, m, ndigits);
|
|
mpSetZero(p, ndigits * 2);
|
|
return 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
int APP_CC
|
|
ssl_mod_exp(char* out, int out_len, char* in, int in_len,
|
|
char* mod, int mod_len, char* exp, int exp_len)
|
|
{
|
|
/* Computes y = x ^ e mod m */
|
|
/* Binary left-to-right method */
|
|
DIGIT_T mask;
|
|
DIGIT_T* e;
|
|
DIGIT_T* x;
|
|
DIGIT_T* y;
|
|
DIGIT_T* m;
|
|
unsigned int n;
|
|
int max_size;
|
|
char* l_out;
|
|
char* l_in;
|
|
char* l_mod;
|
|
char* l_exp;
|
|
|
|
if (in_len > out_len || in_len == 0 ||
|
|
out_len == 0 || mod_len == 0 || exp_len == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
max_size = out_len;
|
|
if (in_len > max_size)
|
|
{
|
|
max_size = in_len;
|
|
}
|
|
if (mod_len > max_size)
|
|
{
|
|
max_size = mod_len;
|
|
}
|
|
if (exp_len > max_size)
|
|
{
|
|
max_size = exp_len;
|
|
}
|
|
l_out = (char*)g_malloc(max_size, 1);
|
|
l_in = (char*)g_malloc(max_size, 1);
|
|
l_mod = (char*)g_malloc(max_size, 1);
|
|
l_exp = (char*)g_malloc(max_size, 1);
|
|
memcpy(l_in, in, in_len);
|
|
memcpy(l_mod, mod, mod_len);
|
|
memcpy(l_exp, exp, exp_len);
|
|
e = (DIGIT_T*)l_exp;
|
|
x = (DIGIT_T*)l_in;
|
|
y = (DIGIT_T*)l_out;
|
|
m = (DIGIT_T*)l_mod;
|
|
/* Find second-most significant bit in e */
|
|
n = mpSizeof(e, max_size / 4);
|
|
for (mask = HIBITMASK; mask > 0; mask >>= 1)
|
|
{
|
|
if (e[n - 1] & mask)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
mpNEXTBITMASK(mask, n);
|
|
/* Set y = x */
|
|
mpSetEqual(y, x, max_size / 4);
|
|
/* For bit j = k - 2 downto 0 step -1 */
|
|
while (n)
|
|
{
|
|
mpModMult(y, y, y, m, max_size / 4); /* Square */
|
|
if (e[n - 1] & mask)
|
|
{
|
|
mpModMult(y, y, x, m, max_size / 4); /* Multiply */
|
|
}
|
|
/* Move to next bit */
|
|
mpNEXTBITMASK(mask, n);
|
|
}
|
|
memcpy(out, l_out, out_len);
|
|
g_free(l_out);
|
|
g_free(l_in);
|
|
g_free(l_mod);
|
|
g_free(l_exp);
|
|
return out_len;
|
|
}
|
|
|