You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tqt3/src/canvas/qcanvas.cpp

5416 lines
139 KiB

/**********************************************************************
**
** Implementation of TQCanvas and associated classes
**
** Created : 991211
**
** Copyright (C) 1999-2008 Trolltech ASA. All rights reserved.
**
** This file is part of the canvas module of the TQt GUI Toolkit.
**
** This file may be used under the terms of the GNU General
** Public License versions 2.0 or 3.0 as published by the Free
** Software Foundation and appearing in the files LICENSE.GPL2
** and LICENSE.GPL3 included in the packaging of this file.
** Alternatively you may (at your option) use any later version
** of the GNU General Public License if such license has been
** publicly approved by Trolltech ASA (or its successors, if any)
** and the KDE Free TQt Foundation.
**
** Please review the following information to ensure GNU General
** Public Licensing requirements will be met:
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
** If you are unsure which license is appropriate for your use, please
** review the following information:
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
** or contact the sales department at sales@trolltech.com.
**
** This file may be used under the terms of the Q Public License as
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
** included in the packaging of this file. Licensees holding valid TQt
** Commercial licenses may use this file in accordance with the TQt
** Commercial License Agreement provided with the Software.
**
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
** herein.
**
**********************************************************************/
#include "ntqcanvas.h"
#ifndef QT_NO_CANVAS
#include "ntqapplication.h"
#include "ntqbitmap.h"
#include "ntqimage.h"
#include "ntqptrdict.h"
#include "ntqpainter.h"
#include "ntqpolygonscanner.h"
#include "ntqtimer.h"
#include "ntqtl.h"
#include <stdlib.h>
class TQCanvasData {
public:
TQCanvasData() :
itemDict(1013), animDict(503)
{
}
TQPtrList<TQCanvasView> viewList;
TQPtrDict<void> itemDict;
TQPtrDict<void> animDict;
};
class TQCanvasViewData {
public:
TQCanvasViewData() : repaint_from_moving( FALSE ) {}
#ifndef QT_NO_TRANSFORMATIONS
TQWMatrix xform;
TQWMatrix ixform;
#endif
bool repaint_from_moving;
};
// clusterizer
class TQCanvasClusterizer {
public:
TQCanvasClusterizer(int maxclusters);
~TQCanvasClusterizer();
void add(int x, int y); // 1x1 rectangle (point)
void add(int x, int y, int w, int h);
void add(const TQRect& rect);
void clear();
int clusters() { return count; }
const TQRect& operator[](int i);
private:
TQRect* cluster;
int count;
const int maxcl;
};
static
void include(TQRect& r, const TQRect& rect)
{
if (rect.left()<r.left()) {
r.setLeft(rect.left());
}
if (rect.right()>r.right()) {
r.setRight(rect.right());
}
if (rect.top()<r.top()) {
r.setTop(rect.top());
}
if (rect.bottom()>r.bottom()) {
r.setBottom(rect.bottom());
}
}
/*
A TQCanvasClusterizer groups rectangles (TQRects) into non-overlapping rectangles
by a merging heuristic.
*/
TQCanvasClusterizer::TQCanvasClusterizer(int maxclusters) :
cluster(new TQRect[maxclusters]),
count(0),
maxcl(maxclusters)
{ }
TQCanvasClusterizer::~TQCanvasClusterizer()
{
delete [] cluster;
}
void TQCanvasClusterizer::clear()
{
count=0;
}
void TQCanvasClusterizer::add(int x, int y)
{
add(TQRect(x,y,1,1));
}
void TQCanvasClusterizer::add(int x, int y, int w, int h)
{
add(TQRect(x,y,w,h));
}
void TQCanvasClusterizer::add(const TQRect& rect)
{
TQRect biggerrect(rect.x()-1,rect.y()-1,rect.width()+2,rect.height()+2);
//assert(rect.width()>0 && rect.height()>0);
int cursor;
for (cursor=0; cursor<count; cursor++) {
if (cluster[cursor].contains(rect)) {
// Wholly contained already.
return;
}
}
int lowestcost=9999999;
int cheapest=-1;
cursor = 0;
while( cursor<count ) {
if (cluster[cursor].intersects(biggerrect)) {
TQRect larger=cluster[cursor];
include(larger,rect);
int cost = larger.width()*larger.height() -
cluster[cursor].width()*cluster[cursor].height();
if (cost < lowestcost) {
bool bad=FALSE;
for (int c=0; c<count && !bad; c++) {
bad=cluster[c].intersects(larger) && c!=cursor;
}
if (!bad) {
cheapest=cursor;
lowestcost=cost;
}
}
}
cursor++;
}
if (cheapest>=0) {
include(cluster[cheapest],rect);
return;
}
if (count < maxcl) {
cluster[count++]=rect;
return;
}
// Do cheapest of:
// add to closest cluster
// do cheapest cluster merge, add to new cluster
lowestcost=9999999;
cheapest=-1;
cursor=0;
while( cursor<count ) {
TQRect larger=cluster[cursor];
include(larger,rect);
int cost=larger.width()*larger.height()
- cluster[cursor].width()*cluster[cursor].height();
if (cost < lowestcost) {
bool bad=FALSE;
for (int c=0; c<count && !bad; c++) {
bad=cluster[c].intersects(larger) && c!=cursor;
}
if (!bad) {
cheapest=cursor;
lowestcost=cost;
}
}
cursor++;
}
// ###
// could make an heuristic guess as to whether we need to bother
// looking for a cheap merge.
int cheapestmerge1 = -1;
int cheapestmerge2 = -1;
int merge1 = 0;
while( merge1 < count ) {
int merge2=0;
while( merge2 < count ) {
if( merge1!=merge2) {
TQRect larger=cluster[merge1];
include(larger,cluster[merge2]);
int cost=larger.width()*larger.height()
- cluster[merge1].width()*cluster[merge1].height()
- cluster[merge2].width()*cluster[merge2].height();
if (cost < lowestcost) {
bool bad=FALSE;
for (int c=0; c<count && !bad; c++) {
bad=cluster[c].intersects(larger) && c!=cursor;
}
if (!bad) {
cheapestmerge1=merge1;
cheapestmerge2=merge2;
lowestcost=cost;
}
}
}
merge2++;
}
merge1++;
}
if (cheapestmerge1>=0) {
include(cluster[cheapestmerge1],cluster[cheapestmerge2]);
cluster[cheapestmerge2]=cluster[count--];
} else {
// if (!cheapest) debugRectangles(rect);
include(cluster[cheapest],rect);
}
// NB: clusters do not intersect (or intersection will
// overwrite). This is a result of the above algorithm,
// given the assumption that (x,y) are ordered topleft
// to bottomright.
// ###
//
// add explicit x/y ordering to that comment, move it to the top
// and rephrase it as pre-/post-conditions.
}
const TQRect& TQCanvasClusterizer::operator[](int i)
{
return cluster[i];
}
// end of clusterizer
class TQM_EXPORT_CANVAS TQCanvasItemPtr {
public:
TQCanvasItemPtr() : ptr(0) { }
TQCanvasItemPtr( TQCanvasItem* p ) : ptr(p) { }
bool operator<=(const TQCanvasItemPtr& that) const
{
// Order same-z objects by identity.
if (that.ptr->z()==ptr->z())
return that.ptr <= ptr;
return that.ptr->z() <= ptr->z();
}
bool operator<(const TQCanvasItemPtr& that) const
{
// Order same-z objects by identity.
if (that.ptr->z()==ptr->z())
return that.ptr < ptr;
return that.ptr->z() < ptr->z();
}
bool operator>(const TQCanvasItemPtr& that) const
{
// Order same-z objects by identity.
if (that.ptr->z()==ptr->z())
return that.ptr > ptr;
return that.ptr->z() > ptr->z();
}
bool operator==(const TQCanvasItemPtr& that) const
{
return that.ptr == ptr;
}
operator TQCanvasItem*() const { return ptr; }
private:
TQCanvasItem* ptr;
};
/*!
\class TQCanvasItemList
\brief The TQCanvasItemList class is a list of TQCanvasItems.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
TQCanvasItemList is a TQValueList of pointers to \l{TQCanvasItem}s.
This class is used by some methods in TQCanvas that need to return
a list of canvas items.
The \l TQValueList documentation describes how to use this list.
*/
/*!
\internal
*/
void TQCanvasItemList::sort()
{
qHeapSort(*((TQValueList<TQCanvasItemPtr>*)this));
}
/*!
\internal
*/
void TQCanvasItemList::drawUnique( TQPainter& painter )
{
TQCanvasItem* prev=0;
for (Iterator it=fromLast(); it!=end(); --it) {
TQCanvasItem *g=*it;
if (g!=prev) {
g->draw(painter);
prev=g;
}
}
}
/*!
Returns the concatenation of this list and list \a l.
*/
TQCanvasItemList TQCanvasItemList::operator+(const TQCanvasItemList &l) const
{
TQCanvasItemList l2(*this);
for(const_iterator it = l.begin(); it != l.end(); ++it)
l2.append(*it);
return l2;
}
class TQCanvasChunk {
public:
TQCanvasChunk() : changed(TRUE) { }
// Other code assumes lists are not deleted. Assignment is also
// done on ChunkRecs. So don't add that sort of thing here.
void sort()
{
list.sort();
}
const TQCanvasItemList* listPtr() const
{
return &list;
}
void add(TQCanvasItem* item)
{
list.prepend(item);
changed = TRUE;
}
void remove(TQCanvasItem* item)
{
list.remove(item);
changed = TRUE;
}
void change()
{
changed = TRUE;
}
bool hasChanged() const
{
return changed;
}
bool takeChange()
{
bool y = changed;
changed = FALSE;
return y;
}
private:
TQCanvasItemList list;
bool changed;
};
static int gcd(int a, int b)
{
int r;
while ( (r = a%b) ) {
a=b;
b=r;
}
return b;
}
static int scm(int a, int b)
{
int g = gcd(a,b);
return a/g*b;
}
/*!
\class TQCanvas ntqcanvas.h
\brief The TQCanvas class provides a 2D area that can contain TQCanvasItem objects.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\ingroup abstractwidgets
\ingroup graphics
\ingroup images
\mainclass
\module canvas
The TQCanvas class manages its 2D graphic area and all the canvas
items the area contains. The canvas has no visual appearance of
its own. Instead, it is displayed on screen using a TQCanvasView.
Multiple TQCanvasView widgets may be associated with a canvas to
provide multiple views of the same canvas.
The canvas is optimized for large numbers of items, particularly
where only a small percentage of the items change at any
one time. If the entire display changes very frequently, you should
consider using your own custom TQScrollView subclass.
TQt provides a rich
set of canvas item classes, e.g. TQCanvasEllipse, TQCanvasLine,
TQCanvasPolygon, TQCanvasPolygonalItem, TQCanvasRectangle, TQCanvasSpline,
TQCanvasSprite and TQCanvasText. You can subclass to create your own
canvas items; TQCanvasPolygonalItem is the most common base class used
for this purpose.
Items appear on the canvas after their \link TQCanvasItem::show()
show()\endlink function has been called (or \link
TQCanvasItem::setVisible() setVisible(TRUE)\endlink), and \e after
update() has been called. The canvas only shows items that are
\link TQCanvasItem::setVisible() visible\endlink, and then only if
\l update() is called. (By default the canvas is white and so are
canvas items, so if nothing appears try changing colors.)
If you created the canvas without passing a width and height to
the constructor you must also call resize().
Although a canvas may appear to be similar to a widget with child
widgets, there are several notable differences:
\list
\i Canvas items are usually much faster to manipulate and redraw than
child widgets, with the speed advantage becoming especially great when
there are \e many canvas items and non-rectangular items. In most
situations canvas items are also a lot more memory efficient than child
widgets.
\i It's easy to detect overlapping items (collision detection).
\i The canvas can be larger than a widget. A million-by-million canvas
is perfectly possible. At such a size a widget might be very
inefficient, and some window systems might not support it at all,
whereas TQCanvas scales well. Even with a billion pixels and a million
items, finding a particular canvas item, detecting collisions, etc.,
is still fast (though the memory consumption may be prohibitive
at such extremes).
\i Two or more TQCanvasView objects can view the same canvas.
\i An arbitrary transformation matrix can be set on each TQCanvasView
which makes it easy to zoom, rotate or shear the viewed canvas.
\i Widgets provide a lot more functionality, such as input (TQKeyEvent,
TQMouseEvent etc.) and layout management (TQGridLayout etc.).
\endlist
A canvas consists of a background, a number of canvas items organized by
x, y and z coordinates, and a foreground. A canvas item's z coordinate
can be treated as a layer number -- canvas items with a higher z
coordinate appear in front of canvas items with a lower z coordinate.
The background is white by default, but can be set to a different color
using setBackgroundColor(), or to a repeated pixmap using
setBackgroundPixmap() or to a mosaic of smaller pixmaps using
setTiles(). Individual tiles can be set with setTile(). There
are corresponding get functions, e.g. backgroundColor() and
backgroundPixmap().
Note that TQCanvas does not inherit from TQWidget, even though it has some
functions which provide the same functionality as those in TQWidget. One
of these is setBackgroundPixmap(); some others are resize(), size(),
width() and height(). \l TQCanvasView is the widget used to display a
canvas on the screen.
Canvas items are added to a canvas by constructing them and passing the
canvas to the canvas item's constructor. An item can be moved to a
different canvas using TQCanvasItem::setCanvas().
Canvas items are movable (and in the case of TQCanvasSprites, animated)
objects that inherit TQCanvasItem. Each canvas item has a position on the
canvas (x, y coordinates) and a height (z coordinate), all of which are
held as floating-point numbers. Moving canvas items also have x and y
velocities. It's possible for a canvas item to be outside the canvas
(for example TQCanvasItem::x() is greater than width()). When a canvas
item is off the canvas, onCanvas() returns FALSE and the canvas
disregards the item. (Canvas items off the canvas do not slow down any
of the common operations on the canvas.)
Canvas items can be moved with TQCanvasItem::move(). The advance()
function moves all TQCanvasItem::animated() canvas items and
setAdvancePeriod() makes TQCanvas move them automatically on a periodic
basis. In the context of the TQCanvas classes, to `animate' a canvas item
is to set it in motion, i.e. using TQCanvasItem::setVelocity(). Animation
of a canvas item itself, i.e. items which change over time, is enabled
by calling TQCanvasSprite::setFrameAnimation(), or more generally by
subclassing and reimplementing TQCanvasItem::advance(). To detect collisions
use one of the TQCanvasItem::collisions() functions.
The changed parts of the canvas are redrawn (if they are visible in a
canvas view) whenever update() is called. You can either call update()
manually after having changed the contents of the canvas, or force
periodic updates using setUpdatePeriod(). If you have moving objects on
the canvas, you must call advance() every time the objects should
move one step further. Periodic calls to advance() can be forced using
setAdvancePeriod(). The advance() function will call
TQCanvasItem::advance() on every item that is \link
TQCanvasItem::animated() animated\endlink and trigger an update of the
affected areas afterwards. (A canvas item that is `animated' is simply
a canvas item that is in motion.)
TQCanvas organizes its canvas items into \e chunks; these are areas on
the canvas that are used to speed up most operations. Many operations
start by eliminating most chunks (i.e. those which haven't changed)
and then process only the canvas items that are in the few interesting
(i.e. changed) chunks. A valid chunk, validChunk(), is one which is on
the canvas.
The chunk size is a key factor to TQCanvas's speed: if there are too many
chunks, the speed benefit of grouping canvas items into chunks is
reduced. If the chunks are too large, it takes too long to process each
one. The TQCanvas constructor tries to pick a suitable size, but you
can call retune() to change it at any time. The chunkSize() function
returns the current chunk size. The canvas items always make sure
they're in the right chunks; all you need to make sure of is that
the canvas uses the right chunk size. A good rule of thumb is that
the size should be a bit smaller than the average canvas item
size. If you have moving objects, the chunk size should be a bit
smaller than the average size of the moving items.
The foreground is normally nothing, but if you reimplement
drawForeground(), you can draw things in front of all the canvas
items.
Areas can be set as changed with setChanged() and set unchanged with
setUnchanged(). The entire canvas can be set as changed with
setAllChanged(). A list of all the items on the canvas is returned by
allItems().
An area can be copied (painted) to a TQPainter with drawArea().
If the canvas is resized it emits the resized() signal.
The examples/canvas application and the 2D graphics page of the
examples/demo application demonstrate many of TQCanvas's facilities.
\sa TQCanvasView TQCanvasItem
*/
void TQCanvas::init(int w, int h, int chunksze, int mxclusters)
{
d = new TQCanvasData;
awidth=w;
aheight=h;
chunksize=chunksze;
maxclusters=mxclusters;
chwidth=(w+chunksize-1)/chunksize;
chheight=(h+chunksize-1)/chunksize;
chunks=new TQCanvasChunk[chwidth*chheight];
update_timer = 0;
bgcolor = white;
grid = 0;
htiles = 0;
vtiles = 0;
dblbuf = TRUE;
debug_redraw_areas = FALSE;
}
/*!
Create a TQCanvas with no size. \a parent and \a name are passed to
the TQObject superclass.
\warning You \e must call resize() at some time after creation to
be able to use the canvas.
*/
TQCanvas::TQCanvas( TQObject* parent, const char* name )
: TQObject( parent, name )
{
init(0,0);
}
/*!
Constructs a TQCanvas that is \a w pixels wide and \a h pixels high.
*/
TQCanvas::TQCanvas(int w, int h)
{
init(w,h);
}
/*!
Constructs a TQCanvas which will be composed of \a h tiles
horizontally and \a v tiles vertically. Each tile will be an image
\a tilewidth by \a tileheight pixels taken from pixmap \a p.
The pixmap \a p is a list of tiles, arranged left to right, (and
in the case of pixmaps that have multiple rows of tiles, top to
bottom), with tile 0 in the top-left corner, tile 1 next to the
right, and so on, e.g.
\table
\row \i 0 \i 1 \i 2 \i 3
\row \i 4 \i 5 \i 6 \i 7
\endtable
The TQCanvas is initially sized to show exactly the given number of
tiles horizontally and vertically. If it is resized to be larger,
the entire matrix of tiles will be repeated as often as necessary
to cover the area. If it is smaller, tiles to the right and bottom
will not be visible.
\sa setTiles()
*/
TQCanvas::TQCanvas( TQPixmap p,
int h, int v, int tilewidth, int tileheight )
{
init(h*tilewidth, v*tileheight, scm(tilewidth,tileheight) );
setTiles( p, h, v, tilewidth, tileheight );
}
void qt_unview(TQCanvas* c)
{
for (TQCanvasView* view=c->d->viewList.first(); view != 0; view=c->d->viewList.next()) {
view->viewing = 0;
}
}
/*!
Destroys the canvas and all the canvas's canvas items.
*/
TQCanvas::~TQCanvas()
{
qt_unview(this);
TQCanvasItemList all = allItems();
for (TQCanvasItemList::Iterator it=all.begin(); it!=all.end(); ++it)
delete *it;
delete [] chunks;
delete [] grid;
delete d;
}
/*!
\internal
Returns the chunk at a chunk position \a i, \a j.
*/
TQCanvasChunk& TQCanvas::chunk(int i, int j) const
{
return chunks[i+chwidth*j];
}
/*!
\internal
Returns the chunk at a pixel position \a x, \a y.
*/
TQCanvasChunk& TQCanvas::chunkContaining(int x, int y) const
{
return chunk(x/chunksize,y/chunksize);
}
/*!
Returns a list of all the items in the canvas.
*/
TQCanvasItemList TQCanvas::allItems()
{
TQCanvasItemList list;
for (TQPtrDictIterator<void> it=d->itemDict; it.currentKey(); ++it) {
list.prepend((TQCanvasItem*)it.currentKey());
}
return list;
}
/*!
Changes the size of the canvas to have a width of \a w and a
height of \a h. This is a slow operation.
*/
void TQCanvas::resize(int w, int h)
{
if (awidth==w && aheight==h)
return;
TQCanvasItem* item;
TQPtrList<TQCanvasItem> hidden;
for (TQPtrDictIterator<void> it=d->itemDict; it.currentKey(); ++it) {
if (((TQCanvasItem*)it.currentKey())->isVisible()) {
((TQCanvasItem*)it.currentKey())->hide();
hidden.append(((TQCanvasItem*)it.currentKey()));
}
}
int nchwidth=(w+chunksize-1)/chunksize;
int nchheight=(h+chunksize-1)/chunksize;
TQCanvasChunk* newchunks = new TQCanvasChunk[nchwidth*nchheight];
// Commit the new values.
//
awidth=w;
aheight=h;
chwidth=nchwidth;
chheight=nchheight;
delete [] chunks;
chunks=newchunks;
for (item=hidden.first(); item != 0; item=hidden.next()) {
item->show();
}
setAllChanged();
emit resized();
}
/*!
\fn void TQCanvas::resized()
This signal is emitted whenever the canvas is resized. Each
TQCanvasView connects to this signal to keep the scrollview's size
correct.
*/
/*!
Change the efficiency tuning parameters to \a mxclusters clusters,
each of size \a chunksze. This is a slow operation if there are
many objects on the canvas.
The canvas is divided into chunks which are rectangular areas \a
chunksze wide by \a chunksze high. Use a chunk size which is about
the average size of the canvas items. If you choose a chunk size
which is too small it will increase the amount of calculation
required when drawing since each change will affect many chunks.
If you choose a chunk size which is too large the amount of
drawing required will increase because for each change, a lot of
drawing will be required since there will be many (unchanged)
canvas items which are in the same chunk as the changed canvas
items.
Internally, a canvas uses a low-resolution "chunk matrix" to keep
track of all the items in the canvas. A 64x64 chunk matrix is the
default for a 1024x1024 pixel canvas, where each chunk collects
canvas items in a 16x16 pixel square. This default is also
affected by setTiles(). You can tune this default using this
function. For example if you have a very large canvas and want to
trade off speed for memory then you might set the chunk size to 32
or 64.
The \a mxclusters argument is the number of rectangular groups of
chunks that will be separately drawn. If the canvas has a large
number of small, dispersed items, this should be about that
number. Our testing suggests that a large number of clusters is
almost always best.
*/
void TQCanvas::retune(int chunksze, int mxclusters)
{
maxclusters=mxclusters;
if ( chunksize!=chunksze ) {
TQPtrList<TQCanvasItem> hidden;
for (TQPtrDictIterator<void> it=d->itemDict; it.currentKey(); ++it) {
if (((TQCanvasItem*)it.currentKey())->isVisible()) {
((TQCanvasItem*)it.currentKey())->hide();
hidden.append(((TQCanvasItem*)it.currentKey()));
}
}
chunksize=chunksze;
int nchwidth=(awidth+chunksize-1)/chunksize;
int nchheight=(aheight+chunksize-1)/chunksize;
TQCanvasChunk* newchunks = new TQCanvasChunk[nchwidth*nchheight];
// Commit the new values.
//
chwidth=nchwidth;
chheight=nchheight;
delete [] chunks;
chunks=newchunks;
for (TQCanvasItem* item=hidden.first(); item != 0; item=hidden.next()) {
item->show();
}
}
}
/*!
\fn int TQCanvas::width() const
Returns the width of the canvas, in pixels.
*/
/*!
\fn int TQCanvas::height() const
Returns the height of the canvas, in pixels.
*/
/*!
\fn TQSize TQCanvas::size() const
Returns the size of the canvas, in pixels.
*/
/*!
\fn TQRect TQCanvas::rect() const
Returns a rectangle the size of the canvas.
*/
/*!
\fn bool TQCanvas::onCanvas( int x, int y ) const
Returns TRUE if the pixel position (\a x, \a y) is on the canvas;
otherwise returns FALSE.
\sa validChunk()
*/
/*!
\fn bool TQCanvas::onCanvas( const TQPoint& p ) const
\overload
Returns TRUE if the pixel position \a p is on the canvas;
otherwise returns FALSE.
\sa validChunk()
*/
/*!
\fn bool TQCanvas::validChunk( int x, int y ) const
Returns TRUE if the chunk position (\a x, \a y) is on the canvas;
otherwise returns FALSE.
\sa onCanvas()
*/
/*!
\fn bool TQCanvas::validChunk( const TQPoint& p ) const
\overload
Returns TRUE if the chunk position \a p is on the canvas; otherwise
returns FALSE.
\sa onCanvas()
*/
/*!
\fn int TQCanvas::chunkSize() const
Returns the chunk size of the canvas.
\sa retune()
*/
/*!
\fn bool TQCanvas::sameChunk(int x1, int y1, int x2, int y2) const
\internal
Tells if the points ( \a x1, \a y1 ) and ( \a x2, \a y2 ) are within the same chunk.
*/
/*!
\internal
This method adds an the item \a item to the list of TQCanvasItem objects
in the TQCanvas. The TQCanvasItem class calls this.
*/
void TQCanvas::addItem(TQCanvasItem* item)
{
d->itemDict.insert((void*)item,(void*)1);
}
/*!
\internal
This method adds the item \a item to the list of TQCanvasItem objects
to be moved. The TQCanvasItem class calls this.
*/
void TQCanvas::addAnimation(TQCanvasItem* item)
{
d->animDict.insert((void*)item,(void*)1);
}
/*!
\internal
This method adds the item \a item to the list of TQCanvasItem objects
which are no longer to be moved. The TQCanvasItem class calls this.
*/
void TQCanvas::removeAnimation(TQCanvasItem* item)
{
d->animDict.remove((void*)item);
}
/*!
\internal
This method removes the item \a item from the list of TQCanvasItem objects
in this TQCanvas. The TQCanvasItem class calls this.
*/
void TQCanvas::removeItem(TQCanvasItem* item)
{
d->itemDict.remove((void*)item);
}
/*!
\internal
This method adds the view \a view to the list of TQCanvasView objects
viewing this TQCanvas. The TQCanvasView class calls this.
*/
void TQCanvas::addView(TQCanvasView* view)
{
d->viewList.append(view);
if ( htiles>1 || vtiles>1 || pm.isNull() )
view->viewport()->setBackgroundColor(backgroundColor());
}
/*!
\internal
This method removes the view \a view from the list of TQCanvasView objects
viewing this TQCanvas. The TQCanvasView class calls this.
*/
void TQCanvas::removeView(TQCanvasView* view)
{
d->viewList.removeRef(view);
}
/*!
Sets the canvas to call advance() every \a ms milliseconds. Any
previous setting by setAdvancePeriod() or setUpdatePeriod() is
overridden.
If \a ms is less than 0 advancing will be stopped.
*/
void TQCanvas::setAdvancePeriod(int ms)
{
if ( ms<0 ) {
if ( update_timer )
update_timer->stop();
} else {
if ( update_timer )
delete update_timer;
update_timer = new TQTimer(this);
connect(update_timer,SIGNAL(timeout()),this,SLOT(advance()));
update_timer->start(ms);
}
}
/*!
Sets the canvas to call update() every \a ms milliseconds. Any
previous setting by setAdvancePeriod() or setUpdatePeriod() is
overridden.
If \a ms is less than 0 automatic updating will be stopped.
*/
void TQCanvas::setUpdatePeriod(int ms)
{
if ( ms<0 ) {
if ( update_timer )
update_timer->stop();
} else {
if ( update_timer )
delete update_timer;
update_timer = new TQTimer(this);
connect(update_timer,SIGNAL(timeout()),this,SLOT(update()));
update_timer->start(ms);
}
}
/*!
Moves all TQCanvasItem::animated() canvas items on the canvas and
refreshes all changes to all views of the canvas. (An `animated'
item is an item that is in motion; see setVelocity().)
The advance takes place in two phases. In phase 0, the
TQCanvasItem::advance() function of each TQCanvasItem::animated()
canvas item is called with paramater 0. Then all these canvas
items are called again, with parameter 1. In phase 0, the canvas
items should not change position, merely examine other items on
the canvas for which special processing is required, such as
collisions between items. In phase 1, all canvas items should
change positions, ignoring any other items on the canvas. This
two-phase approach allows for considerations of "fairness",
although no TQCanvasItem subclasses supplied with TQt do anything
interesting in phase 0.
The canvas can be configured to call this function periodically
with setAdvancePeriod().
\sa update()
*/
void TQCanvas::advance()
{
TQPtrDictIterator<void> it=d->animDict;
while ( it.current() ) {
TQCanvasItem* i = (TQCanvasItem*)(void*)it.currentKey();
++it;
if ( i )
i->advance(0);
}
// we expect the dict contains the exact same items as in the
// first pass.
it.toFirst();
while ( it.current() ) {
TQCanvasItem* i = (TQCanvasItem*)(void*)it.currentKey();
++it;
if ( i )
i->advance(1);
}
update();
}
// Don't call this unless you know what you're doing.
// p is in the content's co-ordinate example.
/*!
\internal
*/
void TQCanvas::drawViewArea( TQCanvasView* view, TQPainter* p, const TQRect& vr, bool dbuf )
{
TQPoint tl = view->contentsToViewport(TQPoint(0,0));
#ifndef QT_NO_TRANSFORMATIONS
TQWMatrix wm = view->worldMatrix();
TQWMatrix iwm = wm.invert();
// ivr = covers all chunks in vr
TQRect ivr = iwm.map(vr);
ivr.addCoords(-1, -1, 1, 1);
TQWMatrix twm;
twm.translate(tl.x(),tl.y());
#else
TQRect ivr = vr;
#endif
TQRect all(0,0,width(),height());
if ( !all.contains(ivr) ) {
// Need to clip with edge of canvas.
#ifndef QT_NO_TRANSFORMATIONS
// For translation-only transformation, it is safe to include the right
// and bottom edges, but otherwise, these must be excluded since they
// are not precisely defined (different bresenham paths).
TQPointArray a;
if ( wm.m12()==0.0 && wm.m21()==0.0 && wm.m11() == 1.0 && wm.m22() == 1.0 )
a = TQPointArray( TQRect(all.x(),all.y(),all.width()+1,all.height()+1) );
else
a = TQPointArray( all );
a = (wm*twm).map(a);
#else
TQPointArray a( TQRect(all.x(),all.y(),all.width()+1,all.height()+1) );
#endif
if ( view->viewport()->backgroundMode() == NoBackground ) {
TQRect cvr = vr; cvr.moveBy(tl.x(),tl.y());
p->setClipRegion(TQRegion(cvr)-TQRegion(a));
p->fillRect(vr,view->viewport()->palette()
.brush(TQPalette::Active,TQColorGroup::Background));
}
p->setClipRegion(a);
}
if ( dbuf ) {
offscr = TQPixmap(vr.size().expandedTo(TQSize(1, 1)));
#ifdef Q_WS_X11
offscr.x11SetScreen(p->device()->x11Screen());
#endif
TQPainter dbp(&offscr);
#ifndef QT_NO_TRANSFORMATIONS
twm.translate(-vr.x(),-vr.y());
twm.translate(-tl.x(),-tl.y());
dbp.setWorldMatrix( wm*twm, TRUE );
#else
dbp.translate(-vr.x()-tl.x(),-vr.y()-tl.y());
#endif
dbp.setClipRect(0,0,vr.width(), vr.height());
drawCanvasArea(ivr,&dbp,FALSE);
dbp.end();
p->drawPixmap(vr.x(), vr.y(), offscr, 0, 0, vr.width(), vr.height());
} else {
TQRect r = vr; r.moveBy(tl.x(),tl.y()); // move to untransformed co-ords
if ( !all.contains(ivr) ) {
TQRegion inside = p->clipRegion() & r;
//TQRegion outside = p->clipRegion() - r;
//p->setClipRegion(outside);
//p->fillRect(outside.boundingRect(),red);
p->setClipRegion(inside);
} else {
p->setClipRect(r);
}
#ifndef QT_NO_TRANSFORMATIONS
p->setWorldMatrix( wm*twm );
#else
#endif
p->setBrushOrigin(tl.x(), tl.y());
drawCanvasArea(ivr,p,FALSE);
}
}
/*!
Repaints changed areas in all views of the canvas.
\sa advance()
*/
void TQCanvas::update()
{
TQCanvasClusterizer clusterizer(d->viewList.count());
#ifndef QT_NO_TRANSFORMATIONS
TQPtrList<TQRect> doneareas;
doneareas.setAutoDelete(TRUE);
#endif
TQPtrListIterator<TQCanvasView> it(d->viewList);
TQCanvasView* view;
while( (view=it.current()) != 0 ) {
++it;
#ifndef QT_NO_TRANSFORMATIONS
TQWMatrix wm = view->worldMatrix();
#endif
TQRect area(view->contentsX(),view->contentsY(),
view->visibleWidth(),view->visibleHeight());
if (area.width()>0 && area.height()>0) {
#ifndef QT_NO_TRANSFORMATIONS
if ( !wm.isIdentity() ) {
// r = Visible area of the canvas where there are changes
TQRect r = changeBounds(view->inverseWorldMatrix().map(area));
if ( !r.isEmpty() ) {
TQPainter p(view->viewport());
// Translate to the coordinate system of drawViewArea().
TQPoint tl = view->contentsToViewport(TQPoint(0,0));
p.translate(tl.x(),tl.y());
drawViewArea( view, &p, wm.map(r), dblbuf );
doneareas.append(new TQRect(r));
}
} else
#endif
{
clusterizer.add(area);
}
}
}
for (int i=0; i<clusterizer.clusters(); i++)
drawChanges(clusterizer[i]);
#ifndef QT_NO_TRANSFORMATIONS
for ( TQRect* r=doneareas.first(); r != 0; r=doneareas.next() )
setUnchanged(*r);
#endif
}
// ### warwick - setAllChanged() is not a set function. please rename
// it. ditto setChanged(). markChanged(), perhaps?
// ### unfortunately this function is virtual, which makes renaming more difficult. Lars
/*!
Marks the whole canvas as changed.
All views of the canvas will be entirely redrawn when
update() is called next.
*/
void TQCanvas::setAllChanged()
{
setChanged(TQRect(0,0,width(),height()));
}
/*!
Marks \a area as changed. This \a area will be redrawn in all
views that are showing it when update() is called next.
*/
void TQCanvas::setChanged(const TQRect& area)
{
TQRect thearea = area.intersect(TQRect(0,0,width(),height()));
int mx = (thearea.x()+thearea.width()+chunksize)/chunksize;
int my = (thearea.y()+thearea.height()+chunksize)/chunksize;
if (mx>chwidth)
mx=chwidth;
if (my>chheight)
my=chheight;
int x=thearea.x()/chunksize;
while( x<mx) {
int y = thearea.y()/chunksize;
while( y<my ) {
chunk(x,y).change();
y++;
}
x++;
}
}
/*!
Marks \a area as \e unchanged. The area will \e not be redrawn in
the views for the next update(), unless it is marked or changed
again before the next call to update().
*/
void TQCanvas::setUnchanged(const TQRect& area)
{
TQRect thearea = area.intersect(TQRect(0,0,width(),height()));
int mx = (thearea.x()+thearea.width()+chunksize)/chunksize;
int my = (thearea.y()+thearea.height()+chunksize)/chunksize;
if (mx>chwidth)
mx=chwidth;
if (my>chheight)
my=chheight;
int x=thearea.x()/chunksize;
while( x<mx) {
int y = thearea.y()/chunksize;
while( y<my ) {
chunk(x,y).takeChange();
y++;
}
x++;
}
}
/*!
\internal
*/
TQRect TQCanvas::changeBounds(const TQRect& inarea)
{
TQRect area=inarea.intersect(TQRect(0,0,width(),height()));
int mx = (area.x()+area.width()+chunksize)/chunksize;
int my = (area.y()+area.height()+chunksize)/chunksize;
if (mx > chwidth)
mx=chwidth;
if (my > chheight)
my=chheight;
TQRect result;
int x=area.x()/chunksize;
while( x<mx ) {
int y=area.y()/chunksize;
while( y<my ) {
TQCanvasChunk& ch=chunk(x,y);
if ( ch.hasChanged() )
result |= TQRect(x,y,1,1);
y++;
}
x++;
}
if ( !result.isEmpty() ) {
result.rLeft() *= chunksize;
result.rTop() *= chunksize;
result.rRight() *= chunksize;
result.rBottom() *= chunksize;
result.rRight() += chunksize;
result.rBottom() += chunksize;
}
return result;
}
/*!
\internal
Redraws the area \a inarea of the TQCanvas.
*/
void TQCanvas::drawChanges(const TQRect& inarea)
{
TQRect area=inarea.intersect(TQRect(0,0,width(),height()));
TQCanvasClusterizer clusters(maxclusters);
int mx = (area.x()+area.width()+chunksize)/chunksize;
int my = (area.y()+area.height()+chunksize)/chunksize;
if (mx > chwidth)
mx=chwidth;
if (my > chheight)
my=chheight;
int x=area.x()/chunksize;
while( x<mx ) {
int y=area.y()/chunksize;
while( y<my ) {
TQCanvasChunk& ch=chunk(x,y);
if ( ch.hasChanged() )
clusters.add(x,y);
y++;
}
x++;
}
for (int i=0; i<clusters.clusters(); i++) {
TQRect elarea=clusters[i];
elarea.setRect(
elarea.left()*chunksize,
elarea.top()*chunksize,
elarea.width()*chunksize,
elarea.height()*chunksize
);
drawCanvasArea(elarea);
}
}
/*!
Paints all canvas items that are in the area \a clip to \a
painter, using double-buffering if \a dbuf is TRUE.
e.g. to print the canvas to a printer:
\code
TQPrinter pr;
if ( pr.setup() ) {
TQPainter p(&pr);
canvas.drawArea( canvas.rect(), &p );
}
\endcode
*/
void TQCanvas::drawArea(const TQRect& clip, TQPainter* painter, bool dbuf)
{
if ( painter )
drawCanvasArea( clip, painter, dbuf );
}
/*!
\internal
*/
void TQCanvas::drawCanvasArea(const TQRect& inarea, TQPainter* p, bool double_buffer)
{
TQRect area=inarea.intersect(TQRect(0,0,width(),height()));
if ( !dblbuf )
double_buffer = FALSE;
if (!d->viewList.first() && !p) return; // Nothing to do.
int lx=area.x()/chunksize;
int ly=area.y()/chunksize;
int mx=area.right()/chunksize;
int my=area.bottom()/chunksize;
if (mx>=chwidth)
mx=chwidth-1;
if (my>=chheight)
my=chheight-1;
TQCanvasItemList allvisible;
// Stores the region within area that need to be drawn. It is relative
// to area.topLeft() (so as to keep within bounds of 16-bit XRegions)
TQRegion rgn;
for (int x=lx; x<=mx; x++) {
for (int y=ly; y<=my; y++) {
// Only reset change if all views updating, and
// wholy within area. (conservative: ignore entire boundary)
//
// Disable this to help debugging.
//
if (!p) {
if ( chunk(x,y).takeChange() ) {
// ### should at least make bands
rgn |= TQRegion(x*chunksize-area.x(),y*chunksize-area.y(),
chunksize,chunksize);
allvisible += *chunk(x,y).listPtr();
}
} else {
allvisible += *chunk(x,y).listPtr();
}
}
}
allvisible.sort();
if ( double_buffer ) {
offscr = TQPixmap(area.size().expandedTo(TQSize(1, 1)));
#ifdef Q_WS_X11
if (p)
offscr.x11SetScreen(p->device()->x11Screen());
#endif
}
if ( double_buffer && !offscr.isNull() ) {
TQPainter painter;
painter.begin(&offscr);
painter.translate(-area.x(),-area.y());
painter.setBrushOrigin(-area.x(),-area.y());
if ( p ) {
painter.setClipRect(TQRect(0,0,area.width(),area.height()));
} else {
painter.setClipRegion(rgn);
}
drawBackground(painter,area);
allvisible.drawUnique(painter);
drawForeground(painter,area);
painter.end();
if ( p ) {
p->drawPixmap( area.x(), area.y(), offscr,
0, 0, area.width(), area.height() );
return;
}
} else if ( p ) {
drawBackground(*p,area);
allvisible.drawUnique(*p);
drawForeground(*p,area);
return;
}
TQPoint trtr; // keeps track of total translation of rgn
trtr -= area.topLeft();
for (TQCanvasView* view=d->viewList.first(); view; view=d->viewList.next()) {
#ifndef QT_NO_TRANSFORMATIONS
if ( !view->worldMatrix().isIdentity() )
continue; // Cannot paint those here (see callers).
#endif
TQPainter painter(view->viewport());
TQPoint tr = view->contentsToViewport(area.topLeft());
TQPoint nrtr = view->contentsToViewport(TQPoint(0,0)); // new translation
TQPoint rtr = nrtr - trtr; // extra translation of rgn
trtr += rtr; // add to total
if (double_buffer) {
rgn.translate(rtr.x(),rtr.y());
painter.setClipRegion(rgn);
painter.drawPixmap(tr,offscr, TQRect(TQPoint(0,0),area.size()));
} else {
painter.translate(nrtr.x(),nrtr.y());
rgn.translate(rtr.x(),rtr.y());
painter.setClipRegion(rgn);
drawBackground(painter,area);
allvisible.drawUnique(painter);
drawForeground(painter,area);
painter.translate(-nrtr.x(),-nrtr.y());
}
}
}
/*!
\internal
This method to informs the TQCanvas that a given chunk is
`dirty' and needs to be redrawn in the next Update.
(\a x,\a y) is a chunk location.
The sprite classes call this. Any new derived class of TQCanvasItem
must do so too. SetChangedChunkContaining can be used instead.
*/
void TQCanvas::setChangedChunk(int x, int y)
{
if (validChunk(x,y)) {
TQCanvasChunk& ch=chunk(x,y);
ch.change();
}
}
/*!
\internal
This method to informs the TQCanvas that the chunk containing a given
pixel is `dirty' and needs to be redrawn in the next Update.
(\a x,\a y) is a pixel location.
The item classes call this. Any new derived class of TQCanvasItem must
do so too. SetChangedChunk can be used instead.
*/
void TQCanvas::setChangedChunkContaining(int x, int y)
{
if (x>=0 && x<width() && y>=0 && y<height()) {
TQCanvasChunk& chunk=chunkContaining(x,y);
chunk.change();
}
}
/*!
\internal
This method adds the TQCanvasItem \a g to the list of those which need to be
drawn if the given chunk at location ( \a x, \a y ) is redrawn. Like
SetChangedChunk and SetChangedChunkContaining, this method marks the
chunk as `dirty'.
*/
void TQCanvas::addItemToChunk(TQCanvasItem* g, int x, int y)
{
if (validChunk(x,y)) {
chunk(x,y).add(g);
}
}
/*!
\internal
This method removes the TQCanvasItem \a g from the list of those which need to
be drawn if the given chunk at location ( \a x, \a y ) is redrawn. Like
SetChangedChunk and SetChangedChunkContaining, this method marks the chunk
as `dirty'.
*/
void TQCanvas::removeItemFromChunk(TQCanvasItem* g, int x, int y)
{
if (validChunk(x,y)) {
chunk(x,y).remove(g);
}
}
/*!
\internal
This method adds the TQCanvasItem \a g to the list of those which need to be
drawn if the chunk containing the given pixel ( \a x, \a y ) is redrawn. Like
SetChangedChunk and SetChangedChunkContaining, this method marks the
chunk as `dirty'.
*/
void TQCanvas::addItemToChunkContaining(TQCanvasItem* g, int x, int y)
{
if (x>=0 && x<width() && y>=0 && y<height()) {
chunkContaining(x,y).add(g);
}
}
/*!
\internal
This method removes the TQCanvasItem \a g from the list of those which need to
be drawn if the chunk containing the given pixel ( \a x, \a y ) is redrawn.
Like SetChangedChunk and SetChangedChunkContaining, this method
marks the chunk as `dirty'.
*/
void TQCanvas::removeItemFromChunkContaining(TQCanvasItem* g, int x, int y)
{
if (x>=0 && x<width() && y>=0 && y<height()) {
chunkContaining(x,y).remove(g);
}
}
/*!
Returns the color set by setBackgroundColor(). By default, this is
white.
This function is not a reimplementation of
TQWidget::backgroundColor() (TQCanvas is not a subclass of TQWidget),
but all TQCanvasViews that are viewing the canvas will set their
backgrounds to this color.
\sa setBackgroundColor(), backgroundPixmap()
*/
TQColor TQCanvas::backgroundColor() const
{
return bgcolor;
}
/*!
Sets the solid background to be the color \a c.
\sa backgroundColor(), setBackgroundPixmap(), setTiles()
*/
void TQCanvas::setBackgroundColor( const TQColor& c )
{
if ( bgcolor != c ) {
bgcolor = c;
TQCanvasView* view=d->viewList.first();
while ( view != 0 ) {
/* XXX this doesn't look right. Shouldn't this
be more like setBackgroundPixmap? : Ian */
view->viewport()->setEraseColor( bgcolor );
view=d->viewList.next();
}
setAllChanged();
}
}
/*!
Returns the pixmap set by setBackgroundPixmap(). By default,
this is a null pixmap.
\sa setBackgroundPixmap(), backgroundColor()
*/
TQPixmap TQCanvas::backgroundPixmap() const
{
return pm;
}
/*!
Sets the solid background to be the pixmap \a p repeated as
necessary to cover the entire canvas.
\sa backgroundPixmap(), setBackgroundColor(), setTiles()
*/
void TQCanvas::setBackgroundPixmap( const TQPixmap& p )
{
setTiles(p, 1, 1, p.width(), p.height());
TQCanvasView* view = d->viewList.first();
while ( view != 0 ) {
view->updateContents();
view = d->viewList.next();
}
}
/*!
This virtual function is called for all updates of the canvas. It
renders any background graphics using the painter \a painter, in
the area \a clip. If the canvas has a background pixmap or a tiled
background, that graphic is used, otherwise the canvas is cleared
using the background color.
If the graphics for an area change, you must explicitly call
setChanged(const TQRect&) for the result to be visible when
update() is next called.
\sa setBackgroundColor(), setBackgroundPixmap(), setTiles()
*/
void TQCanvas::drawBackground(TQPainter& painter, const TQRect& clip)
{
if ( pm.isNull() ) {
painter.fillRect(clip,bgcolor);
} else if ( !grid ) {
for (int x=clip.x()/pm.width();
x<(clip.x()+clip.width()+pm.width()-1)/pm.width(); x++)
{
for (int y=clip.y()/pm.height();
y<(clip.y()+clip.height()+pm.height()-1)/pm.height(); y++)
{
painter.drawPixmap(x*pm.width(), y*pm.height(),pm);
}
}
} else {
const int x1 = clip.left()/tilew;
int x2 = clip.right()/tilew;
const int y1 = clip.top()/tileh;
int y2 = clip.bottom()/tileh;
const int roww = pm.width()/tilew;
for (int j=y1; j<=y2; j++) {
int jj = j%tilesVertically();
for (int i=x1; i<=x2; i++) {
int t = tile(i%tilesHorizontally(), jj);
int tx = t % roww;
int ty = t / roww;
painter.drawPixmap( i*tilew, j*tileh, pm,
tx*tilew, ty*tileh, tilew, tileh );
}
}
}
}
/*!
This virtual function is called for all updates of the canvas. It
renders any foreground graphics using the painter \a painter, in
the area \a clip.
If the graphics for an area change, you must explicitly call
setChanged(const TQRect&) for the result to be visible when
update() is next called.
The default is to draw nothing.
*/
void TQCanvas::drawForeground(TQPainter& painter, const TQRect& clip)
{
if ( debug_redraw_areas ) {
painter.setPen(red);
painter.setBrush(NoBrush);
painter.drawRect(clip);
}
}
/*!
If \a y is TRUE (the default) double-buffering is switched on;
otherwise double-buffering is switched off.
Turning off double-buffering causes the redrawn areas to flicker a
little and also gives a (usually small) performance improvement.
*/
void TQCanvas::setDoubleBuffering(bool y)
{
dblbuf = y;
}
/*!
Sets the TQCanvas to be composed of \a h tiles horizontally and \a
v tiles vertically. Each tile will be an image \a tilewidth by \a
tileheight pixels from pixmap \a p.
The pixmap \a p is a list of tiles, arranged left to right, (and
in the case of pixmaps that have multiple rows of tiles, top to
bottom), with tile 0 in the top-left corner, tile 1 next to the
right, and so on, e.g.
\table
\row \i 0 \i 1 \i 2 \i 3
\row \i 4 \i 5 \i 6 \i 7
\endtable
If the canvas is larger than the matrix of tiles, the entire
matrix is repeated as necessary to cover the whole canvas. If it
is smaller, tiles to the right and bottom are not visible.
The width and height of \a p must be a multiple of \a tilewidth
and \a tileheight. If they are not the function will do nothing.
If you want to unset any tiling set, then just pass in a null
pixmap and 0 for \a h, \a v, \a tilewidth, and
\a tileheight.
*/
void TQCanvas::setTiles( TQPixmap p,
int h, int v, int tilewidth, int tileheight )
{
if ( !p.isNull() && (!tilewidth || !tileheight ||
p.width() % tilewidth != 0 || p.height() % tileheight != 0 ) )
return;
htiles = h;
vtiles = v;
delete[] grid;
pm = p;
if ( h && v && !p.isNull() ) {
grid = new ushort[h*v];
memset( grid, 0, h*v*sizeof(ushort) );
tilew = tilewidth;
tileh = tileheight;
} else {
grid = 0;
}
if ( h + v > 10 ) {
int s = scm(tilewidth,tileheight);
retune( s < 128 ? s : TQMAX(tilewidth,tileheight) );
}
setAllChanged();
}
/*!
\fn int TQCanvas::tile( int x, int y ) const
Returns the tile at position (\a x, \a y). Initially, all tiles
are 0.
The parameters must be within range, i.e.
0 \< \a x \< tilesHorizontally() and
0 \< \a y \< tilesVertically().
\sa setTile()
*/
/*!
\fn int TQCanvas::tilesHorizontally() const
Returns the number of tiles horizontally.
*/
/*!
\fn int TQCanvas::tilesVertically() const
Returns the number of tiles vertically.
*/
/*!
\fn int TQCanvas::tileWidth() const
Returns the width of each tile.
*/
/*!
\fn int TQCanvas::tileHeight() const
Returns the height of each tile.
*/
/*!
Sets the tile at (\a x, \a y) to use tile number \a tilenum, which
is an index into the tile pixmaps. The canvas will update
appropriately when update() is next called.
The images are taken from the pixmap set by setTiles() and are
arranged left to right, (and in the case of pixmaps that have
multiple rows of tiles, top to bottom), with tile 0 in the
top-left corner, tile 1 next to the right, and so on, e.g.
\table
\row \i 0 \i 1 \i 2 \i 3
\row \i 4 \i 5 \i 6 \i 7
\endtable
\sa tile() setTiles()
*/
void TQCanvas::setTile( int x, int y, int tilenum )
{
ushort& t = grid[x+y*htiles];
if ( t != tilenum ) {
t = tilenum;
if ( tilew == tileh && tilew == chunksize )
setChangedChunk( x, y ); // common case
else
setChanged( TQRect(x*tilew,y*tileh,tilew,tileh) );
}
}
// lesser-used data in canvas item, plus room for extension.
// Be careful adding to this - check all usages.
class TQCanvasItemExtra {
TQCanvasItemExtra() : vx(0.0), vy(0.0) { }
double vx,vy;
friend class TQCanvasItem;
};
/*!
\class TQCanvasItem ntqcanvas.h
\brief The TQCanvasItem class provides an abstract graphic object on a TQCanvas.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
A variety of TQCanvasItem subclasses provide immediately usable
behaviour. This class is a pure abstract superclass providing the
behaviour that is shared among all the concrete canvas item classes.
TQCanvasItem is not intended for direct subclassing. It is much easier
to subclass one of its subclasses, e.g. TQCanvasPolygonalItem (the
commonest base class), TQCanvasRectangle, TQCanvasSprite, TQCanvasEllipse
or TQCanvasText.
Canvas items are added to a canvas by constructing them and passing the
canvas to the canvas item's constructor. An item can be moved to a
different canvas using setCanvas().
Items appear on the canvas after their \link show() show()\endlink
function has been called (or \link setVisible()
setVisible(TRUE)\endlink), and \e after update() has been called. The
canvas only shows items that are \link setVisible() visible\endlink,
and then only if \l update() is called. If you created the canvas
without passing a width and height to the constructor you'll also need
to call \link TQCanvas::resize() resize()\endlink. Since the canvas
background defaults to white and canvas items default to white,
you may need to change colors to see your items.
A TQCanvasItem object can be moved in the x(), y() and z() dimensions
using functions such as move(), moveBy(), setX(), setY() and setZ(). A
canvas item can be set in motion, `animated', using setAnimated() and
given a velocity in the x and y directions with setXVelocity() and
setYVelocity() -- the same effect can be achieved by calling
setVelocity(). Use the collidesWith() function to see if the canvas item
will collide on the \e next advance(1) and use collisions() to see what
collisions have occurred.
Use TQCanvasSprite or your own subclass of TQCanvasSprite to create canvas
items which are animated, i.e. which change over time.
The size of a canvas item is given by boundingRect(). Use
boundingRectAdvanced() to see what the size of the canvas item will be
\e after the next advance(1) call.
The rtti() function is used for identifying subclasses of TQCanvasItem.
The canvas() function returns a pointer to the canvas which contains the
canvas item.
TQCanvasItem provides the show() and isVisible() functions like those in
TQWidget.
TQCanvasItem also provides the setEnabled(), setActive() and
setSelected() functions; these functions set the relevant boolean and
cause a repaint but the boolean values they set are not used in
TQCanvasItem itself. You can make use of these booleans in your subclasses.
By default, canvas items have no velocity, no size, and are not in
motion. The subclasses provided in TQt do not change these defaults
except where noted.
*/
/*!
\enum TQCanvasItem::RttiValues
This enum is used to name the different types of canvas item.
\value Rtti_Item Canvas item abstract base class
\value Rtti_Ellipse
\value Rtti_Line
\value Rtti_Polygon
\value Rtti_PolygonalItem
\value Rtti_Rectangle
\value Rtti_Spline
\value Rtti_Sprite
\value Rtti_Text
*/
/*!
\fn void TQCanvasItem::update()
Call this function to repaint the canvas's changed chunks.
*/
/*!
Constructs a TQCanvasItem on canvas \a canvas.
\sa setCanvas()
*/
TQCanvasItem::TQCanvasItem(TQCanvas* canvas) :
cnv(canvas),
myx(0),myy(0),myz(0)
{
ani=0;
vis=0;
val=0;
sel=0;
ena=0;
act=0;
ext = 0;
if (cnv) cnv->addItem(this);
}
/*!
Destroys the TQCanvasItem and removes it from its canvas.
*/
TQCanvasItem::~TQCanvasItem()
{
if (cnv) {
cnv->removeItem(this);
cnv->removeAnimation(this);
}
delete ext;
}
TQCanvasItemExtra& TQCanvasItem::extra()
{
if ( !ext )
ext = new TQCanvasItemExtra;
return *ext;
}
/*!
\fn double TQCanvasItem::x() const
Returns the horizontal position of the canvas item. Note that
subclasses often have an origin other than the top-left corner.
*/
/*!
\fn double TQCanvasItem::y() const
Returns the vertical position of the canvas item. Note that
subclasses often have an origin other than the top-left corner.
*/
/*!
\fn double TQCanvasItem::z() const
Returns the z index of the canvas item, which is used for visual
order: higher-z items obscure (are in front of) lower-z items.
*/
/*!
\fn void TQCanvasItem::setX(double x)
Moves the canvas item so that its x-position is \a x.
\sa x(), move()
*/
/*!
\fn void TQCanvasItem::setY(double y)
Moves the canvas item so that its y-position is \a y.
\sa y(), move()
*/
/*!
\fn void TQCanvasItem::setZ(double z)
Sets the z index of the canvas item to \a z. Higher-z items
obscure (are in front of) lower-z items.
\sa z(), move()
*/
/*!
Moves the canvas item relative to its current position by (\a dx,
\a dy).
*/
void TQCanvasItem::moveBy( double dx, double dy )
{
if ( dx || dy ) {
removeFromChunks();
myx += dx;
myy += dy;
addToChunks();
}
}
/*!
Moves the canvas item to the absolute position (\a x, \a y).
*/
void TQCanvasItem::move( double x, double y )
{
moveBy( x-myx, y-myy );
}
/*!
Returns TRUE if the canvas item is in motion; otherwise returns
FALSE.
\sa setVelocity(), setAnimated()
*/
bool TQCanvasItem::animated() const
{
return (bool)ani;
}
/*!
Sets the canvas item to be in motion if \a y is TRUE, or not if \a
y is FALSE. The speed and direction of the motion is set with
setVelocity(), or with setXVelocity() and setYVelocity().
\sa advance(), TQCanvas::advance()
*/
void TQCanvasItem::setAnimated(bool y)
{
if ( y != (bool)ani ) {
ani = (uint)y;
if ( y ) {
cnv->addAnimation(this);
} else {
cnv->removeAnimation(this);
}
}
}
/*!
\fn void TQCanvasItem::setXVelocity( double vx )
Sets the horizontal component of the canvas item's velocity to \a vx.
\sa setYVelocity() setVelocity()
*/
/*!
\fn void TQCanvasItem::setYVelocity( double vy )
Sets the vertical component of the canvas item's velocity to \a vy.
\sa setXVelocity() setVelocity()
*/
/*!
Sets the canvas item to be in motion, moving by \a vx and \a vy
pixels in the horizontal and vertical directions respectively.
\sa advance() setXVelocity() setYVelocity()
*/
void TQCanvasItem::setVelocity( double vx, double vy)
{
if ( ext || vx!=0.0 || vy!=0.0 ) {
if ( !ani )
setAnimated(TRUE);
extra().vx = vx;
extra().vy = vy;
}
}
/*!
Returns the horizontal velocity component of the canvas item.
*/
double TQCanvasItem::xVelocity() const
{
return ext ? ext->vx : 0;
}
/*!
Returns the vertical velocity component of the canvas item.
*/
double TQCanvasItem::yVelocity() const
{
return ext ? ext->vy : 0;
}
/*!
The default implementation moves the canvas item, if it is
animated(), by the preset velocity if \a phase is 1, and does
nothing if \a phase is 0.
Note that if you reimplement this function, the reimplementation
must not change the canvas in any way, for example it must not add
or remove items.
\sa TQCanvas::advance() setVelocity()
*/
void TQCanvasItem::advance(int phase)
{
if ( ext && phase==1 )
moveBy(ext->vx,ext->vy);
}
/*!
\fn void TQCanvasItem::draw(TQPainter& painter)
This abstract virtual function draws the canvas item using \a painter.
\warning When you reimplement this function, make sure that you
leave the painter in the same state as you found it. For example,
if you start by calling TQPainter::translate(50, 50), end your
code by calling TQPainter::translate(-50, -50). Be also aware that
the painter might already have some transformations set (i.e.,
don't call TQPainter::resetXForm() when you're done).
*/
/*!
Sets the TQCanvas upon which the canvas item is to be drawn to \a c.
\sa canvas()
*/
void TQCanvasItem::setCanvas(TQCanvas* c)
{
bool v=isVisible();
setVisible(FALSE);
if (cnv) {
if (ext)
cnv->removeAnimation(this);
cnv->removeItem(this);
}
cnv=c;
if (cnv) {
cnv->addItem(this);
if ( ext )
cnv->addAnimation(this);
}
setVisible(v);
}
/*!
\fn TQCanvas* TQCanvasItem::canvas() const
Returns the canvas containing the canvas item.
*/
/*! Shorthand for setVisible(TRUE). */
void TQCanvasItem::show()
{
setVisible(TRUE);
}
/*! Shorthand for setVisible(FALSE). */
void TQCanvasItem::hide()
{
setVisible(FALSE);
}
/*!
Makes the canvas item visible if \a yes is TRUE, or invisible if
\a yes is FALSE. The change takes effect when TQCanvas::update() is
next called.
*/
void TQCanvasItem::setVisible(bool yes)
{
if ((bool)vis!=yes) {
if (yes) {
vis=(uint)yes;
addToChunks();
} else {
removeFromChunks();
vis=(uint)yes;
}
}
}
/*!
\obsolete
\fn bool TQCanvasItem::visible() const
Use isVisible() instead.
*/
/*!
\fn bool TQCanvasItem::isVisible() const
Returns TRUE if the canvas item is visible; otherwise returns
FALSE.
Note that in this context TRUE does \e not mean that the canvas
item is currently in a view, merely that if a view is showing the
area where the canvas item is positioned, and the item is not
obscured by items with higher z values, and the view is not
obscured by overlaying windows, it would be visible.
\sa setVisible(), z()
*/
/*!
\obsolete
\fn bool TQCanvasItem::selected() const
Use isSelected() instead.
*/
/*!
\fn bool TQCanvasItem::isSelected() const
Returns TRUE if the canvas item is selected; otherwise returns FALSE.
*/
/*!
Sets the selected flag of the item to \a yes. If this changes the
item's selected state the item will be redrawn when
TQCanvas::update() is next called.
The TQCanvas, TQCanvasItem and the TQt-supplied TQCanvasItem
subclasses do not make use of this value. The setSelected()
function is supplied because many applications need it, but it is
up to you how you use the isSelected() value.
*/
void TQCanvasItem::setSelected(bool yes)
{
if ((bool)sel!=yes) {
sel=(uint)yes;
changeChunks();
}
}
/*!
\obsolete
\fn bool TQCanvasItem::enabled() const
Use isEnabled() instead.
*/
/*!
\fn bool TQCanvasItem::isEnabled() const
Returns TRUE if the TQCanvasItem is enabled; otherwise returns FALSE.
*/
/*!
Sets the enabled flag of the item to \a yes. If this changes the
item's enabled state the item will be redrawn when
TQCanvas::update() is next called.
The TQCanvas, TQCanvasItem and the TQt-supplied TQCanvasItem
subclasses do not make use of this value. The setEnabled()
function is supplied because many applications need it, but it is
up to you how you use the isEnabled() value.
*/
void TQCanvasItem::setEnabled(bool yes)
{
if (ena!=(uint)yes) {
ena=(uint)yes;
changeChunks();
}
}
/*!
\obsolete
\fn bool TQCanvasItem::active() const
Use isActive() instead.
*/
/*!
\fn bool TQCanvasItem::isActive() const
Returns TRUE if the TQCanvasItem is active; otherwise returns FALSE.
*/
/*!
Sets the active flag of the item to \a yes. If this changes the
item's active state the item will be redrawn when
TQCanvas::update() is next called.
The TQCanvas, TQCanvasItem and the TQt-supplied TQCanvasItem
subclasses do not make use of this value. The setActive() function
is supplied because many applications need it, but it is up to you
how you use the isActive() value.
*/
void TQCanvasItem::setActive(bool yes)
{
if (act!=(uint)yes) {
act=(uint)yes;
changeChunks();
}
}
bool qt_testCollision(const TQCanvasSprite* s1, const TQCanvasSprite* s2)
{
const TQImage* s2image = s2->imageAdvanced()->collision_mask;
TQRect s2area = s2->boundingRectAdvanced();
TQRect cyourarea(s2area.x(),s2area.y(),
s2area.width(),s2area.height());
TQImage* s1image=s1->imageAdvanced()->collision_mask;
TQRect s1area = s1->boundingRectAdvanced();
TQRect ourarea = s1area.intersect(cyourarea);
if ( ourarea.isEmpty() )
return FALSE;
int x2=ourarea.x()-cyourarea.x();
int y2=ourarea.y()-cyourarea.y();
int x1=ourarea.x()-s1area.x();
int y1=ourarea.y()-s1area.y();
int w=ourarea.width();
int h=ourarea.height();
if ( !s2image ) {
if ( !s1image )
return w>0 && h>0;
// swap everything around
int t;
t=x1; x1=x2; x2=t;
t=y1; x1=y2; y2=t;
s2image = s1image;
s1image = 0;
}
// s2image != 0
// A non-linear search may be more efficient.
// Perhaps spiralling out from the center, or a simpler
// vertical expansion from the centreline.
// We assume that sprite masks don't have
// different bit orders.
//
// Q_ASSERT(s1image->bitOrder()==s2image->bitOrder());
if (s1image) {
if (s1image->bitOrder() == TQImage::LittleEndian) {
for (int j=0; j<h; j++) {
uchar* ml = s1image->scanLine(y1+j);
uchar* yl = s2image->scanLine(y2+j);
for (int i=0; i<w; i++) {
if (*(yl + ((x2+i) >> 3)) & (1 << ((x2+i) & 7))
&& *(ml + ((x1+i) >> 3)) & (1 << ((x1+i) & 7)))
{
return TRUE;
}
}
}
} else {
for (int j=0; j<h; j++) {
uchar* ml = s1image->scanLine(y1+j);
uchar* yl = s2image->scanLine(y2+j);
for (int i=0; i<w; i++) {
if (*(yl + ((x2+i) >> 3)) & (1 << (7-((x2+i) & 7)))
&& *(ml + ((x1+i) >> 3)) & (1 << (7-((x1+i) & 7))))
{
return TRUE;
}
}
}
}
} else {
if (s2image->bitOrder() == TQImage::LittleEndian) {
for (int j=0; j<h; j++) {
uchar* yl = s2image->scanLine(y2+j);
for (int i=0; i<w; i++) {
if (*(yl + ((x2+i) >> 3)) & (1 << ((x2+i) & 7)))
{
return TRUE;
}
}
}
} else {
for (int j=0; j<h; j++) {
uchar* yl = s2image->scanLine(y2+j);
for (int i=0; i<w; i++) {
if (*(yl + ((x2+i) >> 3)) & (1 << (7-((x2+i) & 7))))
{
return TRUE;
}
}
}
}
}
return FALSE;
}
static bool collision_double_dispatch( const TQCanvasSprite* s1,
const TQCanvasPolygonalItem* p1,
const TQCanvasRectangle* r1,
const TQCanvasEllipse* e1,
const TQCanvasText* t1,
const TQCanvasSprite* s2,
const TQCanvasPolygonalItem* p2,
const TQCanvasRectangle* r2,
const TQCanvasEllipse* e2,
const TQCanvasText* t2 )
{
const TQCanvasItem* i1 = s1 ?
(const TQCanvasItem*)s1 : p1 ?
(const TQCanvasItem*)p1 : r1 ?
(const TQCanvasItem*)r1 : e1 ?
(const TQCanvasItem*)e1 : (const TQCanvasItem*)t1;
const TQCanvasItem* i2 = s2 ?
(const TQCanvasItem*)s2 : p2 ?
(const TQCanvasItem*)p2 : r2 ?
(const TQCanvasItem*)r2 : e2 ?
(const TQCanvasItem*)e2 : (const TQCanvasItem*)t2;
if ( s1 && s2 ) {
// a
return qt_testCollision(s1,s2);
} else if ( (r1 || t1 || s1) && (r2 || t2 || s2) ) {
// b
TQRect rc1 = i1->boundingRectAdvanced();
TQRect rc2 = i2->boundingRectAdvanced();
return rc1.intersects(rc2);
} else if ( e1 && e2
&& e1->angleLength()>=360*16 && e2->angleLength()>=360*16
&& e1->width()==e1->height()
&& e2->width()==e2->height() ) {
// c
double xd = (e1->x()+e1->xVelocity())-(e2->x()+e1->xVelocity());
double yd = (e1->y()+e1->yVelocity())-(e2->y()+e1->yVelocity());
double rd = (e1->width()+e2->width())/2;
return xd*xd+yd*yd <= rd*rd;
} else if ( p1 && (p2 || s2 || t2) ) {
// d
TQPointArray pa1 = p1->areaPointsAdvanced();
TQPointArray pa2 = p2 ? p2->areaPointsAdvanced()
: TQPointArray(i2->boundingRectAdvanced());
bool col= !(TQRegion(pa1) & TQRegion(pa2,TRUE)).isEmpty();
return col;
} else {
return collision_double_dispatch(s2,p2,r2,e2,t2,
s1,p1,r1,e1,t1);
}
}
/*!
\fn bool TQCanvasItem::collidesWith( const TQCanvasItem* other ) const
Returns TRUE if the canvas item will collide with the \a other
item \e after they have moved by their current velocities;
otherwise returns FALSE.
\sa collisions()
*/
/*!
\class TQCanvasSprite ntqcanvas.h
\brief The TQCanvasSprite class provides an animated canvas item on a TQCanvas.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
A canvas sprite is an object which can contain any number of images
(referred to as frames), only one of which is current, i.e.
displayed, at any one time. The images can be passed in the
constructor or set or changed later with setSequence(). If you
subclass TQCanvasSprite you can change the frame that is displayed
periodically, e.g. whenever TQCanvasItem::advance(1) is called to
create the effect of animation.
The current frame can be set with setFrame() or with move(). The
number of frames available is given by frameCount(). The bounding
rectangle of the current frame is returned by boundingRect().
The current frame's image can be retrieved with image(); use
imageAdvanced() to retrieve the image for the frame that will be
shown after advance(1) is called. Use the image() overload passing
it an integer index to retrieve a particular image from the list of
frames.
Use width() and height() to retrieve the dimensions of the current
frame.
Use leftEdge() and rightEdge() to retrieve the current frame's
left-hand and right-hand x-coordinates respectively. Use
bottomEdge() and topEdge() to retrieve the current frame's bottom
and top y-coordinates respectively. These functions have an overload
which will accept an integer frame number to retrieve the
coordinates of a particular frame.
TQCanvasSprite draws very quickly, at the expense of memory.
The current frame's image can be drawn on a painter with draw().
Like any other canvas item, canvas sprites can be moved with
move() which sets the x and y coordinates and the frame number, as
well as with TQCanvasItem::move() and TQCanvasItem::moveBy(), or by
setting coordinates with TQCanvasItem::setX(), TQCanvasItem::setY()
and TQCanvasItem::setZ().
*/
/*!
\reimp
*/
bool TQCanvasSprite::collidesWith( const TQCanvasItem* i ) const
{
return i->collidesWith(this,0,0,0,0);
}
/*!
Returns TRUE if the canvas item collides with any of the given
items; otherwise returns FALSE. The parameters, \a s, \a p, \a r,
\a e and \a t, are all the same object, this is just a type
resolution trick.
*/
bool TQCanvasSprite::collidesWith( const TQCanvasSprite* s,
const TQCanvasPolygonalItem* p,
const TQCanvasRectangle* r,
const TQCanvasEllipse* e,
const TQCanvasText* t ) const
{
return collision_double_dispatch(s,p,r,e,t,this,0,0,0,0);
}
/*!
\reimp
*/
bool TQCanvasPolygonalItem::collidesWith( const TQCanvasItem* i ) const
{
return i->collidesWith(0,this,0,0,0);
}
bool TQCanvasPolygonalItem::collidesWith( const TQCanvasSprite* s,
const TQCanvasPolygonalItem* p,
const TQCanvasRectangle* r,
const TQCanvasEllipse* e,
const TQCanvasText* t ) const
{
return collision_double_dispatch(s,p,r,e,t,0,this,0,0,0);
}
/*!
\reimp
*/
bool TQCanvasRectangle::collidesWith( const TQCanvasItem* i ) const
{
return i->collidesWith(0,this,this,0,0);
}
bool TQCanvasRectangle::collidesWith( const TQCanvasSprite* s,
const TQCanvasPolygonalItem* p,
const TQCanvasRectangle* r,
const TQCanvasEllipse* e,
const TQCanvasText* t ) const
{
return collision_double_dispatch(s,p,r,e,t,0,this,this,0,0);
}
/*!
\reimp
*/
bool TQCanvasEllipse::collidesWith( const TQCanvasItem* i ) const
{
return i->collidesWith(0,this,0,this,0);
}
bool TQCanvasEllipse::collidesWith( const TQCanvasSprite* s,
const TQCanvasPolygonalItem* p,
const TQCanvasRectangle* r,
const TQCanvasEllipse* e,
const TQCanvasText* t ) const
{
return collision_double_dispatch(s,p,r,e,t,0,this,0,this,0);
}
/*!
\reimp
*/
bool TQCanvasText::collidesWith( const TQCanvasItem* i ) const
{
return i->collidesWith(0,0,0,0,this);
}
bool TQCanvasText::collidesWith( const TQCanvasSprite* s,
const TQCanvasPolygonalItem* p,
const TQCanvasRectangle* r,
const TQCanvasEllipse* e,
const TQCanvasText* t ) const
{
return collision_double_dispatch(s,p,r,e,t,0,0,0,0,this);
}
/*!
Returns the list of canvas items that this canvas item has
collided with.
A collision is generally defined as occurring when the pixels of
one item draw on the pixels of another item, but not all
subclasses are so precise. Also, since pixel-wise collision
detection can be slow, this function works in either exact or
inexact mode, according to the \a exact parameter.
If \a exact is TRUE, the canvas items returned have been
accurately tested for collision with the canvas item.
If \a exact is FALSE, the canvas items returned are \e near the
canvas item. You can test the canvas items returned using
collidesWith() if any are interesting collision candidates. By
using this approach, you can ignore some canvas items for which
collisions are not relevant.
The returned list is a list of TQCanvasItems, but often you will
need to cast the items to their subclass types. The safe way to do
this is to use rtti() before casting. This provides some of the
functionality of the standard C++ dynamic cast operation even on
compilers where dynamic casts are not available.
Note that a canvas item may be `on' a canvas, e.g. it was created
with the canvas as parameter, even though its coordinates place it
beyond the edge of the canvas's area. Collision detection only
works for canvas items which are wholly or partly within the
canvas's area.
Note that if items have a velocity (see \l setVelocity()), then
collision testing is done based on where the item \e will be when
it moves, not its current location. For example, a "ball" item
doesn't need to actually embed into a "wall" item before a
collision is detected. For items without velocity, plain
intersection is used.
*/
TQCanvasItemList TQCanvasItem::collisions(bool exact) const
{
return canvas()->collisions(chunks(),this,exact);
}
/*!
Returns a list of canvas items that collide with the point \a p.
The list is ordered by z coordinates, from highest z coordinate
(front-most item) to lowest z coordinate (rear-most item).
*/
TQCanvasItemList TQCanvas::collisions(const TQPoint& p) const
{
return collisions(TQRect(p,TQSize(1,1)));
}
/*!
\overload
Returns a list of items which collide with the rectangle \a r. The
list is ordered by z coordinates, from highest z coordinate
(front-most item) to lowest z coordinate (rear-most item).
*/
TQCanvasItemList TQCanvas::collisions(const TQRect& r) const
{
TQCanvasRectangle i(r,(TQCanvas*)this);
i.setPen(NoPen);
i.show(); // doesn't actually show, since we destroy it
TQCanvasItemList l = i.collisions(TRUE);
l.sort();
return l;
}
/*!
\overload
Returns a list of canvas items which intersect with the chunks
listed in \a chunklist, excluding \a item. If \a exact is TRUE,
only those which actually \link TQCanvasItem::collidesWith()
collide with\endlink \a item are returned; otherwise canvas items
are included just for being in the chunks.
This is a utility function mainly used to implement the simpler
TQCanvasItem::collisions() function.
*/
TQCanvasItemList TQCanvas::collisions(const TQPointArray& chunklist,
const TQCanvasItem* item, bool exact) const
{
TQPtrDict<void> seen;
TQCanvasItemList result;
for (int i=0; i<(int)chunklist.count(); i++) {
int x = chunklist[i].x();
int y = chunklist[i].y();
if ( validChunk(x,y) ) {
const TQCanvasItemList* l = chunk(x,y).listPtr();
for (TQCanvasItemList::ConstIterator it=l->begin(); it!=l->end(); ++it) {
TQCanvasItem *g=*it;
if ( g != item ) {
if ( !seen.find(g) ) {
seen.replace(g,(void*)1);
if ( !exact || item->collidesWith(g) )
result.append(g);
}
}
}
}
}
return result;
}
/*!
\internal
Adds the item to all the chunks it covers.
*/
void TQCanvasItem::addToChunks()
{
if (isVisible() && canvas()) {
TQPointArray pa = chunks();
for (int i=0; i<(int)pa.count(); i++)
canvas()->addItemToChunk(this,pa[i].x(),pa[i].y());
val=(uint)TRUE;
}
}
/*!
\internal
Removes the item from all the chunks it covers.
*/
void TQCanvasItem::removeFromChunks()
{
if (isVisible() && canvas()) {
TQPointArray pa = chunks();
for (int i=0; i<(int)pa.count(); i++)
canvas()->removeItemFromChunk(this,pa[i].x(),pa[i].y());
}
}
/*!
\internal
Sets all the chunks covered by the item to be refreshed with TQCanvas::update()
is next called.
*/
void TQCanvasItem::changeChunks()
{
if (isVisible() && canvas()) {
if (!val)
addToChunks();
TQPointArray pa = chunks();
for (int i=0; i<(int)pa.count(); i++)
canvas()->setChangedChunk(pa[i].x(),pa[i].y());
}
}
/*!
\fn TQRect TQCanvasItem::boundingRect() const
Returns the bounding rectangle in pixels that the canvas item covers.
\sa boundingRectAdvanced()
*/
/*!
Returns the bounding rectangle of pixels that the canvas item \e
will cover after advance(1) is called.
\sa boundingRect()
*/
TQRect TQCanvasItem::boundingRectAdvanced() const
{
int dx = int(x()+xVelocity())-int(x());
int dy = int(y()+yVelocity())-int(y());
TQRect r = boundingRect();
r.moveBy(dx,dy);
return r;
}
/*!
\class TQCanvasPixmap ntqcanvas.h
\brief The TQCanvasPixmap class provides pixmaps for TQCanvasSprites.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
If you want to show a single pixmap on a TQCanvas use a
TQCanvasSprite with just one pixmap.
When pixmaps are inserted into a TQCanvasPixmapArray they are held
as TQCanvasPixmaps. \l{TQCanvasSprite}s are used to show pixmaps on
\l{TQCanvas}es and hold their pixmaps in a TQCanvasPixmapArray. If
you retrieve a frame (pixmap) from a TQCanvasSprite it will be
returned as a TQCanvasPixmap.
The pixmap is a TQPixmap and can only be set in the constructor.
There are three different constructors, one taking a TQPixmap, one
a TQImage and one a file name that refers to a file in any
supported file format (see TQImageIO).
TQCanvasPixmap can have a hotspot which is defined in terms of an (x,
y) offset. When you create a TQCanvasPixmap from a PNG file or from
a TQImage that has a TQImage::offset(), the offset() is initialized
appropriately, otherwise the constructor leaves it at (0, 0). You
can set it later using setOffset(). When the TQCanvasPixmap is used
in a TQCanvasSprite, the offset position is the point at
TQCanvasItem::x() and TQCanvasItem::y(), not the top-left corner of
the pixmap.
Note that for TQCanvasPixmap objects created by a TQCanvasSprite, the
position of each TQCanvasPixmap object is set so that the hotspot
stays in the same position.
\sa TQCanvasPixmapArray TQCanvasItem TQCanvasSprite
*/
#ifndef QT_NO_IMAGEIO
/*!
Constructs a TQCanvasPixmap that uses the image stored in \a
datafilename.
*/
TQCanvasPixmap::TQCanvasPixmap(const TQString& datafilename)
{
TQImage image(datafilename);
init(image);
}
#endif
/*!
Constructs a TQCanvasPixmap from the image \a image.
*/
TQCanvasPixmap::TQCanvasPixmap(const TQImage& image)
{
init(image);
}
/*!
Constructs a TQCanvasPixmap from the pixmap \a pm using the offset
\a offset.
*/
TQCanvasPixmap::TQCanvasPixmap(const TQPixmap& pm, const TQPoint& offset)
{
init(pm,offset.x(),offset.y());
}
void TQCanvasPixmap::init(const TQImage& image)
{
convertFromImage(image);
hotx = image.offset().x();
hoty = image.offset().y();
#ifndef QT_NO_IMAGE_DITHER_TO_1
if( image.hasAlphaBuffer() ) {
TQImage i = image.createAlphaMask();
collision_mask = new TQImage(i);
} else
#endif
collision_mask = 0;
}
void TQCanvasPixmap::init(const TQPixmap& pixmap, int hx, int hy)
{
(TQPixmap&)*this = pixmap;
hotx = hx;
hoty = hy;
if( pixmap.mask() ) {
TQImage i = mask()->convertToImage();
collision_mask = new TQImage(i);
} else
collision_mask = 0;
}
/*!
Destroys the pixmap.
*/
TQCanvasPixmap::~TQCanvasPixmap()
{
delete collision_mask;
}
/*!
\fn int TQCanvasPixmap::offsetX() const
Returns the x-offset of the pixmap's hotspot.
\sa setOffset()
*/
/*!
\fn int TQCanvasPixmap::offsetY() const
Returns the y-offset of the pixmap's hotspot.
\sa setOffset()
*/
/*!
\fn void TQCanvasPixmap::setOffset(int x, int y)
Sets the offset of the pixmap's hotspot to (\a x, \a y).
\warning Do not call this function if any TQCanvasSprites are
currently showing this pixmap.
*/
/*!
\class TQCanvasPixmapArray ntqcanvas.h
\brief The TQCanvasPixmapArray class provides an array of TQCanvasPixmaps.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
This class is used by TQCanvasSprite to hold an array of pixmaps.
It is used to implement animated sprites, i.e. images that change
over time, with each pixmap in the array holding one frame.
Depending on the constructor you use you can load multiple pixmaps
into the array either from a directory (specifying a wildcard
pattern for the files), or from a list of TQPixmaps. You can also
read in a set of pixmaps after construction using readPixmaps().
Individual pixmaps can be set with setImage() and retrieved with
image(). The number of pixmaps in the array is returned by
count().
TQCanvasSprite uses an image's mask for collision detection. You
can change this by reading in a separate set of image masks using
readCollisionMasks().
*/
/*!
Constructs an invalid array (i.e. isValid() will return FALSE).
You must call readPixmaps() before being able to use this
TQCanvasPixmapArray.
*/
TQCanvasPixmapArray::TQCanvasPixmapArray()
: framecount( 0 ), img( 0 )
{
}
#ifndef QT_NO_IMAGEIO
/*!
Constructs a TQCanvasPixmapArray from files.
The \a fc parameter sets the number of frames to be loaded for
this image.
If \a fc is not 0, \a datafilenamepattern should contain "%1",
e.g. "foo%1.png". The actual filenames are formed by replacing the
%1 with four-digit integers from 0 to (fc - 1), e.g. foo0000.png,
foo0001.png, foo0002.png, etc.
If \a fc is 0, \a datafilenamepattern is asssumed to be a
filename, and the image contained in this file will be loaded as
the first (and only) frame.
If \a datafilenamepattern does not exist, is not readable, isn't
an image, or some other error occurs, the array ends up empty and
isValid() returns FALSE.
*/
TQCanvasPixmapArray::TQCanvasPixmapArray( const TQString& datafilenamepattern,
int fc )
: framecount( 0 ), img( 0 )
{
readPixmaps(datafilenamepattern,fc);
}
#endif
/*!
\obsolete
Use TQCanvasPixmapArray::TQCanvasPixmapArray( TQValueList<TQPixmap>, TQPointArray )
instead.
Constructs a TQCanvasPixmapArray from the list of TQPixmaps \a
list. The \a hotspots list has to be of the same size as \a list.
*/
TQCanvasPixmapArray::TQCanvasPixmapArray(TQPtrList<TQPixmap> list, TQPtrList<TQPoint> hotspots) :
framecount(list.count()),
img(new TQCanvasPixmap*[list.count()])
{
if (list.count() != hotspots.count()) {
tqWarning("TQCanvasPixmapArray: lists have different lengths");
reset();
img = 0;
} else {
list.first();
hotspots.first();
for (int i=0; i<framecount; i++) {
img[i]=new TQCanvasPixmap(*list.current(), *hotspots.current());
list.next();
hotspots.next();
}
}
}
/*!
Constructs a TQCanvasPixmapArray from the list of TQPixmaps in the
\a list. Each pixmap will get a hotspot according to the \a
hotspots array. If no hotspots are specified, each one is set to
be at position (0, 0).
If an error occurs, isValid() will return FALSE.
*/
TQCanvasPixmapArray::TQCanvasPixmapArray(TQValueList<TQPixmap> list, TQPointArray hotspots) :
framecount((int)list.size()),
img(new TQCanvasPixmap*[list.size()])
{
bool have_hotspots = ( hotspots.size() != 0 );
if (have_hotspots && list.count() != hotspots.count()) {
tqWarning("TQCanvasPixmapArray: lists have different lengths");
reset();
img = 0;
} else {
TQValueList<TQPixmap>::iterator it;
it = list.begin();
for (int i=0; i<framecount; i++) {
TQPoint hs = have_hotspots ? hotspots[i] : TQPoint( 0, 0 );
img[i]=new TQCanvasPixmap( *it, hs );
++it;
}
}
}
/*!
Destroys the pixmap array and all the pixmaps it contains.
*/
TQCanvasPixmapArray::~TQCanvasPixmapArray()
{
reset();
}
void TQCanvasPixmapArray::reset()
{
for (int i=0; i<framecount; i++)
delete img[i];
delete [] img;
img = 0;
framecount = 0;
}
#ifndef QT_NO_IMAGEIO
/*!
Reads one or more pixmaps into the pixmap array.
If \a fc is not 0, \a filenamepattern should contain "%1", e.g.
"foo%1.png". The actual filenames are formed by replacing the %1
with four-digit integers from 0 to (fc - 1), e.g. foo0000.png,
foo0001.png, foo0002.png, etc.
If \a fc is 0, \a filenamepattern is asssumed to be a filename,
and the image contained in this file will be loaded as the first
(and only) frame.
If \a filenamepattern does not exist, is not readable, isn't an
image, or some other error occurs, this function will return
FALSE, and isValid() will return FALSE; otherwise this function
will return TRUE.
\sa isValid()
*/
bool TQCanvasPixmapArray::readPixmaps( const TQString& filenamepattern,
int fc)
{
return readPixmaps(filenamepattern,fc,FALSE);
}
/*!
Reads new collision masks for the array.
By default, TQCanvasSprite uses the image mask of a sprite to
detect collisions. Use this function to set your own collision
image masks.
If count() is 1 \a filename must specify a real filename to read
the mask from. If count() is greater than 1, the \a filename must
contain a "%1" that will get replaced by the number of the mask to
be loaded, just like TQCanvasPixmapArray::readPixmaps().
All collision masks must be 1-bit images or this function call
will fail.
If the file isn't readable, contains the wrong number of images,
or there is some other error, this function will return FALSE, and
the array will be flagged as invalid; otherwise this function
returns TRUE.
\sa isValid()
*/
bool TQCanvasPixmapArray::readCollisionMasks(const TQString& filename)
{
return readPixmaps(filename,framecount,TRUE);
}
bool TQCanvasPixmapArray::readPixmaps( const TQString& datafilenamepattern,
int fc, bool maskonly)
{
if ( !maskonly ) {
reset();
framecount = fc;
if ( !framecount )
framecount=1;
img = new TQCanvasPixmap*[framecount];
}
if (!img)
return FALSE;
bool ok = TRUE;
bool arg = fc > 1;
if ( !arg )
framecount=1;
for (int i=0; i<framecount; i++) {
TQString r;
r.sprintf("%04d",i);
if ( maskonly ) {
if (!img[i]->collision_mask)
img[i]->collision_mask = new TQImage();
img[i]->collision_mask->load(
arg ? datafilenamepattern.arg(r) : datafilenamepattern);
ok = ok
&& !img[i]->collision_mask->isNull()
&& img[i]->collision_mask->depth()==1;
} else {
img[i]=new TQCanvasPixmap(
arg ? datafilenamepattern.arg(r) : datafilenamepattern);
ok = ok && !img[i]->isNull();
}
}
if ( !ok ) {
reset();
}
return ok;
}
#endif
/*!
\obsolete
Use isValid() instead.
This returns FALSE if the array is valid, and TRUE if it is not.
*/
bool TQCanvasPixmapArray::operator!()
{
return img==0;
}
/*!
Returns TRUE if the pixmap array is valid; otherwise returns
FALSE.
*/
bool TQCanvasPixmapArray::isValid() const
{
return (img != 0);
}
/*!
\fn TQCanvasPixmap* TQCanvasPixmapArray::image(int i) const
Returns pixmap \a i in the array, if \a i is non-negative and less
than than count(), and returns an unspecified value otherwise.
*/
// ### wouldn't it be better to put empty TQCanvasPixmaps in there instead of
// initializing the additional elements in the array to 0? Lars
/*!
Replaces the pixmap at index \a i with pixmap \a p.
The array takes ownership of \a p and will delete \a p when the
array itself is deleted.
If \a i is beyond the end of the array the array is extended to at
least i+1 elements, with elements count() to i-1 being initialized
to 0.
*/
void TQCanvasPixmapArray::setImage(int i, TQCanvasPixmap* p)
{
if ( i >= framecount ) {
TQCanvasPixmap** newimg = new TQCanvasPixmap*[i+1];
memcpy(newimg, img, sizeof( TQCanvasPixmap * )*framecount);
memset(newimg + framecount, 0, sizeof( TQCanvasPixmap * )*( i+1 - framecount ) );
framecount = i+1;
delete [] img;
img = newimg;
}
delete img[i]; img[i]=p;
}
/*!
\fn uint TQCanvasPixmapArray::count() const
Returns the number of pixmaps in the array.
*/
/*!
Returns the x-coordinate of the current left edge of the sprite.
(This may change as the sprite animates since different frames may
have different left edges.)
\sa rightEdge() bottomEdge() topEdge()
*/
int TQCanvasSprite::leftEdge() const
{
return int(x()) - image()->hotx;
}
/*!
\overload
Returns what the x-coordinate of the left edge of the sprite would
be if the sprite (actually its hotspot) were moved to x-position
\a nx.
\sa rightEdge() bottomEdge() topEdge()
*/
int TQCanvasSprite::leftEdge(int nx) const
{
return nx - image()->hotx;
}
/*!
Returns the y-coordinate of the top edge of the sprite. (This may
change as the sprite animates since different frames may have
different top edges.)
\sa leftEdge() rightEdge() bottomEdge()
*/
int TQCanvasSprite::topEdge() const
{
return int(y()) - image()->hoty;
}
/*!
\overload
Returns what the y-coordinate of the top edge of the sprite would
be if the sprite (actually its hotspot) were moved to y-position
\a ny.
\sa leftEdge() rightEdge() bottomEdge()
*/
int TQCanvasSprite::topEdge(int ny) const
{
return ny - image()->hoty;
}
/*!
Returns the x-coordinate of the current right edge of the sprite.
(This may change as the sprite animates since different frames may
have different right edges.)
\sa leftEdge() bottomEdge() topEdge()
*/
int TQCanvasSprite::rightEdge() const
{
return leftEdge() + image()->width()-1;
}
/*!
\overload
Returns what the x-coordinate of the right edge of the sprite
would be if the sprite (actually its hotspot) were moved to
x-position \a nx.
\sa leftEdge() bottomEdge() topEdge()
*/
int TQCanvasSprite::rightEdge(int nx) const
{
return leftEdge(nx) + image()->width()-1;
}
/*!
Returns the y-coordinate of the current bottom edge of the sprite.
(This may change as the sprite animates since different frames may
have different bottom edges.)
\sa leftEdge() rightEdge() topEdge()
*/
int TQCanvasSprite::bottomEdge() const
{
return topEdge() + image()->height()-1;
}
/*!
\overload
Returns what the y-coordinate of the top edge of the sprite would
be if the sprite (actually its hotspot) were moved to y-position
\a ny.
\sa leftEdge() rightEdge() topEdge()
*/
int TQCanvasSprite::bottomEdge(int ny) const
{
return topEdge(ny) + image()->height()-1;
}
/*!
\fn TQCanvasPixmap* TQCanvasSprite::image() const
Returns the current frame's image.
\sa frame(), setFrame()
*/
/*!
\fn TQCanvasPixmap* TQCanvasSprite::image(int f) const
\overload
Returns the image for frame \a f. Does not do any bounds checking on \a f.
*/
/*!
Returns the image the sprite \e will have after advance(1) is
called. By default this is the same as image().
*/
TQCanvasPixmap* TQCanvasSprite::imageAdvanced() const
{
return image();
}
/*!
Returns the bounding rectangle for the image in the sprite's
current frame. This assumes that the images are tightly cropped
(i.e. do not have transparent pixels all along a side).
*/
TQRect TQCanvasSprite::boundingRect() const
{
return TQRect(leftEdge(), topEdge(), width(), height());
}
/*!
\internal
Returns the chunks covered by the item.
*/
TQPointArray TQCanvasItem::chunks() const
{
TQPointArray r;
int n=0;
TQRect br = boundingRect();
if (isVisible() && canvas()) {
int chunksize=canvas()->chunkSize();
br &= TQRect(0,0,canvas()->width(),canvas()->height());
if ( br.isValid() ) {
r.resize((br.width()/chunksize+2)*(br.height()/chunksize+2));
for (int j=br.top()/chunksize; j<=br.bottom()/chunksize; j++) {
for (int i=br.left()/chunksize; i<=br.right()/chunksize; i++) {
r[n++] = TQPoint(i,j);
}
}
}
}
r.resize(n);
return r;
}
/*!
\internal
Add the sprite to the chunks in its TQCanvas which it overlaps.
*/
void TQCanvasSprite::addToChunks()
{
if (isVisible() && canvas()) {
int chunksize=canvas()->chunkSize();
for (int j=topEdge()/chunksize; j<=bottomEdge()/chunksize; j++) {
for (int i=leftEdge()/chunksize; i<=rightEdge()/chunksize; i++) {
canvas()->addItemToChunk(this,i,j);
}
}
}
}
/*!
\internal
Remove the sprite from the chunks in its TQCanvas which it overlaps.
\sa addToChunks()
*/
void TQCanvasSprite::removeFromChunks()
{
if (isVisible() && canvas()) {
int chunksize=canvas()->chunkSize();
for (int j=topEdge()/chunksize; j<=bottomEdge()/chunksize; j++) {
for (int i=leftEdge()/chunksize; i<=rightEdge()/chunksize; i++) {
canvas()->removeItemFromChunk(this,i,j);
}
}
}
}
/*!
The width of the sprite for the current frame's image.
\sa frame()
*/
//### mark: Why don't we have width(int) and height(int) to be
//consistent with leftEdge() and leftEdge(int)?
int TQCanvasSprite::width() const
{
return image()->width();
}
/*!
The height of the sprite for the current frame's image.
\sa frame()
*/
int TQCanvasSprite::height() const
{
return image()->height();
}
/*!
Draws the current frame's image at the sprite's current position
on painter \a painter.
*/
void TQCanvasSprite::draw(TQPainter& painter)
{
painter.drawPixmap(leftEdge(),topEdge(),*image());
}
/*!
\class TQCanvasView ntqcanvas.h
\brief The TQCanvasView class provides an on-screen view of a TQCanvas.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
A TQCanvasView is widget which provides a view of a TQCanvas.
If you want users to be able to interact with a canvas view,
subclass TQCanvasView. You might then reimplement
TQScrollView::contentsMousePressEvent(). For example, assuming no
transformation matrix is set:
\code
void MyCanvasView::contentsMousePressEvent( TQMouseEvent* e )
{
TQCanvasItemList l = canvas()->collisions(e->pos());
for (TQCanvasItemList::Iterator it=l.begin(); it!=l.end(); ++it) {
if ( (*it)->rtti() == TQCanvasRectangle::RTTI )
tqDebug("A TQCanvasRectangle lies somewhere at this point");
}
}
\endcode
The canvas view shows canvas canvas(); this can be changed using
setCanvas().
A transformation matrix can be used to transform the view of the
canvas in various ways, for example, zooming in or out or rotating.
For example:
\code
TQWMatrix wm;
wm.scale( 2, 2 ); // Zooms in by 2 times
wm.rotate( 90 ); // Rotates 90 degrees counter clockwise
// around the origin.
wm.translate( 0, -canvas->height() );
// moves the canvas down so what was visible
// before is still visible.
myCanvasView->setWorldMatrix( wm );
\endcode
Use setWorldMatrix() to set the canvas view's world matrix: you must
ensure that the world matrix is invertible. The current world matrix
is retrievable with worldMatrix(), and its inversion is retrievable
with inverseWorldMatrix().
Example:
The following code finds the part of the canvas that is visible in
this view, i.e. the bounding rectangle of the view in canvas coordinates.
\code
TQRect rc = TQRect( myCanvasView->contentsX(), myCanvasView->contentsY(),
myCanvasView->visibleWidth(), myCanvasView->visibleHeight() );
TQRect canvasRect = myCanvasView->inverseWorldMatrix().mapRect(rc);
\endcode
\sa TQWMatrix TQPainter::setWorldMatrix()
*/
/*!
Constructs a TQCanvasView with parent \a parent, and name \a name,
using the widget flags \a f. The canvas view is not associated
with a canvas, so you must to call setCanvas() to view a
canvas.
*/
TQCanvasView::TQCanvasView(TQWidget* parent, const char* name, WFlags f) :
TQScrollView(parent,name,f|WResizeNoErase|WStaticContents)
{
d = new TQCanvasViewData;
viewing = 0;
setCanvas(0);
connect(this,SIGNAL(contentsMoving(int,int)),this,SLOT(cMoving(int,int)));
}
/*!
\overload
Constructs a TQCanvasView which views canvas \a canvas, with parent
\a parent, and name \a name, using the widget flags \a f.
*/
TQCanvasView::TQCanvasView(TQCanvas* canvas, TQWidget* parent, const char* name, WFlags f) :
TQScrollView(parent,name,f|WResizeNoErase|WStaticContents)
{
d = new TQCanvasViewData;
viewing = 0;
setCanvas(canvas);
connect(this,SIGNAL(contentsMoving(int,int)),this,SLOT(cMoving(int,int)));
}
/*!
Destroys the canvas view. The associated canvas is \e not deleted.
*/
TQCanvasView::~TQCanvasView()
{
delete d;
d = 0;
setCanvas(0);
}
/*!
\fn TQCanvas* TQCanvasView::canvas() const
Returns a pointer to the canvas which the TQCanvasView is currently
showing.
*/
/*!
Sets the canvas that the TQCanvasView is showing to the canvas \a
canvas.
*/
void TQCanvasView::setCanvas(TQCanvas* canvas)
{
if (viewing) {
disconnect(viewing);
viewing->removeView(this);
}
viewing=canvas;
if (viewing) {
connect(viewing,SIGNAL(resized()), this, SLOT(updateContentsSize()));
viewing->addView(this);
}
if ( d ) // called by d'tor
updateContentsSize();
}
#ifndef QT_NO_TRANSFORMATIONS
/*!
Returns a reference to the canvas view's current transformation matrix.
\sa setWorldMatrix() inverseWorldMatrix()
*/
const TQWMatrix &TQCanvasView::worldMatrix() const
{
return d->xform;
}
/*!
Returns a reference to the inverse of the canvas view's current
transformation matrix.
\sa setWorldMatrix() worldMatrix()
*/
const TQWMatrix &TQCanvasView::inverseWorldMatrix() const
{
return d->ixform;
}
/*!
Sets the transformation matrix of the TQCanvasView to \a wm. The
matrix must be invertible (i.e. if you create a world matrix that
zooms out by 2 times, then the inverse of this matrix is one that
will zoom in by 2 times).
When you use this, you should note that the performance of the
TQCanvasView will decrease considerably.
Returns FALSE if \a wm is not invertable; otherwise returns TRUE.
\sa worldMatrix() inverseWorldMatrix() TQWMatrix::isInvertible()
*/
bool TQCanvasView::setWorldMatrix( const TQWMatrix & wm )
{
bool ok = wm.isInvertible();
if ( ok ) {
d->xform = wm;
d->ixform = wm.invert();
updateContentsSize();
viewport()->update();
}
return ok;
}
#endif
void TQCanvasView::updateContentsSize()
{
if ( viewing ) {
TQRect br;
#ifndef QT_NO_TRANSFORMATIONS
br = d->xform.map(TQRect(0,0,viewing->width(),viewing->height()));
#else
br = TQRect(0,0,viewing->width(),viewing->height());
#endif
if ( br.width() < contentsWidth() ) {
TQRect r(contentsToViewport(TQPoint(br.width(),0)),
TQSize(contentsWidth()-br.width(),contentsHeight()));
viewport()->erase(r);
}
if ( br.height() < contentsHeight() ) {
TQRect r(contentsToViewport(TQPoint(0,br.height())),
TQSize(contentsWidth(),contentsHeight()-br.height()));
viewport()->erase(r);
}
resizeContents(br.width(),br.height());
} else {
viewport()->erase();
resizeContents(1,1);
}
}
void TQCanvasView::cMoving(int x, int y)
{
// A little kludge to smooth up repaints when scrolling
int dx = x - contentsX();
int dy = y - contentsY();
d->repaint_from_moving = TQABS(dx) < width()/8 && TQABS(dy) < height()/8;
}
/*!
Repaints part of the TQCanvas that the canvas view is showing
starting at \a cx by \a cy, with a width of \a cw and a height of \a
ch using the painter \a p.
\warning When double buffering is enabled, drawContents() will
not respect the current settings of the painter when setting up
the painter for the double buffer (e.g., viewport() and
window()). Also, be aware that TQCanvas::update() bypasses
drawContents(), which means any reimplementation of
drawContents() is not called.
\sa TQCanvas::setDoubleBuffering()
*/
void TQCanvasView::drawContents(TQPainter *p, int cx, int cy, int cw, int ch)
{
TQRect r(cx,cy,cw,ch);
if (viewing) {
//viewing->drawViewArea(this,p,r,TRUE);
viewing->drawViewArea(this,p,r,!d->repaint_from_moving);
d->repaint_from_moving = FALSE;
} else {
p->eraseRect(r);
}
}
/*!
\reimp
\internal
(Implemented to get rid of a compiler warning.)
*/
void TQCanvasView::drawContents( TQPainter * )
{
}
/*!
Suggests a size sufficient to view the entire canvas.
*/
TQSize TQCanvasView::sizeHint() const
{
if ( !canvas() )
return TQScrollView::sizeHint();
// should maybe take transformations into account
return ( canvas()->size() + 2 * TQSize(frameWidth(), frameWidth()) )
.boundedTo( 3 * TQApplication::desktop()->size() / 4 );
}
// ### TQt 4.0 customer request: operate on doubles rather than int.
// ### I know, almost impossible due to the use of TQRegion etc.
/*!
\class TQCanvasPolygonalItem ntqcanvas.h
\brief The TQCanvasPolygonalItem class provides a polygonal canvas item
on a TQCanvas.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
The mostly rectangular classes, such as TQCanvasSprite and
TQCanvasText, use the object's bounding rectangle for movement,
repainting and collision calculations. For most other items, the
bounding rectangle can be far too large -- a diagonal line being
the worst case, and there are many other cases which are also bad.
TQCanvasPolygonalItem provides polygon-based bounding rectangle
handling, etc., which is much faster for non-rectangular items.
Derived classes should try to define as small an area as possible
to maximize efficiency, but the polygon must \e definitely be
contained completely within the polygonal area. Calculating the
exact requirements is usually difficult, but if you allow a small
overestimate it can be easy and quick, while still getting almost
all of TQCanvasPolygonalItem's speed.
Note that all subclasses \e must call hide() in their destructor
since hide() needs to be able to access areaPoints().
Normally, TQCanvasPolygonalItem uses the odd-even algorithm for
determining whether an object intersects this object. You can
change this to the winding algorithm using setWinding().
The bounding rectangle is available using boundingRect(). The
points bounding the polygonal item are retrieved with
areaPoints(). Use areaPointsAdvanced() to retrieve the bounding
points the polygonal item \e will have after
TQCanvasItem::advance(1) has been called.
If the shape of the polygonal item is about to change while the
item is visible, call invalidate() before updating with a
different result from \l areaPoints().
By default, TQCanvasPolygonalItem objects have a black pen and no
brush (the default TQPen and TQBrush constructors). You can change
this with setPen() and setBrush(), but note that some
TQCanvasPolygonalItem subclasses only use the brush, ignoring the
pen setting.
The polygonal item can be drawn on a painter with draw().
Subclasses must reimplement drawShape() to draw themselves.
Like any other canvas item polygonal items can be moved with
TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting coordinates
with TQCanvasItem::setX(), TQCanvasItem::setY() and TQCanvasItem::setZ().
*/
/*
Since most polygonal items don't have a pen, the default is
NoPen and a black brush.
*/
static const TQPen& defaultPolygonPen()
{
static TQPen* dp=0;
if ( !dp )
dp = new TQPen;
return *dp;
}
static const TQBrush& defaultPolygonBrush()
{
static TQBrush* db=0;
if ( !db )
db = new TQBrush;
return *db;
}
/*!
Constructs a TQCanvasPolygonalItem on the canvas \a canvas.
*/
TQCanvasPolygonalItem::TQCanvasPolygonalItem(TQCanvas* canvas) :
TQCanvasItem(canvas),
br(defaultPolygonBrush()),
pn(defaultPolygonPen())
{
wind=0;
}
/*!
Note that all subclasses \e must call hide() in their destructor
since hide() needs to be able to access areaPoints().
*/
TQCanvasPolygonalItem::~TQCanvasPolygonalItem()
{
}
/*!
Returns TRUE if the polygonal item uses the winding algorithm to
determine the "inside" of the polygon. Returns FALSE if it uses
the odd-even algorithm.
The default is to use the odd-even algorithm.
\sa setWinding()
*/
bool TQCanvasPolygonalItem::winding() const
{
return wind;
}
/*!
If \a enable is TRUE, the polygonal item will use the winding
algorithm to determine the "inside" of the polygon; otherwise the
odd-even algorithm will be used.
The default is to use the odd-even algorithm.
\sa winding()
*/
void TQCanvasPolygonalItem::setWinding(bool enable)
{
wind = enable;
}
/*!
Invalidates all information about the area covered by the canvas
item. The item will be updated automatically on the next call that
changes the item's status, for example, move() or update(). Call
this function if you are going to change the shape of the item (as
returned by areaPoints()) while the item is visible.
*/
void TQCanvasPolygonalItem::invalidate()
{
val = (uint)FALSE;
removeFromChunks();
}
/*!
\fn TQCanvasPolygonalItem::isValid() const
Returns TRUE if the polygonal item's area information has not been
invalidated; otherwise returns FALSE.
\sa invalidate()
*/
/*!
Returns the points the polygonal item \e will have after
TQCanvasItem::advance(1) is called, i.e. what the points are when
advanced by the current xVelocity() and yVelocity().
*/
TQPointArray TQCanvasPolygonalItem::areaPointsAdvanced() const
{
int dx = int(x()+xVelocity())-int(x());
int dy = int(y()+yVelocity())-int(y());
TQPointArray r = areaPoints();
r.detach(); // Explicit sharing is stupid.
if ( dx || dy )
r.translate(dx,dy);
return r;
}
//#define TQCANVAS_POLYGONS_DEBUG
#ifdef TQCANVAS_POLYGONS_DEBUG
static TQWidget* dbg_wid=0;
static TQPainter* dbg_ptr=0;
#endif
class TQPolygonalProcessor {
public:
TQPolygonalProcessor(TQCanvas* c, const TQPointArray& pa) :
canvas(c)
{
TQRect pixelbounds = pa.boundingRect();
int cs = canvas->chunkSize();
TQRect canvasbounds = pixelbounds.intersect(canvas->rect());
bounds.setLeft(canvasbounds.left()/cs);
bounds.setRight(canvasbounds.right()/cs);
bounds.setTop(canvasbounds.top()/cs);
bounds.setBottom(canvasbounds.bottom()/cs);
bitmap = TQImage(bounds.width() + 1, bounds.height(), 1, 2, TQImage::LittleEndian);
pnt = 0;
bitmap.fill(0);
#ifdef TQCANVAS_POLYGONS_DEBUG
dbg_start();
#endif
}
inline void add(int x, int y)
{
if ( pnt >= (int)result.size() ) {
result.resize(pnt*2+10);
}
result[pnt++] = TQPoint(x+bounds.x(),y+bounds.y());
#ifdef TQCANVAS_POLYGONS_DEBUG
if ( dbg_ptr ) {
int cs = canvas->chunkSize();
TQRect r(x*cs+bounds.x()*cs,y*cs+bounds.y()*cs,cs-1,cs-1);
dbg_ptr->setPen(TQt::blue);
dbg_ptr->drawRect(r);
}
#endif
}
inline void addBits(int x1, int x2, uchar newbits, int xo, int yo)
{
for (int i=x1; i<=x2; i++)
if ( newbits & (1<<i) )
add(xo+i,yo);
}
#ifdef TQCANVAS_POLYGONS_DEBUG
void dbg_start()
{
if ( !dbg_wid ) {
dbg_wid = new TQWidget;
dbg_wid->resize(800,600);
dbg_wid->show();
dbg_ptr = new TQPainter(dbg_wid);
dbg_ptr->setBrush(TQt::NoBrush);
}
dbg_ptr->fillRect(dbg_wid->rect(),TQt::white);
}
#endif
void doSpans(int n, TQPoint* pt, int* w)
{
int cs = canvas->chunkSize();
for (int j=0; j<n; j++) {
int y = pt[j].y()/cs-bounds.y();
if (y >= bitmap.height() || y < 0) continue;
uchar* l = bitmap.scanLine(y);
int x = pt[j].x();
int x1 = x/cs-bounds.x();
if (x1 > bounds.width()) continue;
x1 = TQMAX(0,x1);
int x2 = (x+w[j])/cs-bounds.x();
if (x2 < 0) continue;
x2 = TQMIN(bounds.width(), x2);
int x1q = x1/8;
int x1r = x1%8;
int x2q = x2/8;
int x2r = x2%8;
#ifdef TQCANVAS_POLYGONS_DEBUG
if ( dbg_ptr ) dbg_ptr->setPen(TQt::yellow);
#endif
if ( x1q == x2q ) {
uchar newbits = (~l[x1q]) & (((2<<(x2r-x1r))-1)<<x1r);
if ( newbits ) {
#ifdef TQCANVAS_POLYGONS_DEBUG
if ( dbg_ptr ) dbg_ptr->setPen(TQt::darkGreen);
#endif
addBits(x1r,x2r,newbits,x1q*8,y);
l[x1q] |= newbits;
}
} else {
#ifdef TQCANVAS_POLYGONS_DEBUG
if ( dbg_ptr ) dbg_ptr->setPen(TQt::blue);
#endif
uchar newbits1 = (~l[x1q]) & (0xff<<x1r);
if ( newbits1 ) {
#ifdef TQCANVAS_POLYGONS_DEBUG
if ( dbg_ptr ) dbg_ptr->setPen(TQt::green);
#endif
addBits(x1r,7,newbits1,x1q*8,y);
l[x1q] |= newbits1;
}
for (int i=x1q+1; i<x2q; i++) {
if ( l[i] != 0xff ) {
addBits(0,7,~l[i],i*8,y);
l[i]=0xff;
}
}
uchar newbits2 = (~l[x2q]) & (0xff>>(7-x2r));
if ( newbits2 ) {
#ifdef TQCANVAS_POLYGONS_DEBUG
if ( dbg_ptr ) dbg_ptr->setPen(TQt::red);
#endif
addBits(0,x2r,newbits2,x2q*8,y);
l[x2q] |= newbits2;
}
}
#ifdef TQCANVAS_POLYGONS_DEBUG
if ( dbg_ptr ) {
dbg_ptr->drawLine(pt[j],pt[j]+TQPoint(w[j],0));
}
#endif
}
result.resize(pnt);
}
int pnt;
TQPointArray result;
TQCanvas* canvas;
TQRect bounds;
TQImage bitmap;
};
TQPointArray TQCanvasPolygonalItem::chunks() const
{
TQPointArray pa = areaPoints();
if ( !pa.size() ) {
pa.detach(); // Explicit sharing is stupid.
return pa;
}
TQPolygonalProcessor processor(canvas(),pa);
scanPolygon(pa, wind, processor);
return processor.result;
}
/*!
Simply calls TQCanvasItem::chunks().
*/
TQPointArray TQCanvasRectangle::chunks() const
{
// No need to do a polygon scan!
return TQCanvasItem::chunks();
}
/*!
Returns the bounding rectangle of the polygonal item, based on
areaPoints().
*/
TQRect TQCanvasPolygonalItem::boundingRect() const
{
return areaPoints().boundingRect();
}
/*!
Reimplemented from TQCanvasItem, this draws the polygonal item by
setting the pen and brush for the item on the painter \a p and
calling drawShape().
*/
void TQCanvasPolygonalItem::draw(TQPainter & p)
{
p.setPen(pn);
p.setBrush(br);
drawShape(p);
}
/*!
\fn void TQCanvasPolygonalItem::drawShape(TQPainter & p)
Subclasses must reimplement this function to draw their shape. The
pen and brush of \a p are already set to pen() and brush() prior
to calling this function.
\warning When you reimplement this function, make sure that you
leave the painter in the same state as you found it. For example,
if you start by calling TQPainter::translate(50, 50), end your
code by calling TQPainter::translate(-50, -50). Be also aware that
the painter might already have some transformations set (i.e.,
don't call TQPainter::resetXForm() when you're done).
\sa draw()
*/
/*!
\fn TQPen TQCanvasPolygonalItem::pen() const
Returns the TQPen used to draw the outline of the item, if any.
\sa setPen()
*/
/*!
\fn TQBrush TQCanvasPolygonalItem::brush() const
Returns the TQBrush used to fill the item, if filled.
\sa setBrush()
*/
/*!
Sets the TQPen used when drawing the item to the pen \a p.
Note that many TQCanvasPolygonalItems do not use the pen value.
\sa setBrush(), pen(), drawShape()
*/
void TQCanvasPolygonalItem::setPen(TQPen p)
{
if ( pn != p ) {
removeFromChunks();
pn = p;
addToChunks();
}
}
/*!
Sets the TQBrush used when drawing the polygonal item to the brush \a b.
\sa setPen(), brush(), drawShape()
*/
void TQCanvasPolygonalItem::setBrush(TQBrush b)
{
if ( br != b) {
br = b;
changeChunks();
}
}
/*!
\class TQCanvasPolygon ntqcanvas.h
\brief The TQCanvasPolygon class provides a polygon on a TQCanvas.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
Paints a polygon with a TQBrush. The polygon's points can be set in
the constructor or set or changed later using setPoints(). Use
points() to retrieve the points, or areaPoints() to retrieve the
points relative to the canvas's origin.
The polygon can be drawn on a painter with drawShape().
Like any other canvas item polygons can be moved with
TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting
coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and
TQCanvasItem::setZ().
Note: TQCanvasPolygon does not use the pen.
*/
/*!
Constructs a point-less polygon on the canvas \a canvas. You
should call setPoints() before using it further.
*/
TQCanvasPolygon::TQCanvasPolygon(TQCanvas* canvas) :
TQCanvasPolygonalItem(canvas)
{
}
/*!
Destroys the polygon.
*/
TQCanvasPolygon::~TQCanvasPolygon()
{
hide();
}
/*!
Draws the polygon using the painter \a p.
Note that TQCanvasPolygon does not support an outline (the pen is
always NoPen).
*/
void TQCanvasPolygon::drawShape(TQPainter & p)
{
// ### why can't we draw outlines? We could use drawPolyline for it. Lars
// ### see other message. Warwick
p.setPen(NoPen); // since TQRegion(TQPointArray) excludes outline :-( )-:
p.drawPolygon(poly);
}
/*!
Sets the points of the polygon to be \a pa. These points will have
their x and y coordinates automatically translated by x(), y() as
the polygon is moved.
*/
void TQCanvasPolygon::setPoints(TQPointArray pa)
{
removeFromChunks();
poly = pa;
poly.detach(); // Explicit sharing is stupid.
poly.translate((int)x(),(int)y());
addToChunks();
}
/*!
\reimp
*/
void TQCanvasPolygon::moveBy(double dx, double dy)
{
// Note: does NOT call TQCanvasPolygonalItem::moveBy(), since that
// only does half this work.
//
int idx = int(x()+dx)-int(x());
int idy = int(y()+dy)-int(y());
if ( idx || idy ) {
removeFromChunks();
poly.translate(idx,idy);
}
myx+=dx;
myy+=dy;
if ( idx || idy ) {
addToChunks();
}
}
/*!
\class TQCanvasSpline ntqcanvas.h
\brief The TQCanvasSpline class provides multi-bezier splines on a TQCanvas.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
A TQCanvasSpline is a sequence of 4-point bezier curves joined
together to make a curved shape.
You set the control points of the spline with setControlPoints().
If the bezier is closed(), then the first control point will be
re-used as the last control point. Therefore, a closed bezier must
have a multiple of 3 control points and an open bezier must have
one extra point.
The beziers are not necessarily joined "smoothly". To ensure this,
set control points appropriately (general reference texts about
beziers will explain this in detail).
Like any other canvas item splines can be moved with
TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting
coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and
TQCanvasItem::setZ().
*/
/*!
Create a spline with no control points on the canvas \a canvas.
\sa setControlPoints()
*/
TQCanvasSpline::TQCanvasSpline(TQCanvas* canvas) :
TQCanvasPolygon(canvas),
cl(TRUE)
{
}
/*!
Destroy the spline.
*/
TQCanvasSpline::~TQCanvasSpline()
{
}
// ### shouldn't we handle errors more gracefully than with an assert? Lars
// ### no, since it's a programming error. Warwick
/*!
Set the spline control points to \a ctrl.
If \a close is TRUE, then the first point in \a ctrl will be
re-used as the last point, and the number of control points must
be a multiple of 3. If \a close is FALSE, one additional control
point is required, and the number of control points must be one of
(4, 7, 10, 13, ...).
If the number of control points doesn't meet the above conditions,
the number of points will be truncated to the largest number of
points that do meet the requirement.
*/
void TQCanvasSpline::setControlPoints(TQPointArray ctrl, bool close)
{
if ( (int)ctrl.count() % 3 != (close ? 0 : 1) ) {
tqWarning( "TQCanvasSpline::setControlPoints(): Number of points doesn't fit." );
int numCurves = (ctrl.count() - (close ? 0 : 1 ))/ 3;
ctrl.resize( numCurves*3 + ( close ? 0 : 1 ) );
}
cl = close;
bez = ctrl;
recalcPoly();
}
/*!
Returns the current set of control points.
\sa setControlPoints(), closed()
*/
TQPointArray TQCanvasSpline::controlPoints() const
{
return bez;
}
/*!
Returns TRUE if the control points are a closed set; otherwise
returns FALSE.
*/
bool TQCanvasSpline::closed() const
{
return cl;
}
void TQCanvasSpline::recalcPoly()
{
TQPtrList<TQPointArray> segs;
segs.setAutoDelete(TRUE);
int n=0;
for (int i=0; i<(int)bez.count()-1; i+=3) {
TQPointArray ctrl(4);
ctrl[0] = bez[i+0];
ctrl[1] = bez[i+1];
ctrl[2] = bez[i+2];
if ( cl )
ctrl[3] = bez[(i+3)%(int)bez.count()];
else
ctrl[3] = bez[i+3];
TQPointArray *seg = new TQPointArray(ctrl.cubicBezier());
n += seg->count()-1;
segs.append(seg);
}
TQPointArray p(n+1);
n=0;
for (TQPointArray* seg = segs.first(); seg; seg = segs.next()) {
for (int i=0; i<(int)seg->count()-1; i++)
p[n++] = seg->point(i);
if ( n == (int)p.count()-1 )
p[n] = seg->point(seg->count()-1);
}
TQCanvasPolygon::setPoints(p);
}
/*!
\fn TQPointArray TQCanvasPolygonalItem::areaPoints() const
This function must be reimplemented by subclasses. It \e must
return the points bounding (i.e. outside and not touching) the
shape or drawing errors will occur.
*/
/*!
\fn TQPointArray TQCanvasPolygon::points() const
Returns the vertices of the polygon, not translated by the position.
\sa setPoints(), areaPoints()
*/
TQPointArray TQCanvasPolygon::points() const
{
TQPointArray pa = areaPoints();
pa.translate(int(-x()),int(-y()));
return pa;
}
/*!
Returns the vertices of the polygon translated by the polygon's
current x(), y() position, i.e. relative to the canvas's origin.
\sa setPoints(), points()
*/
TQPointArray TQCanvasPolygon::areaPoints() const
{
return poly.copy();
}
// ### mark: Why don't we offer a constructor that lets the user set the
// points -- that way for some uses just the constructor call would be
// required?
/*!
\class TQCanvasLine ntqcanvas.h
\brief The TQCanvasLine class provides a line on a TQCanvas.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
The line inherits functionality from TQCanvasPolygonalItem, for
example the setPen() function. The start and end points of the
line are set with setPoints().
Like any other canvas item lines can be moved with
TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting
coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and
TQCanvasItem::setZ().
*/
/*!
Constructs a line from (0,0) to (0,0) on \a canvas.
\sa setPoints().
*/
TQCanvasLine::TQCanvasLine(TQCanvas* canvas) :
TQCanvasPolygonalItem(canvas)
{
x1 = y1 = x2 = y2 = 0;
}
/*!
Destroys the line.
*/
TQCanvasLine::~TQCanvasLine()
{
hide();
}
/*!
\reimp
*/
void TQCanvasLine::setPen(TQPen p)
{
TQCanvasPolygonalItem::setPen(p);
}
/*!
\fn TQPoint TQCanvasLine::startPoint () const
Returns the start point of the line.
\sa setPoints(), endPoint()
*/
/*!
\fn TQPoint TQCanvasLine::endPoint () const
Returns the end point of the line.
\sa setPoints(), startPoint()
*/
/*!
Sets the line's start point to (\a xa, \a ya) and its end point to
(\a xb, \a yb).
*/
void TQCanvasLine::setPoints(int xa, int ya, int xb, int yb)
{
if ( x1 != xa || x2 != xb || y1 != ya || y2 != yb ) {
removeFromChunks();
x1 = xa;
y1 = ya;
x2 = xb;
y2 = yb;
addToChunks();
}
}
/*!
\reimp
*/
void TQCanvasLine::drawShape(TQPainter &p)
{
p.drawLine((int)(x()+x1), (int)(y()+y1), (int)(x()+x2), (int)(y()+y2));
}
/*!
\reimp
Note that the area defined by the line is somewhat thicker than
the line that is actually drawn.
*/
TQPointArray TQCanvasLine::areaPoints() const
{
TQPointArray p(4);
int xi = int(x());
int yi = int(y());
int pw = pen().width();
int dx = TQABS(x1-x2);
int dy = TQABS(y1-y2);
pw = pw*4/3+2; // approx pw*sqrt(2)
int px = x1<x2 ? -pw : pw ;
int py = y1<y2 ? -pw : pw ;
if ( dx && dy && (dx > dy ? (dx*2/dy <= 2) : (dy*2/dx <= 2)) ) {
// steep
if ( px == py ) {
p[0] = TQPoint(x1+xi ,y1+yi+py);
p[1] = TQPoint(x2+xi-px,y2+yi );
p[2] = TQPoint(x2+xi ,y2+yi-py);
p[3] = TQPoint(x1+xi+px,y1+yi );
} else {
p[0] = TQPoint(x1+xi+px,y1+yi );
p[1] = TQPoint(x2+xi ,y2+yi-py);
p[2] = TQPoint(x2+xi-px,y2+yi );
p[3] = TQPoint(x1+xi ,y1+yi+py);
}
} else if ( dx > dy ) {
// horizontal
p[0] = TQPoint(x1+xi+px,y1+yi+py);
p[1] = TQPoint(x2+xi-px,y2+yi+py);
p[2] = TQPoint(x2+xi-px,y2+yi-py);
p[3] = TQPoint(x1+xi+px,y1+yi-py);
} else {
// vertical
p[0] = TQPoint(x1+xi+px,y1+yi+py);
p[1] = TQPoint(x2+xi+px,y2+yi-py);
p[2] = TQPoint(x2+xi-px,y2+yi-py);
p[3] = TQPoint(x1+xi-px,y1+yi+py);
}
return p;
}
/*!
\reimp
*/
void TQCanvasLine::moveBy(double dx, double dy)
{
TQCanvasPolygonalItem::moveBy(dx, dy);
}
/*!
\class TQCanvasRectangle ntqcanvas.h
\brief The TQCanvasRectangle class provides a rectangle on a TQCanvas.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
This item paints a single rectangle which may have any pen() and
brush(), but may not be tilted/rotated. For rotated rectangles,
use TQCanvasPolygon.
The rectangle's size and initial position can be set in the
constructor. The size can be set or changed later using setSize().
Use height() and width() to retrieve the rectangle's dimensions.
The rectangle can be drawn on a painter with drawShape().
Like any other canvas item rectangles can be moved with
TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting
coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and
TQCanvasItem::setZ().
*/
/*!
Constructs a rectangle at position (0,0) with both width and
height set to 32 pixels on \a canvas.
*/
TQCanvasRectangle::TQCanvasRectangle(TQCanvas* canvas) :
TQCanvasPolygonalItem(canvas),
w(32), h(32)
{
}
/*!
Constructs a rectangle positioned and sized by \a r on \a canvas.
*/
TQCanvasRectangle::TQCanvasRectangle(const TQRect& r, TQCanvas* canvas) :
TQCanvasPolygonalItem(canvas),
w(r.width()), h(r.height())
{
move(r.x(),r.y());
}
/*!
Constructs a rectangle at position (\a x, \a y) and size \a width
by \a height, on \a canvas.
*/
TQCanvasRectangle::TQCanvasRectangle(int x, int y, int width, int height,
TQCanvas* canvas) :
TQCanvasPolygonalItem(canvas),
w(width), h(height)
{
move(x,y);
}
/*!
Destroys the rectangle.
*/
TQCanvasRectangle::~TQCanvasRectangle()
{
hide();
}
/*!
Returns the width of the rectangle.
*/
int TQCanvasRectangle::width() const
{
return w;
}
/*!
Returns the height of the rectangle.
*/
int TQCanvasRectangle::height() const
{
return h;
}
/*!
Sets the \a width and \a height of the rectangle.
*/
void TQCanvasRectangle::setSize(int width, int height)
{
if ( w != width || h != height ) {
removeFromChunks();
w = width;
h = height;
addToChunks();
}
}
/*!
\fn TQSize TQCanvasRectangle::size() const
Returns the width() and height() of the rectangle.
\sa rect(), setSize()
*/
/*!
\fn TQRect TQCanvasRectangle::rect() const
Returns the integer-converted x(), y() position and size() of the
rectangle as a TQRect.
*/
/*!
\reimp
*/
TQPointArray TQCanvasRectangle::areaPoints() const
{
TQPointArray pa(4);
int pw = (pen().width()+1)/2;
if ( pw < 1 ) pw = 1;
if ( pen() == NoPen ) pw = 0;
pa[0] = TQPoint((int)x()-pw,(int)y()-pw);
pa[1] = pa[0] + TQPoint(w+pw*2,0);
pa[2] = pa[1] + TQPoint(0,h+pw*2);
pa[3] = pa[0] + TQPoint(0,h+pw*2);
return pa;
}
/*!
Draws the rectangle on painter \a p.
*/
void TQCanvasRectangle::drawShape(TQPainter & p)
{
p.drawRect((int)x(), (int)y(), w, h);
}
/*!
\class TQCanvasEllipse ntqcanvas.h
\brief The TQCanvasEllipse class provides an ellipse or ellipse segment on a TQCanvas.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
A canvas item that paints an ellipse or ellipse segment with a TQBrush.
The ellipse's height, width, start angle and angle length can be set
at construction time. The size can be changed at runtime with
setSize(), and the angles can be changed (if you're displaying an
ellipse segment rather than a whole ellipse) with setAngles().
Note that angles are specified in 16ths of a degree.
\target anglediagram
\img qcanvasellipse.png Ellipse
If a start angle and length angle are set then an ellipse segment
will be drawn. The start angle is the angle that goes from zero in a
counter-clockwise direction (shown in green in the diagram). The
length angle is the angle from the start angle in a
counter-clockwise direction (shown in blue in the diagram). The blue
segment is the segment of the ellipse that would be drawn. If no
start angle and length angle are specified the entire ellipse is
drawn.
The ellipse can be drawn on a painter with drawShape().
Like any other canvas item ellipses can be moved with move() and
moveBy(), or by setting coordinates with setX(), setY() and setZ().
Note: TQCanvasEllipse does not use the pen.
*/
/*!
Constructs a 32x32 ellipse, centered at (0, 0) on \a canvas.
*/
TQCanvasEllipse::TQCanvasEllipse(TQCanvas* canvas) :
TQCanvasPolygonalItem(canvas),
w(32), h(32),
a1(0), a2(360*16)
{
}
/*!
Constructs a \a width by \a height pixel ellipse, centered at
(0, 0) on \a canvas.
*/
TQCanvasEllipse::TQCanvasEllipse(int width, int height, TQCanvas* canvas) :
TQCanvasPolygonalItem(canvas),
w(width),h(height),
a1(0),a2(360*16)
{
}
// ### add a constructor taking degrees in float. 1/16 degrees is stupid. Lars
// ### it's how TQPainter does it, so TQCanvas does too for consistency. If it's
// ### a good idea, it should be added to TQPainter, not just to TQCanvas. Warwick
/*!
Constructs a \a width by \a height pixel ellipse, centered at
(0, 0) on \a canvas. Only a segment of the ellipse is drawn,
starting at angle \a startangle, and extending for angle \a angle
(the angle length).
Note that angles are specified in
<small><sup>1</sup>/<sub>16</sub></small>ths of a degree.
*/
TQCanvasEllipse::TQCanvasEllipse(int width, int height,
int startangle, int angle, TQCanvas* canvas) :
TQCanvasPolygonalItem(canvas),
w(width),h(height),
a1(startangle),a2(angle)
{
}
/*!
Destroys the ellipse.
*/
TQCanvasEllipse::~TQCanvasEllipse()
{
hide();
}
/*!
Returns the width of the ellipse.
*/
int TQCanvasEllipse::width() const
{
return w;
}
/*!
Returns the height of the ellipse.
*/
int TQCanvasEllipse::height() const
{
return h;
}
/*!
Sets the \a width and \a height of the ellipse.
*/
void TQCanvasEllipse::setSize(int width, int height)
{
if ( w != width || h != height ) {
removeFromChunks();
w = width;
h = height;
addToChunks();
}
}
/*!
\fn int TQCanvasEllipse::angleStart() const
Returns the start angle in 16ths of a degree. Initially
this will be 0.
\sa setAngles(), angleLength()
*/
/*!
\fn int TQCanvasEllipse::angleLength() const
Returns the length angle (the extent of the ellipse segment) in
16ths of a degree. Initially this will be 360 * 16 (a complete
ellipse).
\sa setAngles(), angleStart()
*/
/*!
Sets the angles for the ellipse. The start angle is \a start and
the extent of the segment is \a length (the angle length) from the
\a start. The angles are specified in 16ths of a degree. By
default the ellipse will start at 0 and have an angle length of
360 * 16 (a complete ellipse).
\sa angleStart(), angleLength()
*/
void TQCanvasEllipse::setAngles(int start, int length)
{
if ( a1 != start || a2 != length ) {
removeFromChunks();
a1 = start;
a2 = length;
addToChunks();
}
}
/*!
\reimp
*/
TQPointArray TQCanvasEllipse::areaPoints() const
{
TQPointArray r;
// makeArc at 0,0, then translate so that fixed point math doesn't overflow
r.makeArc(int(x()-w/2.0+0.5)-1, int(y()-h/2.0+0.5)-1, w+3, h+3, a1, a2);
r.resize(r.size()+1);
r.setPoint(r.size()-1,int(x()),int(y()));
return r;
}
// ### support outlines! Lars
// ### TQRegion doesn't, so we cannot (try it). Warwick
/*!
Draws the ellipse, centered at x(), y() using the painter \a p.
Note that TQCanvasEllipse does not support an outline (the pen is
always NoPen).
*/
void TQCanvasEllipse::drawShape(TQPainter & p)
{
p.setPen(NoPen); // since TQRegion(TQPointArray) excludes outline :-( )-:
if ( !a1 && a2 == 360*16 ) {
p.drawEllipse(int(x()-w/2.0+0.5), int(y()-h/2.0+0.5), w, h);
} else {
p.drawPie(int(x()-w/2.0+0.5), int(y()-h/2.0+0.5), w, h, a1, a2);
}
}
/*!
\class TQCanvasText ntqcanvas.h
\brief The TQCanvasText class provides a text object on a TQCanvas.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module canvas
\ingroup graphics
\ingroup images
A canvas text item has text with font, color and alignment
attributes. The text and font can be set in the constructor or set
or changed later with setText() and setFont(). The color is set
with setColor() and the alignment with setTextFlags(). The text
item's bounding rectangle is retrieved with boundingRect().
The text can be drawn on a painter with draw().
Like any other canvas item text items can be moved with
TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting
coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and
TQCanvasItem::setZ().
*/
/*!
Constructs a TQCanvasText with the text "\<text\>", on \a canvas.
*/
TQCanvasText::TQCanvasText(TQCanvas* canvas) :
TQCanvasItem(canvas),
txt("<text>"), flags(0)
{
setRect();
}
// ### add textflags to the constructor? Lars
/*!
Constructs a TQCanvasText with the text \a t, on canvas \a canvas.
*/
TQCanvasText::TQCanvasText(const TQString& t, TQCanvas* canvas) :
TQCanvasItem(canvas),
txt(t), flags(0)
{
setRect();
}
// ### see above
/*!
Constructs a TQCanvasText with the text \a t and font \a f, on the
canvas \a canvas.
*/
TQCanvasText::TQCanvasText(const TQString& t, TQFont f, TQCanvas* canvas) :
TQCanvasItem(canvas),
txt(t), flags(0),
fnt(f)
{
setRect();
}
/*!
Destroys the canvas text item.
*/
TQCanvasText::~TQCanvasText()
{
removeFromChunks();
}
/*!
Returns the bounding rectangle of the text.
*/
TQRect TQCanvasText::boundingRect() const { return brect; }
void TQCanvasText::setRect()
{
brect = TQFontMetrics(fnt).boundingRect(int(x()), int(y()), 0, 0, flags, txt);
brect.setWidth(brect.width()+1);
}
/*!
\fn int TQCanvasText::textFlags() const
Returns the currently set alignment flags.
\sa setTextFlags() TQt::AlignmentFlags
*/
/*!
Sets the alignment flags to \a f. These are a bitwise OR of the
flags available to TQPainter::drawText() -- see the
\l{TQt::AlignmentFlags}.
\sa setFont() setColor()
*/
void TQCanvasText::setTextFlags(int f)
{
if ( flags != f ) {
removeFromChunks();
flags = f;
setRect();
addToChunks();
}
}
/*!
Returns the text item's text.
\sa setText()
*/
TQString TQCanvasText::text() const
{
return txt;
}
/*!
Sets the text item's text to \a t. The text may contain newlines.
\sa text(), setFont(), setColor() setTextFlags()
*/
void TQCanvasText::setText( const TQString& t )
{
if ( txt != t ) {
removeFromChunks();
txt = t;
setRect();
addToChunks();
}
}
/*!
Returns the font in which the text is drawn.
\sa setFont()
*/
TQFont TQCanvasText::font() const
{
return fnt;
}
/*!
Sets the font in which the text is drawn to font \a f.
\sa font()
*/
void TQCanvasText::setFont( const TQFont& f )
{
if ( f != fnt ) {
removeFromChunks();
fnt = f;
setRect();
addToChunks();
}
}
/*!
Returns the color of the text.
\sa setColor()
*/
TQColor TQCanvasText::color() const
{
return col;
}
/*!
Sets the color of the text to the color \a c.
\sa color(), setFont()
*/
void TQCanvasText::setColor(const TQColor& c)
{
col=c;
changeChunks();
}
/*!
\reimp
*/
void TQCanvasText::moveBy(double dx, double dy)
{
int idx = int(x()+dx)-int(x());
int idy = int(y()+dy)-int(y());
if ( idx || idy ) {
removeFromChunks();
}
myx+=dx;
myy+=dy;
if ( idx || idy ) {
brect.moveBy(idx,idy);
addToChunks();
}
}
/*!
Draws the text using the painter \a painter.
*/
void TQCanvasText::draw(TQPainter& painter)
{
painter.setFont(fnt);
painter.setPen(col);
painter.drawText(brect, flags, txt);
}
/*!
\reimp
*/
void TQCanvasText::changeChunks()
{
if (isVisible() && canvas()) {
int chunksize=canvas()->chunkSize();
for (int j=brect.top()/chunksize; j<=brect.bottom()/chunksize; j++) {
for (int i=brect.left()/chunksize; i<=brect.right()/chunksize; i++) {
canvas()->setChangedChunk(i,j);
}
}
}
}
/*!
Adds the text item to the appropriate chunks.
*/
void TQCanvasText::addToChunks()
{
if (isVisible() && canvas()) {
int chunksize=canvas()->chunkSize();
for (int j=brect.top()/chunksize; j<=brect.bottom()/chunksize; j++) {
for (int i=brect.left()/chunksize; i<=brect.right()/chunksize; i++) {
canvas()->addItemToChunk(this,i,j);
}
}
}
}
/*!
Removes the text item from the appropriate chunks.
*/
void TQCanvasText::removeFromChunks()
{
if (isVisible() && canvas()) {
int chunksize=canvas()->chunkSize();
for (int j=brect.top()/chunksize; j<=brect.bottom()/chunksize; j++) {
for (int i=brect.left()/chunksize; i<=brect.right()/chunksize; i++) {
canvas()->removeItemFromChunk(this,i,j);
}
}
}
}
/*!
Returns 0 (TQCanvasItem::Rtti_Item).
Make your derived classes return their own values for rtti(), so
that you can distinguish between objects returned by
TQCanvas::at(). You should use values greater than 1000 to allow
for extensions to this class.
Overuse of this functionality can damage it's extensibility. For
example, once you have identified a base class of a TQCanvasItem
found by TQCanvas::at(), cast it to that type and call meaningful
methods rather than acting upon the object based on its rtti
value.
For example:
\code
TQCanvasItem* item;
// Find an item, e.g. with TQCanvasItem::collisions().
...
if (item->rtti() == MySprite::RTTI ) {
MySprite* s = (MySprite*)item;
if (s->isDamagable()) s->loseHitPoints(1000);
if (s->isHot()) myself->loseHitPoints(1000);
...
}
\endcode
*/
int TQCanvasItem::rtti() const { return RTTI; }
int TQCanvasItem::RTTI = Rtti_Item;
/*!
Returns 1 (TQCanvasItem::Rtti_Sprite).
\sa TQCanvasItem::rtti()
*/
int TQCanvasSprite::rtti() const { return RTTI; }
int TQCanvasSprite::RTTI = Rtti_Sprite;
/*!
Returns 2 (TQCanvasItem::Rtti_PolygonalItem).
\sa TQCanvasItem::rtti()
*/
int TQCanvasPolygonalItem::rtti() const { return RTTI; }
int TQCanvasPolygonalItem::RTTI = Rtti_PolygonalItem;
/*!
Returns 3 (TQCanvasItem::Rtti_Text).
\sa TQCanvasItem::rtti()
*/
int TQCanvasText::rtti() const { return RTTI; }
int TQCanvasText::RTTI = Rtti_Text;
/*!
Returns 4 (TQCanvasItem::Rtti_Polygon).
\sa TQCanvasItem::rtti()
*/
int TQCanvasPolygon::rtti() const { return RTTI; }
int TQCanvasPolygon::RTTI = Rtti_Polygon;
/*!
Returns 5 (TQCanvasItem::Rtti_Rectangle).
\sa TQCanvasItem::rtti()
*/
int TQCanvasRectangle::rtti() const { return RTTI; }
int TQCanvasRectangle::RTTI = Rtti_Rectangle;
/*!
Returns 6 (TQCanvasItem::Rtti_Ellipse).
\sa TQCanvasItem::rtti()
*/
int TQCanvasEllipse::rtti() const { return RTTI; }
int TQCanvasEllipse::RTTI = Rtti_Ellipse;
/*!
Returns 7 (TQCanvasItem::Rtti_Line).
\sa TQCanvasItem::rtti()
*/
int TQCanvasLine::rtti() const { return RTTI; }
int TQCanvasLine::RTTI = Rtti_Line;
/*!
Returns 8 (TQCanvasItem::Rtti_Spline).
\sa TQCanvasItem::rtti()
*/
int TQCanvasSpline::rtti() const { return RTTI; }
int TQCanvasSpline::RTTI = Rtti_Spline;
/*!
Constructs a TQCanvasSprite which uses images from the
TQCanvasPixmapArray \a a.
The sprite in initially positioned at (0, 0) on \a canvas, using
frame 0.
*/
TQCanvasSprite::TQCanvasSprite(TQCanvasPixmapArray* a, TQCanvas* canvas) :
TQCanvasItem(canvas),
frm(0),
anim_val(0),
anim_state(0),
anim_type(0),
images(a)
{
}
/*!
Set the array of images used for displaying the sprite to the
TQCanvasPixmapArray \a a.
If the current frame() is larger than the number of images in \a
a, the current frame will be reset to 0.
*/
void TQCanvasSprite::setSequence(TQCanvasPixmapArray* a)
{
bool isvisible = isVisible();
if ( isvisible && images )
hide();
images = a;
if ( frm >= (int)images->count() )
frm = 0;
if ( isvisible )
show();
}
/*!
\internal
Marks any chunks the sprite touches as changed.
*/
void TQCanvasSprite::changeChunks()
{
if (isVisible() && canvas()) {
int chunksize=canvas()->chunkSize();
for (int j=topEdge()/chunksize; j<=bottomEdge()/chunksize; j++) {
for (int i=leftEdge()/chunksize; i<=rightEdge()/chunksize; i++) {
canvas()->setChangedChunk(i,j);
}
}
}
}
/*!
Destroys the sprite and removes it from the canvas. Does \e not
delete the images.
*/
TQCanvasSprite::~TQCanvasSprite()
{
removeFromChunks();
}
/*!
Sets the animation frame used for displaying the sprite to \a f,
an index into the TQCanvasSprite's TQCanvasPixmapArray. The call
will be ignored if \a f is larger than frameCount() or smaller
than 0.
\sa frame() move()
*/
void TQCanvasSprite::setFrame(int f)
{
move(x(),y(),f);
}
/*!
\enum TQCanvasSprite::FrameAnimationType
This enum is used to identify the different types of frame
animation offered by TQCanvasSprite.
\value Cycle at each advance the frame number will be incremented by
1 (modulo the frame count).
\value Oscillate at each advance the frame number will be
incremented by 1 up to the frame count then decremented to by 1 to
0, repeating this sequence forever.
*/
/*!
Sets the animation characteristics for the sprite.
For \a type == \c Cycle, the frames will increase by \a step
at each advance, modulo the frameCount().
For \a type == \c Oscillate, the frames will increase by \a step
at each advance, up to the frameCount(), then decrease by \a step
back to 0, repeating forever.
The \a state parameter is for internal use.
*/
void TQCanvasSprite::setFrameAnimation(FrameAnimationType type, int step, int state)
{
anim_val = step;
anim_type = type;
anim_state = state;
setAnimated(TRUE);
}
/*!
Extends the default TQCanvasItem implementation to provide the
functionality of setFrameAnimation().
The \a phase is 0 or 1: see TQCanvasItem::advance() for details.
\sa TQCanvasItem::advance() setVelocity()
*/
void TQCanvasSprite::advance(int phase)
{
if ( phase==1 ) {
int nf = frame();
if ( anim_type == Oscillate ) {
if ( anim_state )
nf += anim_val;
else
nf -= anim_val;
if ( nf < 0 ) {
nf = abs(anim_val);
anim_state = !anim_state;
} else if ( nf >= frameCount() ) {
nf = frameCount()-1-abs(anim_val);
anim_state = !anim_state;
}
} else {
nf = (nf + anim_val + frameCount()) % frameCount();
}
move(x()+xVelocity(),y()+yVelocity(),nf);
}
}
/*!
\fn int TQCanvasSprite::frame() const
Returns the index of the current animation frame in the
TQCanvasSprite's TQCanvasPixmapArray.
\sa setFrame(), move()
*/
/*!
\fn int TQCanvasSprite::frameCount() const
Returns the number of frames in the TQCanvasSprite's
TQCanvasPixmapArray.
*/
/*!
\reimp
\internal
Moves the sprite to the position \a x, \a y.
Keep it visible.
*/
void TQCanvasSprite::move(double x, double y) { TQCanvasItem::move(x,y); }
/*!
\fn void TQCanvasSprite::move(double nx, double ny, int nf)
Set the position of the sprite to \a nx, \a ny and the current
frame to \a nf. \a nf will be ignored if it is larger than
frameCount() or smaller than 0.
*/
void TQCanvasSprite::move(double nx, double ny, int nf)
{
if (isVisible() && canvas()) {
hide();
TQCanvasItem::move(nx,ny);
if ( nf >= 0 && nf < frameCount() )
frm=nf;
show();
} else {
TQCanvasItem::move(nx,ny);
if ( nf >= 0 && nf < frameCount() )
frm=nf;
}
}
class TQCanvasPolygonScanner : public TQPolygonScanner {
TQPolygonalProcessor& processor;
public:
TQCanvasPolygonScanner(TQPolygonalProcessor& p) :
processor(p)
{
}
void processSpans( int n, TQPoint* point, int* width )
{
processor.doSpans(n,point,width);
}
};
void TQCanvasPolygonalItem::scanPolygon(const TQPointArray& pa, int winding, TQPolygonalProcessor& process) const
{
TQCanvasPolygonScanner scanner(process);
scanner.scan(pa,winding);
}
#endif // QT_NO_CANVAS