You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tqt3/src/kernel/qcolor_x11.cpp

842 lines
25 KiB

/****************************************************************************
**
** Implementation of TQColor class for X11
**
** Created : 940112
**
** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
**
** This file is part of the kernel module of the TQt GUI Toolkit.
**
** This file may be used under the terms of the GNU General
** Public License versions 2.0 or 3.0 as published by the Free
** Software Foundation and appearing in the files LICENSE.GPL2
** and LICENSE.GPL3 included in the packaging of this file.
** Alternatively you may (at your option) use any later version
** of the GNU General Public License if such license has been
** publicly approved by Trolltech ASA (or its successors, if any)
** and the KDE Free TQt Foundation.
**
** Please review the following information to ensure GNU General
** Public Licensing requirements will be met:
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
** If you are unsure which license is appropriate for your use, please
** review the following information:
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
** or contact the sales department at sales@trolltech.com.
**
** This file may be used under the terms of the Q Public License as
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
** included in the packaging of this file. Licensees holding valid TQt
** Commercial licenses may use this file in accordance with the TQt
** Commercial License Agreement provided with the Software.
**
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
** herein.
**
**********************************************************************/
#include "ntqcolor.h"
#include "qcolor_p.h"
#include "string.h"
#include "ntqpaintdevice.h"
#include "ntqapplication.h"
#include "qapplication_p.h"
#include "qt_x11_p.h"
// NOT REVISED
/*****************************************************************************
The color dictionary speeds up color allocation significantly for X11.
When there are no more colors, TQColor::alloc() will set the colors_avail
flag to FALSE and try to find the nearest color.
NOTE: From deep within the event loop, the colors_avail flag is reset to
TRUE (calls the function qt_reset_color_avail()), because some other
application might free its colors, thereby making them available for
this TQt application.
*****************************************************************************/
#include "ntqintdict.h"
struct TQColorData {
uint pix; // allocated pixel value
int context; // allocation context
};
typedef TQIntDict<TQColorData> TQColorDict;
typedef TQIntDictIterator<TQColorData> TQColorDictIt;
static int current_alloc_context = 0; // current color alloc context
static const uint col_std_dict = 419;
static const uint col_large_dict = 18397;
class TQColorScreenData {
public:
TQColorScreenData()
{
colorDict = 0;
colors_avail = TRUE;
g_vis = 0;
g_carr = 0;
g_carr_fetch = TRUE;
g_cells = 0;
g_our_alloc = 0;
color_reduce = FALSE;
}
TQColorDict *colorDict; // dict of allocated colors
bool colors_avail; // X colors available
bool g_truecolor; // truecolor visual
Visual *g_vis; // visual
XColor *g_carr; // color array
bool g_carr_fetch; // perform XQueryColors?
int g_cells; // number of entries in g_carr
bool *g_our_alloc; // our allocated colors
uint red_mask , green_mask , blue_mask;
int red_shift, green_shift, blue_shift;
bool color_reduce;
int col_div_r;
int col_div_g;
int col_div_b;
};
static int screencount = 0;
static TQColorScreenData **screendata = 0; // array of screendata pointers
/*
This function is called from the event loop. It resets the colors_avail
flag so that the application can retry to allocate read-only colors
that other applications may have deallocated lately.
The g_our_alloc and g_carr are global arrays that optimize color
approximation when there are no more colors left to allocate.
*/
void qt_reset_color_avail()
{
int i;
for ( i = 0; i < screencount; i++ ) {
screendata[i]->colors_avail = TRUE;
screendata[i]->g_carr_fetch = TRUE; // do XQueryColors if !colors_avail
}
}
/*
Finds the nearest color.
*/
static int find_nearest_color( int r, int g, int b, int* mindist_out,
TQColorScreenData *sd )
{
int mincol = -1;
int mindist = 200000;
int rx, gx, bx, dist;
XColor *xc = &sd->g_carr[0];
for ( int i=0; i<sd->g_cells; i++ ) {
rx = r - (xc->red >> 8);
gx = g - (xc->green >> 8);
bx = b - (xc->blue>> 8);
dist = rx*rx + gx*gx + bx*bx; // calculate distance
if ( dist < mindist ) { // minimal?
mindist = dist;
mincol = i;
}
xc++;
}
*mindist_out = mindist;
return mincol;
}
/*****************************************************************************
TQColor misc internal functions
*****************************************************************************/
static int highest_bit( uint v )
{
int i;
uint b = (uint)1 << 31; // get pos of highest bit in v
for ( i=31; ((b & v) == 0) && i>=0; i-- )
b >>= 1;
return i;
}
/*****************************************************************************
TQColor static member functions
*****************************************************************************/
/*!
Returns the maximum number of colors supported by the underlying
window system if the window system uses a palette.
Otherwise returns -1. Use numBitPlanes() to calculate the available
colors in that case.
*/
int TQColor::maxColors()
{
Visual *visual = (Visual *) TQPaintDevice::x11AppVisual();
if (visual->c_class & 1)
return TQPaintDevice::x11AppCells();
return -1;
}
/*!
Returns the number of color bit planes for the underlying window
system.
The returned value is equal to the default pixmap depth.
\sa TQPixmap::defaultDepth()
*/
int TQColor::numBitPlanes()
{
return TQPaintDevice::x11AppDepth();
}
/*!
Internal initialization required for TQColor.
This function is called from the TQApplication constructor.
\sa cleanup()
*/
void TQColor::initialize()
{
static const int blackIdx = 2;
static const int whiteIdx = 3;
if ( color_init ) // already initialized
return;
color_init = TRUE;
Display *dpy = TQPaintDevice::x11AppDisplay();
int spec = TQApplication::colorSpec();
screencount = ScreenCount( dpy );
screendata = new TQColorScreenData*[ screencount ];
int scr;
for ( scr = 0; scr < screencount; ++scr ) {
screendata[scr] = new TQColorScreenData;
screendata[scr]->g_vis = (Visual *) TQPaintDevice::x11AppVisual( scr );
screendata[scr]->g_truecolor = screendata[scr]->g_vis->c_class == TrueColor
|| screendata[scr]->g_vis->c_class == DirectColor;
int ncols = TQPaintDevice::x11AppCells( scr );
if ( screendata[scr]->g_truecolor ) {
if (scr == DefaultScreen(dpy))
colormodel = d32;
} else {
if (scr == DefaultScreen(dpy))
colormodel = d8;
// Create the g_our_alloc array, which remembers which color pixels
// we allocated.
screendata[scr]->g_cells = TQMIN(ncols,256);
screendata[scr]->g_carr = new XColor[screendata[scr]->g_cells];
TQ_CHECK_PTR( screendata[scr]->g_carr );
memset( screendata[scr]->g_carr, 0,
screendata[scr]->g_cells*sizeof(XColor) );
screendata[scr]->g_carr_fetch = TRUE; // run XQueryColors on demand
screendata[scr]->g_our_alloc = new bool[screendata[scr]->g_cells];
TQ_CHECK_PTR( screendata[scr]->g_our_alloc );
memset( screendata[scr]->g_our_alloc, FALSE,
screendata[scr]->g_cells*sizeof(bool) );
XColor *xc = &screendata[scr]->g_carr[0];
for ( int i=0; i<screendata[scr]->g_cells; i++ ) {
xc->pixel = i; // g_carr[i] = color i
xc++;
}
}
int dictsize;
if ( screendata[scr]->g_truecolor ) { // truecolor
dictsize = 1; // will not need color dict
screendata[scr]->red_mask = (uint)screendata[scr]->g_vis->red_mask;
screendata[scr]->green_mask = (uint)screendata[scr]->g_vis->green_mask;
screendata[scr]->blue_mask = (uint)screendata[scr]->g_vis->blue_mask;
screendata[scr]->red_shift =
highest_bit( screendata[scr]->red_mask ) - 7;
screendata[scr]->green_shift =
highest_bit( screendata[scr]->green_mask ) - 7;
screendata[scr]->blue_shift =
highest_bit( screendata[scr]->blue_mask ) - 7;
} else {
dictsize = col_std_dict;
}
screendata[scr]->colorDict = new TQColorDict(dictsize); // create dictionary
TQ_CHECK_PTR( screendata[scr]->colorDict );
if ( spec == (int)TQApplication::ManyColor ) {
screendata[scr]->color_reduce = TRUE;
switch ( qt_ncols_option ) {
case 216:
// 6:6:6
screendata[scr]->col_div_r = screendata[scr]->col_div_g =
screendata[scr]->col_div_b = (255/(6-1));
break;
default: {
// 2:3:1 proportions, solved numerically
if ( qt_ncols_option > 255 ) qt_ncols_option = 255;
if ( qt_ncols_option < 1 ) qt_ncols_option = 1;
int nr = 2;
int ng = 2;
int nb = 2;
for (;;) {
if ( nb*2 < nr && (nb+1)*nr*ng < qt_ncols_option )
nb++;
else if ( nr*3 < ng*2 && nb*(nr+1)*ng < qt_ncols_option )
nr++;
else if ( nb*nr*(ng+1) < qt_ncols_option )
ng++;
else break;
}
qt_ncols_option = nr*ng*nb;
screendata[scr]->col_div_r = (255/(nr-1));
screendata[scr]->col_div_g = (255/(ng-1));
screendata[scr]->col_div_b = (255/(nb-1));
}
}
}
}
scr = TQPaintDevice::x11AppScreen();
// Initialize global color objects
if ( TQPaintDevice::x11AppDefaultVisual(scr) &&
TQPaintDevice::x11AppDefaultColormap(scr) ) {
globalColors()[blackIdx].setPixel((uint) BlackPixel(dpy, scr));
globalColors()[whiteIdx].setPixel((uint) WhitePixel(dpy, scr));
} else {
globalColors()[blackIdx].alloc(scr);
globalColors()[whiteIdx].alloc(scr);
}
#if 0 /* 0 == allocate colors on demand */
setLazyAlloc( FALSE ); // allocate global colors
((TQColor*)(&darkGray))-> alloc();
((TQColor*)(&gray))-> alloc();
((TQColor*)(&lightGray))-> alloc();
((TQColor*)(&::red))-> alloc();
((TQColor*)(&::green))-> alloc();
((TQColor*)(&::blue))-> alloc();
((TQColor*)(&cyan))-> alloc();
((TQColor*)(&magenta))-> alloc();
((TQColor*)(&yellow))-> alloc();
((TQColor*)(&darkRed))-> alloc();
((TQColor*)(&darkGreen))-> alloc();
((TQColor*)(&darkBlue))-> alloc();
((TQColor*)(&darkCyan))-> alloc();
((TQColor*)(&darkMagenta))-> alloc();
((TQColor*)(&darkYellow))-> alloc();
setLazyAlloc( TRUE );
#endif
}
/*!
Internal clean up required for TQColor.
This function is called from the TQApplication destructor.
\sa initialize()
*/
void TQColor::cleanup()
{
if ( !color_init )
return;
color_init = FALSE;
int scr;
for ( scr = 0; scr < screencount; scr++ ) {
if ( screendata[scr]->g_carr ) {
delete [] screendata[scr]->g_carr;
screendata[scr]->g_carr = 0;
}
if ( screendata[scr]->g_our_alloc ) {
delete [] screendata[scr]->g_our_alloc;
screendata[scr]->g_our_alloc = 0;
}
if ( screendata[scr]->colorDict ) {
screendata[scr]->colorDict->setAutoDelete( TRUE );
screendata[scr]->colorDict->clear();
delete screendata[scr]->colorDict;
screendata[scr]->colorDict = 0;
}
delete screendata[scr];
screendata[scr] = 0;
}
delete [] screendata;
screendata = 0;
screencount = 0;
}
/*****************************************************************************
TQColor member functions
*****************************************************************************/
/*!
\internal
Allocates the color on screen \a screen. Only used in X11.
\sa alloc(), pixel()
*/
uint TQColor::alloc( int screen )
{
Display *dpy = TQPaintDevice::x11AppDisplay();
if ( screen < 0 )
screen = TQPaintDevice::x11AppScreen();
if ( !color_init )
return dpy ? (uint)BlackPixel(dpy, screen) : 0;
int r = tqRed(d.argb);
int g = tqGreen(d.argb);
int b = tqBlue(d.argb);
uint pix = 0;
TQColorScreenData *sd = screendata[screen];
if ( sd->g_truecolor ) { // truecolor: map to pixel
r = sd->red_shift > 0 ? r << sd->red_shift : r >> -sd->red_shift;
g = sd->green_shift > 0 ? g << sd->green_shift : g >> -sd->green_shift;
b = sd->blue_shift > 0 ? b << sd->blue_shift : b >> -sd->blue_shift;
pix = (b & sd->blue_mask) | (g & sd->green_mask) | (r & sd->red_mask)
| ~(sd->blue_mask | sd->green_mask | sd->red_mask);
if (TQPaintDevice::x11AppDepth(screen) == 32) {
int a = tqAlpha(d.argb);
pix = pix & 0x00ffffff;
pix = pix | (a << 24);
}
if ( screen == TQPaintDevice::x11AppScreen() ) {
d.d32.pix = pix;
}
return pix;
}
TQColorData *c = sd->colorDict->find( (long)(d.argb) );
if ( c ) { // found color in dictionary
pix = c->pix;
if ( screen == TQPaintDevice::x11AppScreen() ) {
d.d8.invalid = FALSE; // color ok
d.d8.dirty = FALSE;
d.d8.pix = pix; // use same pixel value
if ( c->context != current_alloc_context ) {
c->context = 0; // convert to default context
sd->g_our_alloc[pix] = TRUE; // reuse without XAllocColor
}
}
return pix;
}
XColor col;
col.red = r << 8;
col.green = g << 8;
col.blue = b << 8;
bool try_again = FALSE;
bool try_alloc = !sd->color_reduce;
int try_count = 0;
do {
// This loop is run until we manage to either allocate or
// find an approximate color, it stops after a few iterations.
try_again = FALSE;
if ( try_alloc && sd->colors_avail &&
XAllocColor(dpy, TQPaintDevice::x11AppColormap( screen ),&col) ) {
// We could allocate the color
pix = (uint) col.pixel;
if ( screen == TQPaintDevice::x11AppScreen() ) {
d.d8.pix = pix;
d.d8.invalid = FALSE;
d.d8.dirty = FALSE;
sd->g_carr[d.d8.pix] = col; // update color array
if ( current_alloc_context == 0 )
sd->g_our_alloc[d.d8.pix] = TRUE; // reuse without XAllocColor
}
} else {
// No available colors, or we did not want to allocate one
int i;
sd->colors_avail = FALSE; // no more available colors
if ( sd->g_carr_fetch ) { // refetch color array
sd->g_carr_fetch = FALSE;
XQueryColors( dpy, TQPaintDevice::x11AppColormap( screen ), sd->g_carr,
sd->g_cells );
}
int mindist;
i = find_nearest_color( r, g, b, &mindist, sd );
if ( mindist != 0 && !try_alloc ) {
// Not an exact match with an existing color
int rr = ((r+sd->col_div_r/2)/sd->col_div_r)*sd->col_div_r;
int rg = ((g+sd->col_div_g/2)/sd->col_div_g)*sd->col_div_g;
int rb = ((b+sd->col_div_b/2)/sd->col_div_b)*sd->col_div_b;
int rx = rr - r;
int gx = rg - g;
int bx = rb - b;
int dist = rx*rx + gx*gx + bx*bx; // calculate distance
if ( dist < mindist ) {
// reduced color is closer - try to alloc it
r = rr;
g = rg;
b = rb;
col.red = r << 8;
col.green = g << 8;
col.blue = b << 8;
try_alloc = TRUE;
try_again = TRUE;
sd->colors_avail = TRUE;
continue; // Try alloc reduced color
}
}
if ( i == -1 ) { // no nearest color?!
int unused, value;
hsv(&unused, &unused, &value);
if (value < 128) { // dark, use black
d.argb = tqRgb(0,0,0);
pix = (uint)BlackPixel( dpy, screen );
if ( screen == TQPaintDevice::x11AppScreen() ) {
d.d8.invalid = FALSE;
d.d8.dirty = FALSE;
d.d8.pix = pix;
}
} else { // light, use white
d.argb = tqRgb(0xff,0xff,0xff);
pix = (uint)WhitePixel( dpy, screen );
if ( screen == TQPaintDevice::x11AppScreen() ) {
d.d8.invalid = FALSE;
d.d8.dirty = FALSE;
d.d8.pix = pix;
}
}
return pix;
}
if ( sd->g_our_alloc[i] ) { // we've already allocated it
; // i == g_carr[i].pixel
} else {
// Try to allocate existing color
col = sd->g_carr[i];
if ( XAllocColor(dpy, TQPaintDevice::x11AppColormap( screen ), &col) ) {
i = (uint)col.pixel;
sd->g_carr[i] = col; // update color array
if ( screen == TQPaintDevice::x11AppScreen() ) {
if ( current_alloc_context == 0 )
sd->g_our_alloc[i] = TRUE; // only in the default context
}
} else {
// Oops, it's gone again
try_count++;
try_again = TRUE;
sd->colors_avail = TRUE;
sd->g_carr_fetch = TRUE;
}
}
if ( !try_again ) { // got it
pix = (uint)sd->g_carr[i].pixel;
if ( screen == TQPaintDevice::x11AppScreen() ) {
d.d8.invalid = FALSE;
d.d8.dirty = FALSE;
d.d8.pix = pix; // allocated X11 color
}
}
}
} while ( try_again && try_count < 2 );
if ( try_again ) { // no hope of allocating color
int unused, value;
hsv(&unused, &unused, &value);
if (value < 128) { // dark, use black
d.argb = tqRgb(0,0,0);
pix = (uint)BlackPixel( dpy, screen );
if ( screen == TQPaintDevice::x11AppScreen() ) {
d.d8.invalid = FALSE;
d.d8.dirty = FALSE;
d.d8.pix = pix;
}
} else { // light, use white
d.argb = tqRgb(0xff,0xff,0xff);
pix = (uint)WhitePixel( dpy, screen );
if ( screen == TQPaintDevice::x11AppScreen() ) {
d.d8.invalid = FALSE;
d.d8.dirty = FALSE;
d.d8.pix = pix;
}
}
return pix;
}
// All colors outside context 0 must go into the dictionary
bool many = sd->colorDict->count() >= sd->colorDict->size() * 8;
if ( many && sd->colorDict->size() == col_std_dict ) {
sd->colorDict->resize( col_large_dict );
}
if ( !many || current_alloc_context != 0 ) {
c = new TQColorData; // insert into color dict
TQ_CHECK_PTR( c );
c->pix = pix;
c->context = current_alloc_context;
sd->colorDict->insert( (long)d.argb, c ); // store color in dict
}
return pix;
}
/*!
Allocates the RGB color and returns the pixel value.
Allocating a color means to obtain a pixel value from the RGB
specification. The pixel value is an index into the global color
table, but should be considered an arbitrary platform-dependent value.
The pixel() function calls alloc() if necessary, so in general you
don't need to call this function.
\sa enterAllocContext()
*/
// ### 4.0 - remove me?
uint TQColor::alloc()
{
return alloc( -1 );
}
/*!
\overload
Returns the pixel value for screen \a screen.
This value is used by the underlying window system to refer to a color.
It can be thought of as an index into the display hardware's color table,
but the value is an arbitrary 32-bit value.
\sa alloc()
*/
uint TQColor::pixel( int screen ) const
{
if (screen != TQPaintDevice::x11AppScreen() &&
// don't allocate color0 or color1, they have fixed pixel
// values for all screens
d.argb != tqRgba(255, 255, 255, 1) && d.argb != tqRgba(0, 0, 0, 1))
return ((TQColor*)this)->alloc( screen );
return pixel();
}
void TQColor::setSystemNamedColor( const TQString& name )
{
// setSystemNamedColor should look up rgb values from the built in
// color tables first (see qcolor_p.cpp), and failing that, use
// the window system's interface for translating names to rgb values...
// we do this so that things like uic can load an XPM file with named colors
// and convert it to a png without having to use window system functions...
d.argb = qt_get_rgb_val( name.latin1() );
TQRgb rgb;
if ( qt_get_named_rgb( name.latin1(), &rgb ) ) {
setRgb( tqRed(rgb), tqGreen(rgb), tqBlue(rgb) );
if ( colormodel == d8 ) {
d.d8.invalid = FALSE;
d.d8.dirty = TRUE;
d.d8.pix = 0;
} else {
alloc();
}
} else if ( !color_init ) {
#if defined(QT_CHECK_STATE)
tqWarning( "TQColor::setSystemNamedColor: Cannot perform this operation "
"because TQApplication does not exist" );
#endif
// set color to invalid
*this = TQColor();
} else {
XColor col, hw_col;
if ( XLookupColor(TQPaintDevice::x11AppDisplay(),
TQPaintDevice::x11AppColormap(), name.latin1(),
&col, &hw_col) ) {
setRgb( col.red>>8, col.green>>8, col.blue>>8 );
} else {
// set color to invalid
*this = TQColor();
}
}
}
#define MAX_CONTEXTS 16
static int context_stack[MAX_CONTEXTS];
static int context_ptr = 0;
static void init_context_stack()
{
static bool did_init = FALSE;
if ( !did_init ) {
did_init = TRUE;
context_stack[0] = current_alloc_context = 0;
}
}
/*!
Enters a color allocation context and returns a non-zero unique
identifier.
Color allocation contexts are useful for programs that need to
allocate many colors and throw them away later, like image
viewers. The allocation context functions work for true color
displays as well as for colormap displays, except that
TQColor::destroyAllocContext() does nothing for true color.
Example:
\code
TQPixmap loadPixmap( TQString fileName )
{
static int alloc_context = 0;
if ( alloc_context )
TQColor::destroyAllocContext( alloc_context );
alloc_context = TQColor::enterAllocContext();
TQPixmap pm( fileName );
TQColor::leaveAllocContext();
return pm;
}
\endcode
The example code loads a pixmap from file. It frees up all colors
that were allocated the last time loadPixmap() was called.
The initial/default context is 0. TQt keeps a list of colors
associated with their allocation contexts. You can call
destroyAllocContext() to get rid of all colors that were allocated
in a specific context.
Calling enterAllocContext() enters an allocation context. The
allocation context lasts until you call leaveAllocContext().
TQColor has an internal stack of allocation contexts. Each call to
enterAllocContex() must have a corresponding leaveAllocContext().
\code
// context 0 active
int c1 = TQColor::enterAllocContext(); // enter context c1
// context c1 active
int c2 = TQColor::enterAllocContext(); // enter context c2
// context c2 active
TQColor::leaveAllocContext(); // leave context c2
// context c1 active
TQColor::leaveAllocContext(); // leave context c1
// context 0 active
// Now, free all colors that were allocated in context c2
TQColor::destroyAllocContext( c2 );
\endcode
You may also want to set the application's color specification.
See TQApplication::setColorSpec() for more information.
\sa leaveAllocContext(), currentAllocContext(), destroyAllocContext(),
TQApplication::setColorSpec()
*/
int TQColor::enterAllocContext()
{
static int context_seq_no = 0;
init_context_stack();
if ( context_ptr+1 == MAX_CONTEXTS ) {
#if defined(QT_CHECK_STATE)
tqWarning( "TQColor::enterAllocContext: Context stack overflow" );
#endif
return 0;
}
current_alloc_context = context_stack[++context_ptr] = ++context_seq_no;
return current_alloc_context;
}
/*!
Leaves a color allocation context.
See enterAllocContext() for a detailed explanation.
\sa enterAllocContext(), currentAllocContext()
*/
void TQColor::leaveAllocContext()
{
init_context_stack();
if ( context_ptr == 0 ) {
#if defined(QT_CHECK_STATE)
tqWarning( "TQColor::leaveAllocContext: Context stack underflow" );
#endif
return;
}
current_alloc_context = context_stack[--context_ptr];
}
/*!
Returns the current color allocation context.
The default context is 0.
\sa enterAllocContext(), leaveAllocContext()
*/
int TQColor::currentAllocContext()
{
return current_alloc_context;
}
/*!
Destroys a color allocation context, \e context.
This function deallocates all colors that were allocated in the
specified \a context. If \a context == -1, it frees up all colors
that the application has allocated. If \a context == -2, it frees
up all colors that the application has allocated, except those in
the default context.
The function does nothing for true color displays.
\sa enterAllocContext(), alloc()
*/
void TQColor::destroyAllocContext( int context )
{
init_context_stack();
if ( !color_init )
return;
int screen;
for ( screen = 0; screen < screencount; ++screen ) {
if ( screendata[screen]->g_truecolor )
continue;
ulong pixels[256];
bool freeing[256];
memset( freeing, FALSE, screendata[screen]->g_cells*sizeof(bool) );
TQColorData *d;
TQColorDictIt it( *screendata[screen]->colorDict );
int i = 0;
uint rgbv;
while ( (d=it.current()) ) {
rgbv = (uint)it.currentKey();
if ( (d->context || context==-1) &&
(d->context == context || context < 0) ) {
if ( !screendata[screen]->g_our_alloc[d->pix] && !freeing[d->pix] ) {
// will free this color
pixels[i++] = d->pix;
freeing[d->pix] = TRUE;
}
// remove from dict
screendata[screen]->colorDict->remove( (long)rgbv );
}
++it;
}
if ( i )
XFreeColors( TQPaintDevice::x11AppDisplay(),
TQPaintDevice::x11AppColormap( screen ),
pixels, i, 0 );
}
}