|
|
|
/*
|
|
|
|
** 2001 September 15
|
|
|
|
**
|
|
|
|
** The author disclaims copyright to this source code. In place of
|
|
|
|
** a legal notice, here is a blessing:
|
|
|
|
**
|
|
|
|
** May you do good and not evil.
|
|
|
|
** May you find forgiveness for yourself and forgive others.
|
|
|
|
** May you share freely, never taking more than you give.
|
|
|
|
**
|
|
|
|
*************************************************************************
|
|
|
|
** This file contains C code routines that are called by the SQLite parser
|
|
|
|
** when syntax rules are reduced. The routines in this file handle the
|
|
|
|
** following kinds of SQL syntax:
|
|
|
|
**
|
|
|
|
** CREATE TABLE
|
|
|
|
** DROP TABLE
|
|
|
|
** CREATE INDEX
|
|
|
|
** DROP INDEX
|
|
|
|
** creating ID lists
|
|
|
|
** BEGIN TRANSACTION
|
|
|
|
** COMMIT
|
|
|
|
** ROLLBACK
|
|
|
|
** PRAGMA
|
|
|
|
**
|
|
|
|
** $Id: build.c,v 1.175 2004/02/24 01:04:12 drh Exp $
|
|
|
|
*/
|
|
|
|
#include "sqliteInt.h"
|
|
|
|
#include <ctype.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called when a new SQL statement is beginning to
|
|
|
|
** be parsed. Check to see if the schema for the database needs
|
|
|
|
** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
|
|
|
|
** If it does, then read it.
|
|
|
|
*/
|
|
|
|
void sqliteBeginParse(Parse *pParse, int explainFlag){
|
|
|
|
sqlite *db = pParse->db;
|
|
|
|
int i;
|
|
|
|
pParse->explain = explainFlag;
|
|
|
|
if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
|
|
|
|
int rc = sqliteInit(db, &pParse->zErrMsg);
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
pParse->rc = rc;
|
|
|
|
pParse->nErr++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for(i=0; i<db->nDb; i++){
|
|
|
|
DbClearProperty(db, i, DB_Locked);
|
|
|
|
if( !db->aDb[i].inTrans ){
|
|
|
|
DbClearProperty(db, i, DB_Cookie);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pParse->nVar = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called after a single SQL statement has been
|
|
|
|
** parsed and we want to execute the VDBE code to implement
|
|
|
|
** that statement. Prior action routines should have already
|
|
|
|
** constructed VDBE code to do the work of the SQL statement.
|
|
|
|
** This routine just has to execute the VDBE code.
|
|
|
|
**
|
|
|
|
** Note that if an error occurred, it might be the case that
|
|
|
|
** no VDBE code was generated.
|
|
|
|
*/
|
|
|
|
void sqliteExec(Parse *pParse){
|
|
|
|
sqlite *db = pParse->db;
|
|
|
|
Vdbe *v = pParse->pVdbe;
|
|
|
|
|
|
|
|
if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){
|
|
|
|
sqliteVdbeAddOp(v, OP_Halt, 0, 0);
|
|
|
|
}
|
|
|
|
if( sqlite_malloc_failed ) return;
|
|
|
|
if( v && pParse->nErr==0 ){
|
|
|
|
FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
|
|
|
|
sqliteVdbeTrace(v, trace);
|
|
|
|
sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain);
|
|
|
|
pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
|
|
|
|
pParse->colNamesSet = 0;
|
|
|
|
}else if( pParse->rc==SQLITE_OK ){
|
|
|
|
pParse->rc = SQLITE_ERROR;
|
|
|
|
}
|
|
|
|
pParse->nTab = 0;
|
|
|
|
pParse->nMem = 0;
|
|
|
|
pParse->nSet = 0;
|
|
|
|
pParse->nAgg = 0;
|
|
|
|
pParse->nVar = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Locate the in-memory structure that describes
|
|
|
|
** a particular database table given the name
|
|
|
|
** of that table and (optionally) the name of the database
|
|
|
|
** containing the table. Return NULL if not found.
|
|
|
|
**
|
|
|
|
** If zDatabase is 0, all databases are searched for the
|
|
|
|
** table and the first matching table is returned. (No checking
|
|
|
|
** for duplicate table names is done.) The search order is
|
|
|
|
** TEMP first, then MAIN, then any auxiliary databases added
|
|
|
|
** using the ATTACH command.
|
|
|
|
**
|
|
|
|
** See also sqliteLocateTable().
|
|
|
|
*/
|
|
|
|
Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){
|
|
|
|
Table *p = 0;
|
|
|
|
int i;
|
|
|
|
for(i=0; i<db->nDb; i++){
|
|
|
|
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
|
|
if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue;
|
|
|
|
p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
|
|
|
|
if( p ) break;
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Locate the in-memory structure that describes
|
|
|
|
** a particular database table given the name
|
|
|
|
** of that table and (optionally) the name of the database
|
|
|
|
** containing the table. Return NULL if not found.
|
|
|
|
** Also leave an error message in pParse->zErrMsg.
|
|
|
|
**
|
|
|
|
** The difference between this routine and sqliteFindTable()
|
|
|
|
** is that this routine leaves an error message in pParse->zErrMsg
|
|
|
|
** where sqliteFindTable() does not.
|
|
|
|
*/
|
|
|
|
Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){
|
|
|
|
Table *p;
|
|
|
|
|
|
|
|
p = sqliteFindTable(pParse->db, zName, zDbase);
|
|
|
|
if( p==0 ){
|
|
|
|
if( zDbase ){
|
|
|
|
sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
|
|
|
|
}else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){
|
|
|
|
sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
|
|
|
|
zName, zDbase);
|
|
|
|
}else{
|
|
|
|
sqliteErrorMsg(pParse, "no such table: %s", zName);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Locate the in-memory structure that describes
|
|
|
|
** a particular index given the name of that index
|
|
|
|
** and the name of the database that contains the index.
|
|
|
|
** Return NULL if not found.
|
|
|
|
**
|
|
|
|
** If zDatabase is 0, all databases are searched for the
|
|
|
|
** table and the first matching index is returned. (No checking
|
|
|
|
** for duplicate index names is done.) The search order is
|
|
|
|
** TEMP first, then MAIN, then any auxiliary databases added
|
|
|
|
** using the ATTACH command.
|
|
|
|
*/
|
|
|
|
Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){
|
|
|
|
Index *p = 0;
|
|
|
|
int i;
|
|
|
|
for(i=0; i<db->nDb; i++){
|
|
|
|
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
|
|
if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue;
|
|
|
|
p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
|
|
|
|
if( p ) break;
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Remove the given index from the index hash table, and free
|
|
|
|
** its memory structures.
|
|
|
|
**
|
|
|
|
** The index is removed from the database hash tables but
|
|
|
|
** it is not unlinked from the Table that it indexes.
|
|
|
|
** Unlinking from the Table must be done by the calling function.
|
|
|
|
*/
|
|
|
|
static void sqliteDeleteIndex(sqlite *db, Index *p){
|
|
|
|
Index *pOld;
|
|
|
|
|
|
|
|
assert( db!=0 && p->zName!=0 );
|
|
|
|
pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName,
|
|
|
|
strlen(p->zName)+1, 0);
|
|
|
|
if( pOld!=0 && pOld!=p ){
|
|
|
|
sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
|
|
|
|
strlen(pOld->zName)+1, pOld);
|
|
|
|
}
|
|
|
|
sqliteFree(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Unlink the given index from its table, then remove
|
|
|
|
** the index from the index hash table and free its memory
|
|
|
|
** structures.
|
|
|
|
*/
|
|
|
|
void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
|
|
|
|
if( pIndex->pTable->pIndex==pIndex ){
|
|
|
|
pIndex->pTable->pIndex = pIndex->pNext;
|
|
|
|
}else{
|
|
|
|
Index *p;
|
|
|
|
for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
|
|
|
|
if( p && p->pNext==pIndex ){
|
|
|
|
p->pNext = pIndex->pNext;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sqliteDeleteIndex(db, pIndex);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Erase all schema information from the in-memory hash tables of
|
|
|
|
** database connection. This routine is called to reclaim memory
|
|
|
|
** before the connection closes. It is also called during a rollback
|
|
|
|
** if there were schema changes during the transaction.
|
|
|
|
**
|
|
|
|
** If iDb<=0 then reset the internal schema tables for all database
|
|
|
|
** files. If iDb>=2 then reset the internal schema for only the
|
|
|
|
** single file indicated.
|
|
|
|
*/
|
|
|
|
void sqliteResetInternalSchema(sqlite *db, int iDb){
|
|
|
|
HashElem *pElem;
|
|
|
|
Hash temp1;
|
|
|
|
Hash temp2;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
|
|
db->flags &= ~SQLITE_Initialized;
|
|
|
|
for(i=iDb; i<db->nDb; i++){
|
|
|
|
Db *pDb = &db->aDb[i];
|
|
|
|
temp1 = pDb->tblHash;
|
|
|
|
temp2 = pDb->trigHash;
|
|
|
|
sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
|
|
|
|
sqliteHashClear(&pDb->aFKey);
|
|
|
|
sqliteHashClear(&pDb->idxHash);
|
|
|
|
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
|
|
|
|
Trigger *pTrigger = sqliteHashData(pElem);
|
|
|
|
sqliteDeleteTrigger(pTrigger);
|
|
|
|
}
|
|
|
|
sqliteHashClear(&temp2);
|
|
|
|
sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
|
|
|
|
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
|
|
|
|
Table *pTab = sqliteHashData(pElem);
|
|
|
|
sqliteDeleteTable(db, pTab);
|
|
|
|
}
|
|
|
|
sqliteHashClear(&temp1);
|
|
|
|
DbClearProperty(db, i, DB_SchemaLoaded);
|
|
|
|
if( iDb>0 ) return;
|
|
|
|
}
|
|
|
|
assert( iDb==0 );
|
|
|
|
db->flags &= ~SQLITE_InternChanges;
|
|
|
|
|
|
|
|
/* If one or more of the auxiliary database files has been closed,
|
|
|
|
** then remove then from the auxiliary database list. We take the
|
|
|
|
** opportunity to do this here since we have just deleted all of the
|
|
|
|
** schema hash tables and therefore do not have to make any changes
|
|
|
|
** to any of those tables.
|
|
|
|
*/
|
|
|
|
for(i=0; i<db->nDb; i++){
|
|
|
|
struct Db *pDb = &db->aDb[i];
|
|
|
|
if( pDb->pBt==0 ){
|
|
|
|
if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
|
|
|
|
pDb->pAux = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for(i=j=2; i<db->nDb; i++){
|
|
|
|
struct Db *pDb = &db->aDb[i];
|
|
|
|
if( pDb->pBt==0 ){
|
|
|
|
sqliteFree(pDb->zName);
|
|
|
|
pDb->zName = 0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if( j<i ){
|
|
|
|
db->aDb[j] = db->aDb[i];
|
|
|
|
}
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
|
|
|
|
db->nDb = j;
|
|
|
|
if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
|
|
|
|
memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
|
|
|
|
sqliteFree(db->aDb);
|
|
|
|
db->aDb = db->aDbStatic;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called whenever a rollback occurs. If there were
|
|
|
|
** schema changes during the transaction, then we have to reset the
|
|
|
|
** internal hash tables and reload them from disk.
|
|
|
|
*/
|
|
|
|
void sqliteRollbackInternalChanges(sqlite *db){
|
|
|
|
if( db->flags & SQLITE_InternChanges ){
|
|
|
|
sqliteResetInternalSchema(db, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called when a commit occurs.
|
|
|
|
*/
|
|
|
|
void sqliteCommitInternalChanges(sqlite *db){
|
|
|
|
db->aDb[0].schema_cookie = db->next_cookie;
|
|
|
|
db->flags &= ~SQLITE_InternChanges;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Remove the memory data structures associated with the given
|
|
|
|
** Table. No changes are made to disk by this routine.
|
|
|
|
**
|
|
|
|
** This routine just deletes the data structure. It does not unlink
|
|
|
|
** the table data structure from the hash table. Nor does it remove
|
|
|
|
** foreign keys from the sqlite.aFKey hash table. But it does destroy
|
|
|
|
** memory structures of the indices and foreign keys associated with
|
|
|
|
** the table.
|
|
|
|
**
|
|
|
|
** Indices associated with the table are unlinked from the "db"
|
|
|
|
** data structure if db!=NULL. If db==NULL, indices attached to
|
|
|
|
** the table are deleted, but it is assumed they have already been
|
|
|
|
** unlinked.
|
|
|
|
*/
|
|
|
|
void sqliteDeleteTable(sqlite *db, Table *pTable){
|
|
|
|
int i;
|
|
|
|
Index *pIndex, *pNext;
|
|
|
|
FKey *pFKey, *pNextFKey;
|
|
|
|
|
|
|
|
if( pTable==0 ) return;
|
|
|
|
|
|
|
|
/* Delete all indices associated with this table
|
|
|
|
*/
|
|
|
|
for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
|
|
|
|
pNext = pIndex->pNext;
|
|
|
|
assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
|
|
|
|
sqliteDeleteIndex(db, pIndex);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Delete all foreign keys associated with this table. The keys
|
|
|
|
** should have already been unlinked from the db->aFKey hash table
|
|
|
|
*/
|
|
|
|
for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
|
|
|
|
pNextFKey = pFKey->pNextFrom;
|
|
|
|
assert( pTable->iDb<db->nDb );
|
|
|
|
assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey,
|
|
|
|
pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
|
|
|
|
sqliteFree(pFKey);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Delete the Table structure itself.
|
|
|
|
*/
|
|
|
|
for(i=0; i<pTable->nCol; i++){
|
|
|
|
sqliteFree(pTable->aCol[i].zName);
|
|
|
|
sqliteFree(pTable->aCol[i].zDflt);
|
|
|
|
sqliteFree(pTable->aCol[i].zType);
|
|
|
|
}
|
|
|
|
sqliteFree(pTable->zName);
|
|
|
|
sqliteFree(pTable->aCol);
|
|
|
|
sqliteSelectDelete(pTable->pSelect);
|
|
|
|
sqliteFree(pTable);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Unlink the given table from the hash tables and the delete the
|
|
|
|
** table structure with all its indices and foreign keys.
|
|
|
|
*/
|
|
|
|
static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
|
|
|
|
Table *pOld;
|
|
|
|
FKey *pF1, *pF2;
|
|
|
|
int i = p->iDb;
|
|
|
|
assert( db!=0 );
|
|
|
|
pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
|
|
|
|
assert( pOld==0 || pOld==p );
|
|
|
|
for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
|
|
|
|
int nTo = strlen(pF1->zTo) + 1;
|
|
|
|
pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
|
|
|
|
if( pF2==pF1 ){
|
|
|
|
sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
|
|
|
|
}else{
|
|
|
|
while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
|
|
|
|
if( pF2 ){
|
|
|
|
pF2->pNextTo = pF1->pNextTo;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sqliteDeleteTable(db, p);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Construct the name of a user table or index from a token.
|
|
|
|
**
|
|
|
|
** Space to hold the name is obtained from sqliteMalloc() and must
|
|
|
|
** be freed by the calling function.
|
|
|
|
*/
|
|
|
|
char *sqliteTableNameFromToken(Token *pName){
|
|
|
|
char *zName = sqliteStrNDup(pName->z, pName->n);
|
|
|
|
sqliteDequote(zName);
|
|
|
|
return zName;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate code to open the appropriate master table. The table
|
|
|
|
** opened will be SQLITE_MASTER for persistent tables and
|
|
|
|
** SQLITE_TEMP_MASTER for temporary tables. The table is opened
|
|
|
|
** on cursor 0.
|
|
|
|
*/
|
|
|
|
void sqliteOpenMasterTable(Vdbe *v, int isTemp){
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Begin constructing a new table representation in memory. This is
|
|
|
|
** the first of several action routines that get called in response
|
|
|
|
** to a CREATE TABLE statement. In particular, this routine is called
|
|
|
|
** after seeing tokens "CREATE" and "TABLE" and the table name. The
|
|
|
|
** pStart token is the CREATE and pName is the table name. The isTemp
|
|
|
|
** flag is true if the table should be stored in the auxiliary database
|
|
|
|
** file instead of in the main database file. This is normally the case
|
|
|
|
** when the "TEMP" or "TEMPORARY" keyword occurs in between
|
|
|
|
** CREATE and TABLE.
|
|
|
|
**
|
|
|
|
** The new table record is initialized and put in pParse->pNewTable.
|
|
|
|
** As more of the CREATE TABLE statement is parsed, additional action
|
|
|
|
** routines will be called to add more information to this record.
|
|
|
|
** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
|
|
|
|
** is called to complete the construction of the new table record.
|
|
|
|
*/
|
|
|
|
void sqliteStartTable(
|
|
|
|
Parse *pParse, /* Parser context */
|
|
|
|
Token *pStart, /* The "CREATE" token */
|
|
|
|
Token *pName, /* Name of table or view to create */
|
|
|
|
int isTemp, /* True if this is a TEMP table */
|
|
|
|
int isView /* True if this is a VIEW */
|
|
|
|
){
|
|
|
|
Table *pTable;
|
|
|
|
Index *pIdx;
|
|
|
|
char *zName;
|
|
|
|
sqlite *db = pParse->db;
|
|
|
|
Vdbe *v;
|
|
|
|
int iDb;
|
|
|
|
|
|
|
|
pParse->sFirstToken = *pStart;
|
|
|
|
zName = sqliteTableNameFromToken(pName);
|
|
|
|
if( zName==0 ) return;
|
|
|
|
if( db->init.iDb==1 ) isTemp = 1;
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
assert( (isTemp & 1)==isTemp );
|
|
|
|
{
|
|
|
|
int code;
|
|
|
|
char *zDb = isTemp ? "temp" : "main";
|
|
|
|
if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
|
|
|
sqliteFree(zName);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( isView ){
|
|
|
|
if( isTemp ){
|
|
|
|
code = SQLITE_CREATE_TEMP_VIEW;
|
|
|
|
}else{
|
|
|
|
code = SQLITE_CREATE_VIEW;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
if( isTemp ){
|
|
|
|
code = SQLITE_CREATE_TEMP_TABLE;
|
|
|
|
}else{
|
|
|
|
code = SQLITE_CREATE_TABLE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){
|
|
|
|
sqliteFree(zName);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/* Before trying to create a temporary table, make sure the Btree for
|
|
|
|
** holding temporary tables is open.
|
|
|
|
*/
|
|
|
|
if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
|
|
|
|
int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
sqliteErrorMsg(pParse, "unable to open a temporary database "
|
|
|
|
"file for storing temporary tables");
|
|
|
|
pParse->nErr++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( db->flags & SQLITE_InTrans ){
|
|
|
|
rc = sqliteBtreeBeginTrans(db->aDb[1].pBt);
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
|
|
sqliteErrorMsg(pParse, "unable to get a write lock on "
|
|
|
|
"the temporary database file");
|
|
|
|
pParse->nErr++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Make sure the new table name does not collide with an existing
|
|
|
|
** index or table name. Issue an error message if it does.
|
|
|
|
**
|
|
|
|
** If we are re-reading the sqlite_master table because of a schema
|
|
|
|
** change and a new permanent table is found whose name collides with
|
|
|
|
** an existing temporary table, that is not an error.
|
|
|
|
*/
|
|
|
|
pTable = sqliteFindTable(db, zName, 0);
|
|
|
|
iDb = isTemp ? 1 : db->init.iDb;
|
|
|
|
if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){
|
|
|
|
sqliteErrorMsg(pParse, "table %T already exists", pName);
|
|
|
|
sqliteFree(zName);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 &&
|
|
|
|
(pIdx->iDb==0 || !db->init.busy) ){
|
|
|
|
sqliteErrorMsg(pParse, "there is already an index named %s", zName);
|
|
|
|
sqliteFree(zName);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
pTable = sqliteMalloc( sizeof(Table) );
|
|
|
|
if( pTable==0 ){
|
|
|
|
sqliteFree(zName);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
pTable->zName = zName;
|
|
|
|
pTable->nCol = 0;
|
|
|
|
pTable->aCol = 0;
|
|
|
|
pTable->iPKey = -1;
|
|
|
|
pTable->pIndex = 0;
|
|
|
|
pTable->iDb = iDb;
|
|
|
|
if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
|
|
|
|
pParse->pNewTable = pTable;
|
|
|
|
|
|
|
|
/* Begin generating the code that will insert the table record into
|
|
|
|
** the SQLITE_MASTER table. Note in particular that we must go ahead
|
|
|
|
** and allocate the record number for the table entry now. Before any
|
|
|
|
** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
|
|
|
|
** indices to be created and the table record must come before the
|
|
|
|
** indices. Hence, the record number for the table must be allocated
|
|
|
|
** now.
|
|
|
|
*/
|
|
|
|
if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){
|
|
|
|
sqliteBeginWriteOperation(pParse, 0, isTemp);
|
|
|
|
if( !isTemp ){
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
|
|
|
|
}
|
|
|
|
sqliteOpenMasterTable(v, isTemp);
|
|
|
|
sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Add a new column to the table currently being constructed.
|
|
|
|
**
|
|
|
|
** The parser calls this routine once for each column declaration
|
|
|
|
** in a CREATE TABLE statement. sqliteStartTable() gets called
|
|
|
|
** first to get things going. Then this routine is called for each
|
|
|
|
** column.
|
|
|
|
*/
|
|
|
|
void sqliteAddColumn(Parse *pParse, Token *pName){
|
|
|
|
Table *p;
|
|
|
|
int i;
|
|
|
|
char *z = 0;
|
|
|
|
Column *pCol;
|
|
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
|
|
sqliteSetNString(&z, pName->z, pName->n, 0);
|
|
|
|
if( z==0 ) return;
|
|
|
|
sqliteDequote(z);
|
|
|
|
for(i=0; i<p->nCol; i++){
|
|
|
|
if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
|
|
|
|
sqliteErrorMsg(pParse, "duplicate column name: %s", z);
|
|
|
|
sqliteFree(z);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( (p->nCol & 0x7)==0 ){
|
|
|
|
Column *aNew;
|
|
|
|
aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
|
|
|
|
if( aNew==0 ) return;
|
|
|
|
p->aCol = aNew;
|
|
|
|
}
|
|
|
|
pCol = &p->aCol[p->nCol];
|
|
|
|
memset(pCol, 0, sizeof(p->aCol[0]));
|
|
|
|
pCol->zName = z;
|
|
|
|
pCol->sortOrder = SQLITE_SO_NUM;
|
|
|
|
p->nCol++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called by the parser while in the middle of
|
|
|
|
** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
|
|
|
|
** been seen on a column. This routine sets the notNull flag on
|
|
|
|
** the column currently under construction.
|
|
|
|
*/
|
|
|
|
void sqliteAddNotNull(Parse *pParse, int onError){
|
|
|
|
Table *p;
|
|
|
|
int i;
|
|
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
|
|
i = p->nCol-1;
|
|
|
|
if( i>=0 ) p->aCol[i].notNull = onError;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called by the parser while in the middle of
|
|
|
|
** parsing a CREATE TABLE statement. The pFirst token is the first
|
|
|
|
** token in the sequence of tokens that describe the type of the
|
|
|
|
** column currently under construction. pLast is the last token
|
|
|
|
** in the sequence. Use this information to construct a string
|
|
|
|
** that contains the typename of the column and store that string
|
|
|
|
** in zType.
|
|
|
|
*/
|
|
|
|
void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
|
|
|
|
Table *p;
|
|
|
|
int i, j;
|
|
|
|
int n;
|
|
|
|
char *z, **pz;
|
|
|
|
Column *pCol;
|
|
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
|
|
i = p->nCol-1;
|
|
|
|
if( i<0 ) return;
|
|
|
|
pCol = &p->aCol[i];
|
|
|
|
pz = &pCol->zType;
|
|
|
|
n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
|
|
|
|
sqliteSetNString(pz, pFirst->z, n, 0);
|
|
|
|
z = *pz;
|
|
|
|
if( z==0 ) return;
|
|
|
|
for(i=j=0; z[i]; i++){
|
|
|
|
int c = z[i];
|
|
|
|
if( isspace(c) ) continue;
|
|
|
|
z[j++] = c;
|
|
|
|
}
|
|
|
|
z[j] = 0;
|
|
|
|
if( pParse->db->file_format>=4 ){
|
|
|
|
pCol->sortOrder = sqliteCollateType(z, n);
|
|
|
|
}else{
|
|
|
|
pCol->sortOrder = SQLITE_SO_NUM;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The given token is the default value for the last column added to
|
|
|
|
** the table currently under construction. If "minusFlag" is true, it
|
|
|
|
** means the value token was preceded by a minus sign.
|
|
|
|
**
|
|
|
|
** This routine is called by the parser while in the middle of
|
|
|
|
** parsing a CREATE TABLE statement.
|
|
|
|
*/
|
|
|
|
void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
|
|
|
|
Table *p;
|
|
|
|
int i;
|
|
|
|
char **pz;
|
|
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
|
|
i = p->nCol-1;
|
|
|
|
if( i<0 ) return;
|
|
|
|
pz = &p->aCol[i].zDflt;
|
|
|
|
if( minusFlag ){
|
|
|
|
sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
|
|
|
|
}else{
|
|
|
|
sqliteSetNString(pz, pVal->z, pVal->n, 0);
|
|
|
|
}
|
|
|
|
sqliteDequote(*pz);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Designate the PRIMARY KEY for the table. pList is a list of names
|
|
|
|
** of columns that form the primary key. If pList is NULL, then the
|
|
|
|
** most recently added column of the table is the primary key.
|
|
|
|
**
|
|
|
|
** A table can have at most one primary key. If the table already has
|
|
|
|
** a primary key (and this is the second primary key) then create an
|
|
|
|
** error.
|
|
|
|
**
|
|
|
|
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
|
|
|
|
** then we will try to use that column as the row id. (Exception:
|
|
|
|
** For backwards compatibility with older databases, do not do this
|
|
|
|
** if the file format version number is less than 1.) Set the Table.iPKey
|
|
|
|
** field of the table under construction to be the index of the
|
|
|
|
** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
|
|
|
|
** no INTEGER PRIMARY KEY.
|
|
|
|
**
|
|
|
|
** If the key is not an INTEGER PRIMARY KEY, then create a unique
|
|
|
|
** index for the key. No index is created for INTEGER PRIMARY KEYs.
|
|
|
|
*/
|
|
|
|
void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
|
|
|
|
Table *pTab = pParse->pNewTable;
|
|
|
|
char *zType = 0;
|
|
|
|
int iCol = -1, i;
|
|
|
|
if( pTab==0 ) goto primary_key_exit;
|
|
|
|
if( pTab->hasPrimKey ){
|
|
|
|
sqliteErrorMsg(pParse,
|
|
|
|
"table \"%s\" has more than one primary key", pTab->zName);
|
|
|
|
goto primary_key_exit;
|
|
|
|
}
|
|
|
|
pTab->hasPrimKey = 1;
|
|
|
|
if( pList==0 ){
|
|
|
|
iCol = pTab->nCol - 1;
|
|
|
|
pTab->aCol[iCol].isPrimKey = 1;
|
|
|
|
}else{
|
|
|
|
for(i=0; i<pList->nId; i++){
|
|
|
|
for(iCol=0; iCol<pTab->nCol; iCol++){
|
|
|
|
if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;
|
|
|
|
}
|
|
|
|
if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
|
|
|
|
}
|
|
|
|
if( pList->nId>1 ) iCol = -1;
|
|
|
|
}
|
|
|
|
if( iCol>=0 && iCol<pTab->nCol ){
|
|
|
|
zType = pTab->aCol[iCol].zType;
|
|
|
|
}
|
|
|
|
if( pParse->db->file_format>=1 &&
|
|
|
|
zType && sqliteStrICmp(zType, "INTEGER")==0 ){
|
|
|
|
pTab->iPKey = iCol;
|
|
|
|
pTab->keyConf = onError;
|
|
|
|
}else{
|
|
|
|
sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
|
|
|
|
pList = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
primary_key_exit:
|
|
|
|
sqliteIdListDelete(pList);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return the appropriate collating type given a type name.
|
|
|
|
**
|
|
|
|
** The collation type is text (SQLITE_SO_TEXT) if the type
|
|
|
|
** name contains the character stream "text" or "blob" or
|
|
|
|
** "clob". Any other type name is collated as numeric
|
|
|
|
** (SQLITE_SO_NUM).
|
|
|
|
*/
|
|
|
|
int sqliteCollateType(const char *zType, int nType){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<nType-3; i++){
|
|
|
|
int c = *(zType++) | 0x60;
|
|
|
|
if( (c=='b' || c=='c') && sqliteStrNICmp(zType, "lob", 3)==0 ){
|
|
|
|
return SQLITE_SO_TEXT;
|
|
|
|
}
|
|
|
|
if( c=='c' && sqliteStrNICmp(zType, "har", 3)==0 ){
|
|
|
|
return SQLITE_SO_TEXT;
|
|
|
|
}
|
|
|
|
if( c=='t' && sqliteStrNICmp(zType, "ext", 3)==0 ){
|
|
|
|
return SQLITE_SO_TEXT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return SQLITE_SO_NUM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called by the parser while in the middle of
|
|
|
|
** parsing a CREATE TABLE statement. A "COLLATE" clause has
|
|
|
|
** been seen on a column. This routine sets the Column.sortOrder on
|
|
|
|
** the column currently under construction.
|
|
|
|
*/
|
|
|
|
void sqliteAddCollateType(Parse *pParse, int collType){
|
|
|
|
Table *p;
|
|
|
|
int i;
|
|
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
|
|
i = p->nCol-1;
|
|
|
|
if( i>=0 ) p->aCol[i].sortOrder = collType;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Come up with a new random value for the schema cookie. Make sure
|
|
|
|
** the new value is different from the old.
|
|
|
|
**
|
|
|
|
** The schema cookie is used to determine when the schema for the
|
|
|
|
** database changes. After each schema change, the cookie value
|
|
|
|
** changes. When a process first reads the schema it records the
|
|
|
|
** cookie. Thereafter, whenever it goes to access the database,
|
|
|
|
** it checks the cookie to make sure the schema has not changed
|
|
|
|
** since it was last read.
|
|
|
|
**
|
|
|
|
** This plan is not completely bullet-proof. It is possible for
|
|
|
|
** the schema to change multiple times and for the cookie to be
|
|
|
|
** set back to prior value. But schema changes are infrequent
|
|
|
|
** and the probability of hitting the same cookie value is only
|
|
|
|
** 1 chance in 2^32. So we're safe enough.
|
|
|
|
*/
|
|
|
|
void sqliteChangeCookie(sqlite *db, Vdbe *v){
|
|
|
|
if( db->next_cookie==db->aDb[0].schema_cookie ){
|
|
|
|
unsigned char r;
|
|
|
|
sqliteRandomness(1, &r);
|
|
|
|
db->next_cookie = db->aDb[0].schema_cookie + r + 1;
|
|
|
|
db->flags |= SQLITE_InternChanges;
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Measure the number of characters needed to output the given
|
|
|
|
** identifier. The number returned includes any quotes used
|
|
|
|
** but does not include the null terminator.
|
|
|
|
*/
|
|
|
|
static int identLength(const char *z){
|
|
|
|
int n;
|
|
|
|
int needQuote = 0;
|
|
|
|
for(n=0; *z; n++, z++){
|
|
|
|
if( *z=='\'' ){ n++; needQuote=1; }
|
|
|
|
}
|
|
|
|
return n + needQuote*2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Write an identifier onto the end of the given string. Add
|
|
|
|
** quote characters as needed.
|
|
|
|
*/
|
|
|
|
static void identPut(char *z, int *pIdx, char *zIdent){
|
|
|
|
int i, j, needQuote;
|
|
|
|
i = *pIdx;
|
|
|
|
for(j=0; zIdent[j]; j++){
|
|
|
|
if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
|
|
|
|
}
|
|
|
|
needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
|
|
|
|
|| sqliteKeywordCode(zIdent, j)!=TK_ID;
|
|
|
|
if( needQuote ) z[i++] = '\'';
|
|
|
|
for(j=0; zIdent[j]; j++){
|
|
|
|
z[i++] = zIdent[j];
|
|
|
|
if( zIdent[j]=='\'' ) z[i++] = '\'';
|
|
|
|
}
|
|
|
|
if( needQuote ) z[i++] = '\'';
|
|
|
|
z[i] = 0;
|
|
|
|
*pIdx = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate a CREATE TABLE statement appropriate for the given
|
|
|
|
** table. Memory to hold the text of the statement is obtained
|
|
|
|
** from sqliteMalloc() and must be freed by the calling function.
|
|
|
|
*/
|
|
|
|
static char *createTableStmt(Table *p){
|
|
|
|
int i, k, n;
|
|
|
|
char *zStmt;
|
|
|
|
char *zSep, *zSep2, *zEnd;
|
|
|
|
n = 0;
|
|
|
|
for(i=0; i<p->nCol; i++){
|
|
|
|
n += identLength(p->aCol[i].zName);
|
|
|
|
}
|
|
|
|
n += identLength(p->zName);
|
|
|
|
if( n<40 ){
|
|
|
|
zSep = "";
|
|
|
|
zSep2 = ",";
|
|
|
|
zEnd = ")";
|
|
|
|
}else{
|
|
|
|
zSep = "\n ";
|
|
|
|
zSep2 = ",\n ";
|
|
|
|
zEnd = "\n)";
|
|
|
|
}
|
|
|
|
n += 35 + 6*p->nCol;
|
|
|
|
zStmt = sqliteMallocRaw( n );
|
|
|
|
if( zStmt==0 ) return 0;
|
|
|
|
strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
|
|
|
|
k = strlen(zStmt);
|
|
|
|
identPut(zStmt, &k, p->zName);
|
|
|
|
zStmt[k++] = '(';
|
|
|
|
for(i=0; i<p->nCol; i++){
|
|
|
|
strcpy(&zStmt[k], zSep);
|
|
|
|
k += strlen(&zStmt[k]);
|
|
|
|
zSep = zSep2;
|
|
|
|
identPut(zStmt, &k, p->aCol[i].zName);
|
|
|
|
}
|
|
|
|
strcpy(&zStmt[k], zEnd);
|
|
|
|
return zStmt;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called to report the final ")" that terminates
|
|
|
|
** a CREATE TABLE statement.
|
|
|
|
**
|
|
|
|
** The table structure that other action routines have been building
|
|
|
|
** is added to the internal hash tables, assuming no errors have
|
|
|
|
** occurred.
|
|
|
|
**
|
|
|
|
** An entry for the table is made in the master table on disk, unless
|
|
|
|
** this is a temporary table or db->init.busy==1. When db->init.busy==1
|
|
|
|
** it means we are reading the sqlite_master table because we just
|
|
|
|
** connected to the database or because the sqlite_master table has
|
|
|
|
** recently changes, so the entry for this table already exists in
|
|
|
|
** the sqlite_master table. We do not want to create it again.
|
|
|
|
**
|
|
|
|
** If the pSelect argument is not NULL, it means that this routine
|
|
|
|
** was called to create a table generated from a
|
|
|
|
** "CREATE TABLE ... AS SELECT ..." statement. The column names of
|
|
|
|
** the new table will match the result set of the SELECT.
|
|
|
|
*/
|
|
|
|
void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
|
|
|
|
Table *p;
|
|
|
|
sqlite *db = pParse->db;
|
|
|
|
|
|
|
|
if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
|
|
|
|
p = pParse->pNewTable;
|
|
|
|
if( p==0 ) return;
|
|
|
|
|
|
|
|
/* If the table is generated from a SELECT, then construct the
|
|
|
|
** list of columns and the text of the table.
|
|
|
|
*/
|
|
|
|
if( pSelect ){
|
|
|
|
Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
|
|
|
|
if( pSelTab==0 ) return;
|
|
|
|
assert( p->aCol==0 );
|
|
|
|
p->nCol = pSelTab->nCol;
|
|
|
|
p->aCol = pSelTab->aCol;
|
|
|
|
pSelTab->nCol = 0;
|
|
|
|
pSelTab->aCol = 0;
|
|
|
|
sqliteDeleteTable(0, pSelTab);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If the db->init.busy is 1 it means we are reading the SQL off the
|
|
|
|
** "sqlite_master" or "sqlite_temp_master" table on the disk.
|
|
|
|
** So do not write to the disk again. Extract the root page number
|
|
|
|
** for the table from the db->init.newTnum field. (The page number
|
|
|
|
** should have been put there by the sqliteOpenCb routine.)
|
|
|
|
*/
|
|
|
|
if( db->init.busy ){
|
|
|
|
p->tnum = db->init.newTnum;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If not initializing, then create a record for the new table
|
|
|
|
** in the SQLITE_MASTER table of the database. The record number
|
|
|
|
** for the new table entry should already be on the stack.
|
|
|
|
**
|
|
|
|
** If this is a TEMPORARY table, write the entry into the auxiliary
|
|
|
|
** file instead of into the main database file.
|
|
|
|
*/
|
|
|
|
if( !db->init.busy ){
|
|
|
|
int n;
|
|
|
|
Vdbe *v;
|
|
|
|
|
|
|
|
v = sqliteGetVdbe(pParse);
|
|
|
|
if( v==0 ) return;
|
|
|
|
if( p->pSelect==0 ){
|
|
|
|
/* A regular table */
|
|
|
|
sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
|
|
|
|
}else{
|
|
|
|
/* A view */
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
|
|
}
|
|
|
|
p->tnum = 0;
|
|
|
|
sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
|
|
|
sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC);
|
|
|
|
sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
|
|
|
|
sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_Dup, 4, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
|
|
if( pSelect ){
|
|
|
|
char *z = createTableStmt(p);
|
|
|
|
n = z ? strlen(z) : 0;
|
|
|
|
sqliteVdbeChangeP3(v, -1, z, n);
|
|
|
|
sqliteFree(z);
|
|
|
|
}else{
|
|
|
|
assert( pEnd!=0 );
|
|
|
|
n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
|
|
|
|
sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
|
|
|
if( !p->iDb ){
|
|
|
|
sqliteChangeCookie(db, v);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
|
|
|
if( pSelect ){
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
|
|
|
|
pParse->nTab = 2;
|
|
|
|
sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
|
|
|
|
}
|
|
|
|
sqliteEndWriteOperation(pParse);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add the table to the in-memory representation of the database.
|
|
|
|
*/
|
|
|
|
if( pParse->explain==0 && pParse->nErr==0 ){
|
|
|
|
Table *pOld;
|
|
|
|
FKey *pFKey;
|
|
|
|
pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash,
|
|
|
|
p->zName, strlen(p->zName)+1, p);
|
|
|
|
if( pOld ){
|
|
|
|
assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
|
|
|
|
int nTo = strlen(pFKey->zTo) + 1;
|
|
|
|
pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
|
|
|
|
sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
|
|
|
|
}
|
|
|
|
pParse->pNewTable = 0;
|
|
|
|
db->nTable++;
|
|
|
|
db->flags |= SQLITE_InternChanges;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The parser calls this routine in order to create a new VIEW
|
|
|
|
*/
|
|
|
|
void sqliteCreateView(
|
|
|
|
Parse *pParse, /* The parsing context */
|
|
|
|
Token *pBegin, /* The CREATE token that begins the statement */
|
|
|
|
Token *pName, /* The token that holds the name of the view */
|
|
|
|
Select *pSelect, /* A SELECT statement that will become the new view */
|
|
|
|
int isTemp /* TRUE for a TEMPORARY view */
|
|
|
|
){
|
|
|
|
Table *p;
|
|
|
|
int n;
|
|
|
|
const char *z;
|
|
|
|
Token sEnd;
|
|
|
|
DbFixer sFix;
|
|
|
|
|
|
|
|
sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
|
|
|
|
p = pParse->pNewTable;
|
|
|
|
if( p==0 || pParse->nErr ){
|
|
|
|
sqliteSelectDelete(pSelect);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName)
|
|
|
|
&& sqliteFixSelect(&sFix, pSelect)
|
|
|
|
){
|
|
|
|
sqliteSelectDelete(pSelect);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Make a copy of the entire SELECT statement that defines the view.
|
|
|
|
** This will force all the Expr.token.z values to be dynamically
|
|
|
|
** allocated rather than point to the input string - which means that
|
|
|
|
** they will persist after the current sqlite_exec() call returns.
|
|
|
|
*/
|
|
|
|
p->pSelect = sqliteSelectDup(pSelect);
|
|
|
|
sqliteSelectDelete(pSelect);
|
|
|
|
if( !pParse->db->init.busy ){
|
|
|
|
sqliteViewGetColumnNames(pParse, p);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Locate the end of the CREATE VIEW statement. Make sEnd point to
|
|
|
|
** the end.
|
|
|
|
*/
|
|
|
|
sEnd = pParse->sLastToken;
|
|
|
|
if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
|
|
|
|
sEnd.z += sEnd.n;
|
|
|
|
}
|
|
|
|
sEnd.n = 0;
|
|
|
|
n = ((int)sEnd.z) - (int)pBegin->z;
|
|
|
|
z = pBegin->z;
|
|
|
|
while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
|
|
|
|
sEnd.z = &z[n-1];
|
|
|
|
sEnd.n = 1;
|
|
|
|
|
|
|
|
/* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
|
|
|
|
sqliteEndTable(pParse, &sEnd, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The Table structure pTable is really a VIEW. Fill in the names of
|
|
|
|
** the columns of the view in the pTable structure. Return the number
|
|
|
|
** of errors. If an error is seen leave an error message in pParse->zErrMsg.
|
|
|
|
*/
|
|
|
|
int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
|
|
|
|
ExprList *pEList;
|
|
|
|
Select *pSel;
|
|
|
|
Table *pSelTab;
|
|
|
|
int nErr = 0;
|
|
|
|
|
|
|
|
assert( pTable );
|
|
|
|
|
|
|
|
/* A positive nCol means the columns names for this view are
|
|
|
|
** already known.
|
|
|
|
*/
|
|
|
|
if( pTable->nCol>0 ) return 0;
|
|
|
|
|
|
|
|
/* A negative nCol is a special marker meaning that we are currently
|
|
|
|
** trying to compute the column names. If we enter this routine with
|
|
|
|
** a negative nCol, it means two or more views form a loop, like this:
|
|
|
|
**
|
|
|
|
** CREATE VIEW one AS SELECT * FROM two;
|
|
|
|
** CREATE VIEW two AS SELECT * FROM one;
|
|
|
|
**
|
|
|
|
** Actually, this error is caught previously and so the following test
|
|
|
|
** should always fail. But we will leave it in place just to be safe.
|
|
|
|
*/
|
|
|
|
if( pTable->nCol<0 ){
|
|
|
|
sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If we get this far, it means we need to compute the table names.
|
|
|
|
*/
|
|
|
|
assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
|
|
|
|
pSel = pTable->pSelect;
|
|
|
|
|
|
|
|
/* Note that the call to sqliteResultSetOfSelect() will expand any
|
|
|
|
** "*" elements in this list. But we will need to restore the list
|
|
|
|
** back to its original configuration afterwards, so we save a copy of
|
|
|
|
** the original in pEList.
|
|
|
|
*/
|
|
|
|
pEList = pSel->pEList;
|
|
|
|
pSel->pEList = sqliteExprListDup(pEList);
|
|
|
|
if( pSel->pEList==0 ){
|
|
|
|
pSel->pEList = pEList;
|
|
|
|
return 1; /* Malloc failed */
|
|
|
|
}
|
|
|
|
pTable->nCol = -1;
|
|
|
|
pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
|
|
|
|
if( pSelTab ){
|
|
|
|
assert( pTable->aCol==0 );
|
|
|
|
pTable->nCol = pSelTab->nCol;
|
|
|
|
pTable->aCol = pSelTab->aCol;
|
|
|
|
pSelTab->nCol = 0;
|
|
|
|
pSelTab->aCol = 0;
|
|
|
|
sqliteDeleteTable(0, pSelTab);
|
|
|
|
DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
|
|
|
|
}else{
|
|
|
|
pTable->nCol = 0;
|
|
|
|
nErr++;
|
|
|
|
}
|
|
|
|
sqliteSelectUnbind(pSel);
|
|
|
|
sqliteExprListDelete(pSel->pEList);
|
|
|
|
pSel->pEList = pEList;
|
|
|
|
return nErr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Clear the column names from the VIEW pTable.
|
|
|
|
**
|
|
|
|
** This routine is called whenever any other table or view is modified.
|
|
|
|
** The view passed into this routine might depend directly or indirectly
|
|
|
|
** on the modified or deleted table so we need to clear the old column
|
|
|
|
** names so that they will be recomputed.
|
|
|
|
*/
|
|
|
|
static void sqliteViewResetColumnNames(Table *pTable){
|
|
|
|
int i;
|
|
|
|
Column *pCol;
|
|
|
|
assert( pTable!=0 && pTable->pSelect!=0 );
|
|
|
|
for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){
|
|
|
|
sqliteFree(pCol->zName);
|
|
|
|
sqliteFree(pCol->zDflt);
|
|
|
|
sqliteFree(pCol->zType);
|
|
|
|
}
|
|
|
|
sqliteFree(pTable->aCol);
|
|
|
|
pTable->aCol = 0;
|
|
|
|
pTable->nCol = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Clear the column names from every VIEW in database idx.
|
|
|
|
*/
|
|
|
|
static void sqliteViewResetAll(sqlite *db, int idx){
|
|
|
|
HashElem *i;
|
|
|
|
if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
|
|
|
|
for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
|
|
|
|
Table *pTab = sqliteHashData(i);
|
|
|
|
if( pTab->pSelect ){
|
|
|
|
sqliteViewResetColumnNames(pTab);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
DbClearProperty(db, idx, DB_UnresetViews);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Given a token, look up a table with that name. If not found, leave
|
|
|
|
** an error for the parser to find and return NULL.
|
|
|
|
*/
|
|
|
|
Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
|
|
|
|
char *zName;
|
|
|
|
Table *pTab;
|
|
|
|
zName = sqliteTableNameFromToken(pTok);
|
|
|
|
if( zName==0 ) return 0;
|
|
|
|
pTab = sqliteFindTable(pParse->db, zName, 0);
|
|
|
|
sqliteFree(zName);
|
|
|
|
if( pTab==0 ){
|
|
|
|
sqliteErrorMsg(pParse, "no such table: %T", pTok);
|
|
|
|
}
|
|
|
|
return pTab;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called to do the work of a DROP TABLE statement.
|
|
|
|
** pName is the name of the table to be dropped.
|
|
|
|
*/
|
|
|
|
void sqliteDropTable(Parse *pParse, Token *pName, int isView){
|
|
|
|
Table *pTable;
|
|
|
|
Vdbe *v;
|
|
|
|
int base;
|
|
|
|
sqlite *db = pParse->db;
|
|
|
|
int iDb;
|
|
|
|
|
|
|
|
if( pParse->nErr || sqlite_malloc_failed ) return;
|
|
|
|
pTable = sqliteTableFromToken(pParse, pName);
|
|
|
|
if( pTable==0 ) return;
|
|
|
|
iDb = pTable->iDb;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
{
|
|
|
|
int code;
|
|
|
|
const char *zTab = SCHEMA_TABLE(pTable->iDb);
|
|
|
|
const char *zDb = db->aDb[pTable->iDb].zName;
|
|
|
|
if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( isView ){
|
|
|
|
if( iDb==1 ){
|
|
|
|
code = SQLITE_DROP_TEMP_VIEW;
|
|
|
|
}else{
|
|
|
|
code = SQLITE_DROP_VIEW;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
if( iDb==1 ){
|
|
|
|
code = SQLITE_DROP_TEMP_TABLE;
|
|
|
|
}else{
|
|
|
|
code = SQLITE_DROP_TABLE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if( pTable->readOnly ){
|
|
|
|
sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName);
|
|
|
|
pParse->nErr++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( isView && pTable->pSelect==0 ){
|
|
|
|
sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( !isView && pTable->pSelect ){
|
|
|
|
sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate code to remove the table from the master table
|
|
|
|
** on disk.
|
|
|
|
*/
|
|
|
|
v = sqliteGetVdbe(pParse);
|
|
|
|
if( v ){
|
|
|
|
static VdbeOpList dropTable[] = {
|
|
|
|
{ OP_Rewind, 0, ADDR(8), 0},
|
|
|
|
{ OP_String, 0, 0, 0}, /* 1 */
|
|
|
|
{ OP_MemStore, 1, 1, 0},
|
|
|
|
{ OP_MemLoad, 1, 0, 0}, /* 3 */
|
|
|
|
{ OP_Column, 0, 2, 0},
|
|
|
|
{ OP_Ne, 0, ADDR(7), 0},
|
|
|
|
{ OP_Delete, 0, 0, 0},
|
|
|
|
{ OP_Next, 0, ADDR(3), 0}, /* 7 */
|
|
|
|
};
|
|
|
|
Index *pIdx;
|
|
|
|
Trigger *pTrigger;
|
|
|
|
sqliteBeginWriteOperation(pParse, 0, pTable->iDb);
|
|
|
|
|
|
|
|
/* Drop all triggers associated with the table being dropped */
|
|
|
|
pTrigger = pTable->pTrigger;
|
|
|
|
while( pTrigger ){
|
|
|
|
assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 );
|
|
|
|
sqliteDropTriggerPtr(pParse, pTrigger, 1);
|
|
|
|
if( pParse->explain ){
|
|
|
|
pTrigger = pTrigger->pNext;
|
|
|
|
}else{
|
|
|
|
pTrigger = pTable->pTrigger;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Drop all SQLITE_MASTER entries that refer to the table */
|
|
|
|
sqliteOpenMasterTable(v, pTable->iDb);
|
|
|
|
base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
|
|
|
|
sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
|
|
|
|
|
|
|
|
/* Drop all SQLITE_TEMP_MASTER entries that refer to the table */
|
|
|
|
if( pTable->iDb!=1 ){
|
|
|
|
sqliteOpenMasterTable(v, 1);
|
|
|
|
base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
|
|
|
|
sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if( pTable->iDb==0 ){
|
|
|
|
sqliteChangeCookie(db, v);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
|
|
|
if( !isView ){
|
|
|
|
sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb);
|
|
|
|
for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
|
|
sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sqliteEndWriteOperation(pParse);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Delete the in-memory description of the table.
|
|
|
|
**
|
|
|
|
** Exception: if the SQL statement began with the EXPLAIN keyword,
|
|
|
|
** then no changes should be made.
|
|
|
|
*/
|
|
|
|
if( !pParse->explain ){
|
|
|
|
sqliteUnlinkAndDeleteTable(db, pTable);
|
|
|
|
db->flags |= SQLITE_InternChanges;
|
|
|
|
}
|
|
|
|
sqliteViewResetAll(db, iDb);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine constructs a P3 string suitable for an OP_MakeIdxKey
|
|
|
|
** opcode and adds that P3 string to the most recently inserted instruction
|
|
|
|
** in the virtual machine. The P3 string consists of a single character
|
|
|
|
** for each column in the index pIdx of table pTab. If the column uses
|
|
|
|
** a numeric sort order, then the P3 string character corresponding to
|
|
|
|
** that column is 'n'. If the column uses a text sort order, then the
|
|
|
|
** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for
|
|
|
|
** additional information. See also the sqliteAddKeyType() routine.
|
|
|
|
*/
|
|
|
|
void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
|
|
|
|
char *zType;
|
|
|
|
Table *pTab;
|
|
|
|
int i, n;
|
|
|
|
assert( pIdx!=0 && pIdx->pTable!=0 );
|
|
|
|
pTab = pIdx->pTable;
|
|
|
|
n = pIdx->nColumn;
|
|
|
|
zType = sqliteMallocRaw( n+1 );
|
|
|
|
if( zType==0 ) return;
|
|
|
|
for(i=0; i<n; i++){
|
|
|
|
int iCol = pIdx->aiColumn[i];
|
|
|
|
assert( iCol>=0 && iCol<pTab->nCol );
|
|
|
|
if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
|
|
|
|
zType[i] = 't';
|
|
|
|
}else{
|
|
|
|
zType[i] = 'n';
|
|
|
|
}
|
|
|
|
}
|
|
|
|
zType[n] = 0;
|
|
|
|
sqliteVdbeChangeP3(v, -1, zType, n);
|
|
|
|
sqliteFree(zType);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called to create a new foreign key on the table
|
|
|
|
** currently under construction. pFromCol determines which columns
|
|
|
|
** in the current table point to the foreign key. If pFromCol==0 then
|
|
|
|
** connect the key to the last column inserted. pTo is the name of
|
|
|
|
** the table referred to. pToCol is a list of tables in the other
|
|
|
|
** pTo table that the foreign key points to. flags contains all
|
|
|
|
** information about the conflict resolution algorithms specified
|
|
|
|
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
|
|
|
|
**
|
|
|
|
** An FKey structure is created and added to the table currently
|
|
|
|
** under construction in the pParse->pNewTable field. The new FKey
|
|
|
|
** is not linked into db->aFKey at this point - that does not happen
|
|
|
|
** until sqliteEndTable().
|
|
|
|
**
|
|
|
|
** The foreign key is set for IMMEDIATE processing. A subsequent call
|
|
|
|
** to sqliteDeferForeignKey() might change this to DEFERRED.
|
|
|
|
*/
|
|
|
|
void sqliteCreateForeignKey(
|
|
|
|
Parse *pParse, /* Parsing context */
|
|
|
|
IdList *pFromCol, /* Columns in this table that point to other table */
|
|
|
|
Token *pTo, /* Name of the other table */
|
|
|
|
IdList *pToCol, /* Columns in the other table */
|
|
|
|
int flags /* Conflict resolution algorithms. */
|
|
|
|
){
|
|
|
|
Table *p = pParse->pNewTable;
|
|
|
|
int nByte;
|
|
|
|
int i;
|
|
|
|
int nCol;
|
|
|
|
char *z;
|
|
|
|
FKey *pFKey = 0;
|
|
|
|
|
|
|
|
assert( pTo!=0 );
|
|
|
|
if( p==0 || pParse->nErr ) goto fk_end;
|
|
|
|
if( pFromCol==0 ){
|
|
|
|
int iCol = p->nCol-1;
|
|
|
|
if( iCol<0 ) goto fk_end;
|
|
|
|
if( pToCol && pToCol->nId!=1 ){
|
|
|
|
sqliteErrorMsg(pParse, "foreign key on %s"
|
|
|
|
" should reference only one column of table %T",
|
|
|
|
p->aCol[iCol].zName, pTo);
|
|
|
|
goto fk_end;
|
|
|
|
}
|
|
|
|
nCol = 1;
|
|
|
|
}else if( pToCol && pToCol->nId!=pFromCol->nId ){
|
|
|
|
sqliteErrorMsg(pParse,
|
|
|
|
"number of columns in foreign key does not match the number of "
|
|
|
|
"columns in the referenced table");
|
|
|
|
goto fk_end;
|
|
|
|
}else{
|
|
|
|
nCol = pFromCol->nId;
|
|
|
|
}
|
|
|
|
nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
|
|
|
|
if( pToCol ){
|
|
|
|
for(i=0; i<pToCol->nId; i++){
|
|
|
|
nByte += strlen(pToCol->a[i].zName) + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pFKey = sqliteMalloc( nByte );
|
|
|
|
if( pFKey==0 ) goto fk_end;
|
|
|
|
pFKey->pFrom = p;
|
|
|
|
pFKey->pNextFrom = p->pFKey;
|
|
|
|
z = (char*)&pFKey[1];
|
|
|
|
pFKey->aCol = (struct sColMap*)z;
|
|
|
|
z += sizeof(struct sColMap)*nCol;
|
|
|
|
pFKey->zTo = z;
|
|
|
|
memcpy(z, pTo->z, pTo->n);
|
|
|
|
z[pTo->n] = 0;
|
|
|
|
z += pTo->n+1;
|
|
|
|
pFKey->pNextTo = 0;
|
|
|
|
pFKey->nCol = nCol;
|
|
|
|
if( pFromCol==0 ){
|
|
|
|
pFKey->aCol[0].iFrom = p->nCol-1;
|
|
|
|
}else{
|
|
|
|
for(i=0; i<nCol; i++){
|
|
|
|
int j;
|
|
|
|
for(j=0; j<p->nCol; j++){
|
|
|
|
if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
|
|
|
|
pFKey->aCol[i].iFrom = j;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( j>=p->nCol ){
|
|
|
|
sqliteErrorMsg(pParse,
|
|
|
|
"unknown column \"%s\" in foreign key definition",
|
|
|
|
pFromCol->a[i].zName);
|
|
|
|
goto fk_end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( pToCol ){
|
|
|
|
for(i=0; i<nCol; i++){
|
|
|
|
int n = strlen(pToCol->a[i].zName);
|
|
|
|
pFKey->aCol[i].zCol = z;
|
|
|
|
memcpy(z, pToCol->a[i].zName, n);
|
|
|
|
z[n] = 0;
|
|
|
|
z += n+1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pFKey->isDeferred = 0;
|
|
|
|
pFKey->deleteConf = flags & 0xff;
|
|
|
|
pFKey->updateConf = (flags >> 8 ) & 0xff;
|
|
|
|
pFKey->insertConf = (flags >> 16 ) & 0xff;
|
|
|
|
|
|
|
|
/* Link the foreign key to the table as the last step.
|
|
|
|
*/
|
|
|
|
p->pFKey = pFKey;
|
|
|
|
pFKey = 0;
|
|
|
|
|
|
|
|
fk_end:
|
|
|
|
sqliteFree(pFKey);
|
|
|
|
sqliteIdListDelete(pFromCol);
|
|
|
|
sqliteIdListDelete(pToCol);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
|
|
|
|
** clause is seen as part of a foreign key definition. The isDeferred
|
|
|
|
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
|
|
|
|
** The behavior of the most recently created foreign key is adjusted
|
|
|
|
** accordingly.
|
|
|
|
*/
|
|
|
|
void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
|
|
|
|
Table *pTab;
|
|
|
|
FKey *pFKey;
|
|
|
|
if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
|
|
|
|
pFKey->isDeferred = isDeferred;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Create a new index for an SQL table. pIndex is the name of the index
|
|
|
|
** and pTable is the name of the table that is to be indexed. Both will
|
|
|
|
** be NULL for a primary key or an index that is created to satisfy a
|
|
|
|
** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
|
|
|
|
** as the table to be indexed. pParse->pNewTable is a table that is
|
|
|
|
** currently being constructed by a CREATE TABLE statement.
|
|
|
|
**
|
|
|
|
** pList is a list of columns to be indexed. pList will be NULL if this
|
|
|
|
** is a primary key or unique-constraint on the most recent column added
|
|
|
|
** to the table currently under construction.
|
|
|
|
*/
|
|
|
|
void sqliteCreateIndex(
|
|
|
|
Parse *pParse, /* All information about this parse */
|
|
|
|
Token *pName, /* Name of the index. May be NULL */
|
|
|
|
SrcList *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */
|
|
|
|
IdList *pList, /* A list of columns to be indexed */
|
|
|
|
int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
|
|
|
Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
|
|
|
|
Token *pEnd /* The ")" that closes the CREATE INDEX statement */
|
|
|
|
){
|
|
|
|
Table *pTab; /* Table to be indexed */
|
|
|
|
Index *pIndex; /* The index to be created */
|
|
|
|
char *zName = 0;
|
|
|
|
int i, j;
|
|
|
|
Token nullId; /* Fake token for an empty ID list */
|
|
|
|
DbFixer sFix; /* For assigning database names to pTable */
|
|
|
|
int isTemp; /* True for a temporary index */
|
|
|
|
sqlite *db = pParse->db;
|
|
|
|
|
|
|
|
if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
|
|
|
|
if( db->init.busy
|
|
|
|
&& sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName)
|
|
|
|
&& sqliteFixSrcList(&sFix, pTable)
|
|
|
|
){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Find the table that is to be indexed. Return early if not found.
|
|
|
|
*/
|
|
|
|
if( pTable!=0 ){
|
|
|
|
assert( pName!=0 );
|
|
|
|
assert( pTable->nSrc==1 );
|
|
|
|
pTab = sqliteSrcListLookup(pParse, pTable);
|
|
|
|
}else{
|
|
|
|
assert( pName==0 );
|
|
|
|
pTab = pParse->pNewTable;
|
|
|
|
}
|
|
|
|
if( pTab==0 || pParse->nErr ) goto exit_create_index;
|
|
|
|
if( pTab->readOnly ){
|
|
|
|
sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
if( pTab->iDb>=2 && db->init.busy==0 ){
|
|
|
|
sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName);
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
if( pTab->pSelect ){
|
|
|
|
sqliteErrorMsg(pParse, "views may not be indexed");
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
isTemp = pTab->iDb==1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Find the name of the index. Make sure there is not already another
|
|
|
|
** index or table with the same name.
|
|
|
|
**
|
|
|
|
** Exception: If we are reading the names of permanent indices from the
|
|
|
|
** sqlite_master table (because some other process changed the schema) and
|
|
|
|
** one of the index names collides with the name of a temporary table or
|
|
|
|
** index, then we will continue to process this index.
|
|
|
|
**
|
|
|
|
** If pName==0 it means that we are
|
|
|
|
** dealing with a primary key or UNIQUE constraint. We have to invent our
|
|
|
|
** own name.
|
|
|
|
*/
|
|
|
|
if( pName && !db->init.busy ){
|
|
|
|
Index *pISameName; /* Another index with the same name */
|
|
|
|
Table *pTSameName; /* A table with same name as the index */
|
|
|
|
zName = sqliteStrNDup(pName->z, pName->n);
|
|
|
|
if( zName==0 ) goto exit_create_index;
|
|
|
|
if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){
|
|
|
|
sqliteErrorMsg(pParse, "index %s already exists", zName);
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){
|
|
|
|
sqliteErrorMsg(pParse, "there is already a table named %s", zName);
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
}else if( pName==0 ){
|
|
|
|
char zBuf[30];
|
|
|
|
int n;
|
|
|
|
Index *pLoop;
|
|
|
|
for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
|
|
|
|
sprintf(zBuf,"%d)",n);
|
|
|
|
zName = 0;
|
|
|
|
sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0);
|
|
|
|
if( zName==0 ) goto exit_create_index;
|
|
|
|
}else{
|
|
|
|
zName = sqliteStrNDup(pName->z, pName->n);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check for authorization to create an index.
|
|
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
{
|
|
|
|
const char *zDb = db->aDb[pTab->iDb].zName;
|
|
|
|
|
|
|
|
assert( pTab->iDb==db->init.iDb || isTemp );
|
|
|
|
if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
i = SQLITE_CREATE_INDEX;
|
|
|
|
if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
|
|
|
|
if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* If pList==0, it means this routine was called to make a primary
|
|
|
|
** key out of the last column added to the table under construction.
|
|
|
|
** So create a fake list to simulate this.
|
|
|
|
*/
|
|
|
|
if( pList==0 ){
|
|
|
|
nullId.z = pTab->aCol[pTab->nCol-1].zName;
|
|
|
|
nullId.n = strlen(nullId.z);
|
|
|
|
pList = sqliteIdListAppend(0, &nullId);
|
|
|
|
if( pList==0 ) goto exit_create_index;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Allocate the index structure.
|
|
|
|
*/
|
|
|
|
pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
|
|
|
|
sizeof(int)*pList->nId );
|
|
|
|
if( pIndex==0 ) goto exit_create_index;
|
|
|
|
pIndex->aiColumn = (int*)&pIndex[1];
|
|
|
|
pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
|
|
|
|
strcpy(pIndex->zName, zName);
|
|
|
|
pIndex->pTable = pTab;
|
|
|
|
pIndex->nColumn = pList->nId;
|
|
|
|
pIndex->onError = onError;
|
|
|
|
pIndex->autoIndex = pName==0;
|
|
|
|
pIndex->iDb = isTemp ? 1 : db->init.iDb;
|
|
|
|
|
|
|
|
/* Scan the names of the columns of the table to be indexed and
|
|
|
|
** load the column indices into the Index structure. Report an error
|
|
|
|
** if any column is not found.
|
|
|
|
*/
|
|
|
|
for(i=0; i<pList->nId; i++){
|
|
|
|
for(j=0; j<pTab->nCol; j++){
|
|
|
|
if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
|
|
|
|
}
|
|
|
|
if( j>=pTab->nCol ){
|
|
|
|
sqliteErrorMsg(pParse, "table %s has no column named %s",
|
|
|
|
pTab->zName, pList->a[i].zName);
|
|
|
|
sqliteFree(pIndex);
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
pIndex->aiColumn[i] = j;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Link the new Index structure to its table and to the other
|
|
|
|
** in-memory database structures.
|
|
|
|
*/
|
|
|
|
if( !pParse->explain ){
|
|
|
|
Index *p;
|
|
|
|
p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash,
|
|
|
|
pIndex->zName, strlen(pIndex->zName)+1, pIndex);
|
|
|
|
if( p ){
|
|
|
|
assert( p==pIndex ); /* Malloc must have failed */
|
|
|
|
sqliteFree(pIndex);
|
|
|
|
goto exit_create_index;
|
|
|
|
}
|
|
|
|
db->flags |= SQLITE_InternChanges;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* When adding an index to the list of indices for a table, make
|
|
|
|
** sure all indices labeled OE_Replace come after all those labeled
|
|
|
|
** OE_Ignore. This is necessary for the correct operation of UPDATE
|
|
|
|
** and INSERT.
|
|
|
|
*/
|
|
|
|
if( onError!=OE_Replace || pTab->pIndex==0
|
|
|
|
|| pTab->pIndex->onError==OE_Replace){
|
|
|
|
pIndex->pNext = pTab->pIndex;
|
|
|
|
pTab->pIndex = pIndex;
|
|
|
|
}else{
|
|
|
|
Index *pOther = pTab->pIndex;
|
|
|
|
while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
|
|
|
|
pOther = pOther->pNext;
|
|
|
|
}
|
|
|
|
pIndex->pNext = pOther->pNext;
|
|
|
|
pOther->pNext = pIndex;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If the db->init.busy is 1 it means we are reading the SQL off the
|
|
|
|
** "sqlite_master" table on the disk. So do not write to the disk
|
|
|
|
** again. Extract the table number from the db->init.newTnum field.
|
|
|
|
*/
|
|
|
|
if( db->init.busy && pTable!=0 ){
|
|
|
|
pIndex->tnum = db->init.newTnum;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If the db->init.busy is 0 then create the index on disk. This
|
|
|
|
** involves writing the index into the master table and filling in the
|
|
|
|
** index with the current table contents.
|
|
|
|
**
|
|
|
|
** The db->init.busy is 0 when the user first enters a CREATE INDEX
|
|
|
|
** command. db->init.busy is 1 when a database is opened and
|
|
|
|
** CREATE INDEX statements are read out of the master table. In
|
|
|
|
** the latter case the index already exists on disk, which is why
|
|
|
|
** we don't want to recreate it.
|
|
|
|
**
|
|
|
|
** If pTable==0 it means this index is generated as a primary key
|
|
|
|
** or UNIQUE constraint of a CREATE TABLE statement. Since the table
|
|
|
|
** has just been created, it contains no data and the index initialization
|
|
|
|
** step can be skipped.
|
|
|
|
*/
|
|
|
|
else if( db->init.busy==0 ){
|
|
|
|
int n;
|
|
|
|
Vdbe *v;
|
|
|
|
int lbl1, lbl2;
|
|
|
|
int i;
|
|
|
|
int addr;
|
|
|
|
|
|
|
|
v = sqliteGetVdbe(pParse);
|
|
|
|
if( v==0 ) goto exit_create_index;
|
|
|
|
if( pTable!=0 ){
|
|
|
|
sqliteBeginWriteOperation(pParse, 0, isTemp);
|
|
|
|
sqliteOpenMasterTable(v, isTemp);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
|
|
|
|
sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC);
|
|
|
|
sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0);
|
|
|
|
sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
|
|
|
|
sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
|
|
|
|
pIndex->tnum = 0;
|
|
|
|
if( pTable ){
|
|
|
|
sqliteVdbeCode(v,
|
|
|
|
OP_Dup, 0, 0,
|
|
|
|
OP_Integer, isTemp, 0,
|
|
|
|
OP_OpenWrite, 1, 0,
|
|
|
|
0);
|
|
|
|
}
|
|
|
|
addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
|
|
if( pStart && pEnd ){
|
|
|
|
n = Addr(pEnd->z) - Addr(pStart->z) + 1;
|
|
|
|
sqliteVdbeChangeP3(v, addr, pStart->z, n);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
|
|
|
if( pTable ){
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
|
|
|
sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);
|
|
|
|
lbl2 = sqliteVdbeMakeLabel(v);
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
|
|
|
|
lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
|
|
|
|
for(i=0; i<pIndex->nColumn; i++){
|
|
|
|
int iCol = pIndex->aiColumn[i];
|
|
|
|
if( pTab->iPKey==iCol ){
|
|
|
|
sqliteVdbeAddOp(v, OP_Dup, i, 0);
|
|
|
|
}else{
|
|
|
|
sqliteVdbeAddOp(v, OP_Column, 2, iCol);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
|
|
|
|
if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
|
|
|
|
sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
|
|
|
|
"indexed columns are not unique", P3_STATIC);
|
|
|
|
sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
|
|
|
|
sqliteVdbeResolveLabel(v, lbl2);
|
|
|
|
sqliteVdbeAddOp(v, OP_Close, 2, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_Close, 1, 0);
|
|
|
|
}
|
|
|
|
if( pTable!=0 ){
|
|
|
|
if( !isTemp ){
|
|
|
|
sqliteChangeCookie(db, v);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
|
|
|
sqliteEndWriteOperation(pParse);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clean up before exiting */
|
|
|
|
exit_create_index:
|
|
|
|
sqliteIdListDelete(pList);
|
|
|
|
sqliteSrcListDelete(pTable);
|
|
|
|
sqliteFree(zName);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine will drop an existing named index. This routine
|
|
|
|
** implements the DROP INDEX statement.
|
|
|
|
*/
|
|
|
|
void sqliteDropIndex(Parse *pParse, SrcList *pName){
|
|
|
|
Index *pIndex;
|
|
|
|
Vdbe *v;
|
|
|
|
sqlite *db = pParse->db;
|
|
|
|
|
|
|
|
if( pParse->nErr || sqlite_malloc_failed ) return;
|
|
|
|
assert( pName->nSrc==1 );
|
|
|
|
pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
|
|
|
|
if( pIndex==0 ){
|
|
|
|
sqliteErrorMsg(pParse, "no such index: %S", pName, 0);
|
|
|
|
goto exit_drop_index;
|
|
|
|
}
|
|
|
|
if( pIndex->autoIndex ){
|
|
|
|
sqliteErrorMsg(pParse, "index associated with UNIQUE "
|
|
|
|
"or PRIMARY KEY constraint cannot be dropped", 0);
|
|
|
|
goto exit_drop_index;
|
|
|
|
}
|
|
|
|
if( pIndex->iDb>1 ){
|
|
|
|
sqliteErrorMsg(pParse, "cannot alter schema of attached "
|
|
|
|
"databases", 0);
|
|
|
|
goto exit_drop_index;
|
|
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
{
|
|
|
|
int code = SQLITE_DROP_INDEX;
|
|
|
|
Table *pTab = pIndex->pTable;
|
|
|
|
const char *zDb = db->aDb[pIndex->iDb].zName;
|
|
|
|
const char *zTab = SCHEMA_TABLE(pIndex->iDb);
|
|
|
|
if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
|
|
|
goto exit_drop_index;
|
|
|
|
}
|
|
|
|
if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
|
|
|
|
if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
|
|
|
|
goto exit_drop_index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Generate code to remove the index and from the master table */
|
|
|
|
v = sqliteGetVdbe(pParse);
|
|
|
|
if( v ){
|
|
|
|
static VdbeOpList dropIndex[] = {
|
|
|
|
{ OP_Rewind, 0, ADDR(9), 0},
|
|
|
|
{ OP_String, 0, 0, 0}, /* 1 */
|
|
|
|
{ OP_MemStore, 1, 1, 0},
|
|
|
|
{ OP_MemLoad, 1, 0, 0}, /* 3 */
|
|
|
|
{ OP_Column, 0, 1, 0},
|
|
|
|
{ OP_Eq, 0, ADDR(8), 0},
|
|
|
|
{ OP_Next, 0, ADDR(3), 0},
|
|
|
|
{ OP_Goto, 0, ADDR(9), 0},
|
|
|
|
{ OP_Delete, 0, 0, 0}, /* 8 */
|
|
|
|
};
|
|
|
|
int base;
|
|
|
|
|
|
|
|
sqliteBeginWriteOperation(pParse, 0, pIndex->iDb);
|
|
|
|
sqliteOpenMasterTable(v, pIndex->iDb);
|
|
|
|
base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
|
|
|
|
sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
|
|
|
|
if( pIndex->iDb==0 ){
|
|
|
|
sqliteChangeCookie(db, v);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
|
|
|
|
sqliteEndWriteOperation(pParse);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Delete the in-memory description of this index.
|
|
|
|
*/
|
|
|
|
if( !pParse->explain ){
|
|
|
|
sqliteUnlinkAndDeleteIndex(db, pIndex);
|
|
|
|
db->flags |= SQLITE_InternChanges;
|
|
|
|
}
|
|
|
|
|
|
|
|
exit_drop_index:
|
|
|
|
sqliteSrcListDelete(pName);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Append a new element to the given IdList. Create a new IdList if
|
|
|
|
** need be.
|
|
|
|
**
|
|
|
|
** A new IdList is returned, or NULL if malloc() fails.
|
|
|
|
*/
|
|
|
|
IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
|
|
|
|
if( pList==0 ){
|
|
|
|
pList = sqliteMalloc( sizeof(IdList) );
|
|
|
|
if( pList==0 ) return 0;
|
|
|
|
pList->nAlloc = 0;
|
|
|
|
}
|
|
|
|
if( pList->nId>=pList->nAlloc ){
|
|
|
|
struct IdList_item *a;
|
|
|
|
pList->nAlloc = pList->nAlloc*2 + 5;
|
|
|
|
a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
|
|
|
|
if( a==0 ){
|
|
|
|
sqliteIdListDelete(pList);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
pList->a = a;
|
|
|
|
}
|
|
|
|
memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
|
|
|
|
if( pToken ){
|
|
|
|
char **pz = &pList->a[pList->nId].zName;
|
|
|
|
sqliteSetNString(pz, pToken->z, pToken->n, 0);
|
|
|
|
if( *pz==0 ){
|
|
|
|
sqliteIdListDelete(pList);
|
|
|
|
return 0;
|
|
|
|
}else{
|
|
|
|
sqliteDequote(*pz);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pList->nId++;
|
|
|
|
return pList;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Append a new table name to the given SrcList. Create a new SrcList if
|
|
|
|
** need be. A new entry is created in the SrcList even if pToken is NULL.
|
|
|
|
**
|
|
|
|
** A new SrcList is returned, or NULL if malloc() fails.
|
|
|
|
**
|
|
|
|
** If pDatabase is not null, it means that the table has an optional
|
|
|
|
** database name prefix. Like this: "database.table". The pDatabase
|
|
|
|
** points to the table name and the pTable points to the database name.
|
|
|
|
** The SrcList.a[].zName field is filled with the table name which might
|
|
|
|
** come from pTable (if pDatabase is NULL) or from pDatabase.
|
|
|
|
** SrcList.a[].zDatabase is filled with the database name from pTable,
|
|
|
|
** or with NULL if no database is specified.
|
|
|
|
**
|
|
|
|
** In other words, if call like this:
|
|
|
|
**
|
|
|
|
** sqliteSrcListAppend(A,B,0);
|
|
|
|
**
|
|
|
|
** Then B is a table name and the database name is unspecified. If called
|
|
|
|
** like this:
|
|
|
|
**
|
|
|
|
** sqliteSrcListAppend(A,B,C);
|
|
|
|
**
|
|
|
|
** Then C is the table name and B is the database name.
|
|
|
|
*/
|
|
|
|
SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
|
|
|
|
if( pList==0 ){
|
|
|
|
pList = sqliteMalloc( sizeof(SrcList) );
|
|
|
|
if( pList==0 ) return 0;
|
|
|
|
pList->nAlloc = 1;
|
|
|
|
}
|
|
|
|
if( pList->nSrc>=pList->nAlloc ){
|
|
|
|
SrcList *pNew;
|
|
|
|
pList->nAlloc *= 2;
|
|
|
|
pNew = sqliteRealloc(pList,
|
|
|
|
sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
|
|
|
|
if( pNew==0 ){
|
|
|
|
sqliteSrcListDelete(pList);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
pList = pNew;
|
|
|
|
}
|
|
|
|
memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
|
|
|
|
if( pDatabase && pDatabase->z==0 ){
|
|
|
|
pDatabase = 0;
|
|
|
|
}
|
|
|
|
if( pDatabase && pTable ){
|
|
|
|
Token *pTemp = pDatabase;
|
|
|
|
pDatabase = pTable;
|
|
|
|
pTable = pTemp;
|
|
|
|
}
|
|
|
|
if( pTable ){
|
|
|
|
char **pz = &pList->a[pList->nSrc].zName;
|
|
|
|
sqliteSetNString(pz, pTable->z, pTable->n, 0);
|
|
|
|
if( *pz==0 ){
|
|
|
|
sqliteSrcListDelete(pList);
|
|
|
|
return 0;
|
|
|
|
}else{
|
|
|
|
sqliteDequote(*pz);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( pDatabase ){
|
|
|
|
char **pz = &pList->a[pList->nSrc].zDatabase;
|
|
|
|
sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0);
|
|
|
|
if( *pz==0 ){
|
|
|
|
sqliteSrcListDelete(pList);
|
|
|
|
return 0;
|
|
|
|
}else{
|
|
|
|
sqliteDequote(*pz);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pList->a[pList->nSrc].iCursor = -1;
|
|
|
|
pList->nSrc++;
|
|
|
|
return pList;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Assign cursors to all tables in a SrcList
|
|
|
|
*/
|
|
|
|
void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<pList->nSrc; i++){
|
|
|
|
if( pList->a[i].iCursor<0 ){
|
|
|
|
pList->a[i].iCursor = pParse->nTab++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Add an alias to the last identifier on the given identifier list.
|
|
|
|
*/
|
|
|
|
void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
|
|
|
|
if( pList && pList->nSrc>0 ){
|
|
|
|
int i = pList->nSrc - 1;
|
|
|
|
sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
|
|
|
|
sqliteDequote(pList->a[i].zAlias);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Delete an IdList.
|
|
|
|
*/
|
|
|
|
void sqliteIdListDelete(IdList *pList){
|
|
|
|
int i;
|
|
|
|
if( pList==0 ) return;
|
|
|
|
for(i=0; i<pList->nId; i++){
|
|
|
|
sqliteFree(pList->a[i].zName);
|
|
|
|
}
|
|
|
|
sqliteFree(pList->a);
|
|
|
|
sqliteFree(pList);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return the index in pList of the identifier named zId. Return -1
|
|
|
|
** if not found.
|
|
|
|
*/
|
|
|
|
int sqliteIdListIndex(IdList *pList, const char *zName){
|
|
|
|
int i;
|
|
|
|
if( pList==0 ) return -1;
|
|
|
|
for(i=0; i<pList->nId; i++){
|
|
|
|
if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Delete an entire SrcList including all its substructure.
|
|
|
|
*/
|
|
|
|
void sqliteSrcListDelete(SrcList *pList){
|
|
|
|
int i;
|
|
|
|
if( pList==0 ) return;
|
|
|
|
for(i=0; i<pList->nSrc; i++){
|
|
|
|
sqliteFree(pList->a[i].zDatabase);
|
|
|
|
sqliteFree(pList->a[i].zName);
|
|
|
|
sqliteFree(pList->a[i].zAlias);
|
|
|
|
if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
|
|
|
|
sqliteDeleteTable(0, pList->a[i].pTab);
|
|
|
|
}
|
|
|
|
sqliteSelectDelete(pList->a[i].pSelect);
|
|
|
|
sqliteExprDelete(pList->a[i].pOn);
|
|
|
|
sqliteIdListDelete(pList->a[i].pUsing);
|
|
|
|
}
|
|
|
|
sqliteFree(pList);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Begin a transaction
|
|
|
|
*/
|
|
|
|
void sqliteBeginTransaction(Parse *pParse, int onError){
|
|
|
|
sqlite *db;
|
|
|
|
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
|
|
if( pParse->nErr || sqlite_malloc_failed ) return;
|
|
|
|
if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
|
|
|
|
if( db->flags & SQLITE_InTrans ){
|
|
|
|
sqliteErrorMsg(pParse, "cannot start a transaction within a transaction");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
sqliteBeginWriteOperation(pParse, 0, 0);
|
|
|
|
if( !pParse->explain ){
|
|
|
|
db->flags |= SQLITE_InTrans;
|
|
|
|
db->onError = onError;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Commit a transaction
|
|
|
|
*/
|
|
|
|
void sqliteCommitTransaction(Parse *pParse){
|
|
|
|
sqlite *db;
|
|
|
|
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
|
|
if( pParse->nErr || sqlite_malloc_failed ) return;
|
|
|
|
if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
|
|
|
|
if( (db->flags & SQLITE_InTrans)==0 ){
|
|
|
|
sqliteErrorMsg(pParse, "cannot commit - no transaction is active");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( !pParse->explain ){
|
|
|
|
db->flags &= ~SQLITE_InTrans;
|
|
|
|
}
|
|
|
|
sqliteEndWriteOperation(pParse);
|
|
|
|
if( !pParse->explain ){
|
|
|
|
db->onError = OE_Default;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Rollback a transaction
|
|
|
|
*/
|
|
|
|
void sqliteRollbackTransaction(Parse *pParse){
|
|
|
|
sqlite *db;
|
|
|
|
Vdbe *v;
|
|
|
|
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
|
|
if( pParse->nErr || sqlite_malloc_failed ) return;
|
|
|
|
if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
|
|
|
|
if( (db->flags & SQLITE_InTrans)==0 ){
|
|
|
|
sqliteErrorMsg(pParse, "cannot rollback - no transaction is active");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
v = sqliteGetVdbe(pParse);
|
|
|
|
if( v ){
|
|
|
|
sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
|
|
|
|
}
|
|
|
|
if( !pParse->explain ){
|
|
|
|
db->flags &= ~SQLITE_InTrans;
|
|
|
|
db->onError = OE_Default;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate VDBE code that will verify the schema cookie for all
|
|
|
|
** named database files.
|
|
|
|
*/
|
|
|
|
void sqliteCodeVerifySchema(Parse *pParse, int iDb){
|
|
|
|
sqlite *db = pParse->db;
|
|
|
|
Vdbe *v = sqliteGetVdbe(pParse);
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
|
|
assert( db->aDb[iDb].pBt!=0 );
|
|
|
|
if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){
|
|
|
|
sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie);
|
|
|
|
DbSetProperty(db, iDb, DB_Cookie);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate VDBE code that prepares for doing an operation that
|
|
|
|
** might change the database.
|
|
|
|
**
|
|
|
|
** This routine starts a new transaction if we are not already within
|
|
|
|
** a transaction. If we are already within a transaction, then a checkpoint
|
|
|
|
** is set if the setCheckpoint parameter is true. A checkpoint should
|
|
|
|
** be set for operations that might fail (due to a constraint) part of
|
|
|
|
** the way through and which will need to undo some writes without having to
|
|
|
|
** rollback the whole transaction. For operations where all constraints
|
|
|
|
** can be checked before any changes are made to the database, it is never
|
|
|
|
** necessary to undo a write and the checkpoint should not be set.
|
|
|
|
**
|
|
|
|
** Only database iDb and the temp database are made writable by this call.
|
|
|
|
** If iDb==0, then the main and temp databases are made writable. If
|
|
|
|
** iDb==1 then only the temp database is made writable. If iDb>1 then the
|
|
|
|
** specified auxiliary database and the temp database are made writable.
|
|
|
|
*/
|
|
|
|
void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){
|
|
|
|
Vdbe *v;
|
|
|
|
sqlite *db = pParse->db;
|
|
|
|
if( DbHasProperty(db, iDb, DB_Locked) ) return;
|
|
|
|
v = sqliteGetVdbe(pParse);
|
|
|
|
if( v==0 ) return;
|
|
|
|
if( !db->aDb[iDb].inTrans ){
|
|
|
|
sqliteVdbeAddOp(v, OP_Transaction, iDb, 0);
|
|
|
|
DbSetProperty(db, iDb, DB_Locked);
|
|
|
|
sqliteCodeVerifySchema(pParse, iDb);
|
|
|
|
if( iDb!=1 ){
|
|
|
|
sqliteBeginWriteOperation(pParse, setCheckpoint, 1);
|
|
|
|
}
|
|
|
|
}else if( setCheckpoint ){
|
|
|
|
sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0);
|
|
|
|
DbSetProperty(db, iDb, DB_Locked);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate code that concludes an operation that may have changed
|
|
|
|
** the database. If a statement transaction was started, then emit
|
|
|
|
** an OP_Commit that will cause the changes to be committed to disk.
|
|
|
|
**
|
|
|
|
** Note that checkpoints are automatically committed at the end of
|
|
|
|
** a statement. Note also that there can be multiple calls to
|
|
|
|
** sqliteBeginWriteOperation() but there should only be a single
|
|
|
|
** call to sqliteEndWriteOperation() at the conclusion of the statement.
|
|
|
|
*/
|
|
|
|
void sqliteEndWriteOperation(Parse *pParse){
|
|
|
|
Vdbe *v;
|
|
|
|
sqlite *db = pParse->db;
|
|
|
|
if( pParse->trigStack ) return; /* if this is in a trigger */
|
|
|
|
v = sqliteGetVdbe(pParse);
|
|
|
|
if( v==0 ) return;
|
|
|
|
if( db->flags & SQLITE_InTrans ){
|
|
|
|
/* A BEGIN has executed. Do not commit until we see an explicit
|
|
|
|
** COMMIT statement. */
|
|
|
|
}else{
|
|
|
|
sqliteVdbeAddOp(v, OP_Commit, 0, 0);
|
|
|
|
}
|
|
|
|
}
|