You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tellico/src/barcode/barcode.cpp

878 lines
26 KiB

/***************************************************************************
copyright : (C) 2007 by Sebastian Held
email : sebastian.held@gmx.de
***************************************************************************/
/***************************************************************************
* *
* ### based on BaToo: http://people.inf.ethz.ch/adelmanr/batoo/ ### *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of version 2 of the GNU General Public License as *
* published by the Free Software Foundation; *
* *
***************************************************************************/
// includes code from http://v4l2spec.bytesex.org/spec/a16323.htm
#include <tqimage.h>
#include <tqmutex.h>
#include "barcode.h"
#include <stdlib.h>
using barcodeRecognition::barcodeRecognitionThread;
using barcodeRecognition::Barcode_EAN13;
using barcodeRecognition::Decoder_EAN13;
using barcodeRecognition::MatchMakerResult;
barcodeRecognitionThread::barcodeRecognitionThread()
{
m_stop = false;
m_barcode_v4l = new barcode_v4l();
}
barcodeRecognitionThread::~barcodeRecognitionThread()
{
delete m_barcode_v4l;
}
bool barcodeRecognitionThread::isWebcamAvailable()
{
return m_barcode_v4l->isOpen();
}
void barcodeRecognitionThread::run()
{
bool stop;
m_stop_mutex.lock();
stop = m_stop;
m_stop_mutex.unlock();
if (!isWebcamAvailable())
stop = true;
Barcode_EAN13 old;
while (!stop) {
TQImage img;
m_barcode_img_mutex.lock();
if (m_barcode_img.isNull())
img = m_barcode_v4l->grab_one2();
else {
img = m_barcode_img;
m_barcode_img = TQImage();
}
m_barcode_img_mutex.unlock();
// //DEBUG
// img.load( "/home/sebastian/black.png" );
// m_stop = true;
// //DEBUG
if (!img.isNull()) {
TQImage preview = img.scale( 320, 240, TQImage::ScaleMin );
emit gotImage( preview );
Barcode_EAN13 barcode = recognize( img );
if (barcode.isValid() && (old != barcode)) {
emit recognized( barcode.toString() );
old = barcode;
}
}
msleep( 10 ); // reduce load
m_stop_mutex.lock();
stop = m_stop;
m_stop_mutex.unlock();
}
}
void barcodeRecognitionThread::stop()
{
// attention! This function is called from GUI context
m_stop_mutex.lock();
m_stop = true;
m_stop_mutex.unlock();
}
void barcodeRecognitionThread::recognizeBarcode( TQImage img )
{
// attention! This function is called from GUI context
m_barcode_img_mutex.lock();
m_barcode_img = img;
m_barcode_img_mutex.unlock();
}
Barcode_EAN13 barcodeRecognitionThread::recognize( TQImage img )
{
// PARAMETERS:
int amount_scanlines = 30;
int w = img.width();
int h = img.height();
// the array which will contain the result:
TQValueVector< TQValueVector<int> > numbers( amount_scanlines, TQValueVector<int>(13,-1) ); // no init in java source!!!!!!!!!
// generate and initialize the array that will contain all detected
// digits at a specific code position:
int possible_numbers[10][13][2];
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 13; j++) {
possible_numbers[i][j][0] = -1;
possible_numbers[i][j][1] = 0;
}
}
int successfull_lines = 0;
// try to detect the barcode along scanlines:
for (int i = 0; i < amount_scanlines; i++) {
int x1 = 0;
int y = (h / amount_scanlines) * i;
int x2 = w - 1;
// try to recognize a barcode along that path:
Barcode_EAN13 ean13_code = recognizeCode( img, x1, x2, y );
numbers[i] = ean13_code.getNumbers();
if (ean13_code.isValid()) {
successfull_lines++;
// add the recognized digits to the array of possible numbers:
addNumberToPossibleNumbers( numbers[i], possible_numbers, true );
} else {
numbers[i] = ean13_code.getNumbers();
// add the recognized digits to the array of possible numbers:
addNumberToPossibleNumbers(numbers[i], possible_numbers, false);
}
#ifdef BarcodeDecoder_DEBUG
// show the information that has been recognized along the scanline:
tqDebug( "Scanline %i result: %s\n", i, ean13_code.toString().latin1() );
#endif
}
// sort the detected digits at each code position, in accordance to the
// amount of their detection:
sortDigits(possible_numbers);
#ifdef BarcodeDecoder_DEBUG
fprintf( stderr, "detected digits:\n" );
printArray( possible_numbers, 0 );
fprintf( stderr, "# of their occurence:\n" );
printArray( possible_numbers, 1 );
#endif
// get the most likely barcode:
Barcode_EAN13 code = extractBarcode(possible_numbers);
return code;
}
void barcodeRecognitionThread::printArray( int array[10][13][2], int level )
{
for (int i = 0; i < 10; i++) {
TQCString temp;
temp.setNum( i );
fprintf( stderr, "%s : ", *(temp) );
for (int j = 0; j < 13; j++) {
if (array[i][j][level] == -1)
fprintf( stderr, "x " );
else {
TQCString temp;
temp.setNum( array[i][j][level] );
fprintf( stderr, "%s ", *(temp) );
}
}
fprintf( stderr, "\n" );
}
}
barcodeRecognition::Barcode_EAN13 barcodeRecognitionThread::recognizeCode( TQImage img, int x1, int x2, int y )
{
TQValueVector<TQRgb> raw_path(x2-x1+1);
for (int x=x1; x<=x2; x++)
raw_path[x-x1] = img.pixel(x,y);
// convert the given path into a string of black and white pixels:
TQValueVector<int> string = transformPathToBW( raw_path );
// convert the string of black&white pixels into a list, containing
// information about the black and white fields
// first indes = field nr.
// second index: 0 = color of the field
// 1 = field length
TQValueVector< TQValueVector<int> > fields = extractFieldInformation( string );
// try to recognize a EAN13 code:
Barcode_EAN13 barcode = Decoder_EAN13::recognize( fields );
return barcode;
}
void barcodeRecognitionThread::addNumberToPossibleNumbers( TQValueVector<int> number, int possible_numbers[10][13][2], bool correct_code )
{
int i;
bool digit_contained;
for (int j = 0; j < 13; j++) {
if (number[j] >= 0) {
i = 0;
digit_contained = false;
while ((i < 10) && (possible_numbers[i][j][0] >= 0)) {
if (possible_numbers[i][j][0] == number[j]) {
digit_contained = true;
if (correct_code)
possible_numbers[i][j][1] = possible_numbers[i][j][1] + 100;
else
possible_numbers[i][j][1]++;
break;
}
i++;
}
if ((i < 10) && (!digit_contained)) {
// add new digit:
possible_numbers[i][j][0] = number[j];
if (correct_code)
possible_numbers[i][j][1] = possible_numbers[i][j][1] + 100;
else
possible_numbers[i][j][1]++;
}
}
}
}
void barcodeRecognitionThread::sortDigits( int possible_numbers[10][13][2] )
{
int i;
int temp_value;
int temp_occurence;
bool changes;
for (int j = 0; j < 13; j++) {
i = 1;
changes = false;
while (true) {
if ((possible_numbers[i - 1][j][0] >= 0) && (possible_numbers[i][j][0] >= 0)) {
if (possible_numbers[i - 1][j][1] < possible_numbers[i][j][1]) {
temp_value = possible_numbers[i - 1][j][0];
temp_occurence = possible_numbers[i - 1][j][1];
possible_numbers[i - 1][j][0] = possible_numbers[i][j][0];
possible_numbers[i - 1][j][1] = possible_numbers[i][j][1];
possible_numbers[i][j][0] = temp_value;
possible_numbers[i][j][1] = temp_occurence;
changes = true;
}
}
if ((possible_numbers[i][j][0] < 0) || (i >= 9)) {
if (!changes)
break;
else {
i = 1;
changes = false;
}
} else
i++;
}
}
}
Barcode_EAN13 barcodeRecognitionThread::extractBarcode( int possible_numbers[10][13][2] )
{
// create and initialize the temporary variables:
TQValueVector<int> temp_code(13);
for (int i = 0; i < 13; i++)
temp_code[i] = possible_numbers[0][i][0];
#ifdef Barcode_DEBUG
fprintf( stderr, "barcodeRecognitionThread::extractBarcode(): " );
for (int i=0; i<13; i++)
fprintf( stderr, "%i", temp_code[i] );
fprintf( stderr, "\n" );
#endif
return Barcode_EAN13(temp_code);
}
Barcode_EAN13 barcodeRecognitionThread::detectValidBarcode ( int possible_numbers[10][13][2], int max_amount_of_considered_codes )
{
// create and initialize the temporary variables:
TQValueVector<int> temp_code(13);
for ( int i = 0; i < 13; i++ )
temp_code[i] = possible_numbers[0][i][0];
int alternative_amount = 0;
TQValueVector<int> counter( 13 ); // no init in java source!!!
int counter_nr = 11;
// check if there is at least one complete code present:
for ( int i = 0; i < 13; i++ ) {
// exit and return the "most likely" code parts:
if ( temp_code[i] < 0 )
return Barcode_EAN13( temp_code );
}
// if there is at least one complete node, try to detect a valid barcode:
while ( alternative_amount < max_amount_of_considered_codes ) {
// fill the temporary code array with one possible version:
for ( int i = 0; i < 13; i++ )
temp_code[i] = possible_numbers[counter[i]][i][0];
alternative_amount++;
// check if this version represents a valid code:
if (isValid( temp_code ))
return Barcode_EAN13( temp_code );
// increment the counters:
if ( ( counter[counter_nr] < 9 ) && ( possible_numbers[counter[counter_nr] + 1][counter_nr][0] >= 0 ) ) {
// increment the actual counter.
counter[counter_nr]++;
} else {
// check if we have reached the end and no valid barcode has been found:
if ( counter_nr == 1 ) {
// exit and return the "most likely" code parts:
for ( int i = 0; i < 13; i++ )
temp_code[i] = possible_numbers[0][i][0];
return Barcode_EAN13( temp_code );
} else {
// reset the actual counter and increment the next one(s):
counter[counter_nr] = 0;
while ( true ) {
if ( counter_nr > 2 )
counter_nr--;
else {
for ( int i = 0; i < 13; i++ )
temp_code[i] = possible_numbers[0][i][0];
return Barcode_EAN13( temp_code );
}
if ( counter[counter_nr] < 9 ) {
counter[counter_nr]++;
if ( possible_numbers[counter[counter_nr]][counter_nr][0] < 0 )
counter[counter_nr] = 0;
else
break;
} else
counter[counter_nr] = 0;
}
counter_nr = 12;
}
}
}
for ( int i = 0; i < 13; i++ )
temp_code[i] = possible_numbers[0][i][0];
return Barcode_EAN13( temp_code );
}
bool barcodeRecognitionThread::isValid( int numbers[13] )
{
TQValueVector<int> temp(13);
for (int i=0; i<13; i++)
temp[i] = numbers[i];
return isValid( temp );
}
bool barcodeRecognitionThread::isValid( TQValueVector<int> numbers )
{
Q_ASSERT( numbers.count() == 13 );
// calculate the checksum of the barcode:
int sum1 = numbers[0] + numbers[2] + numbers[4] + numbers[6] + numbers[8] + numbers[10];
int sum2 = 3 * (numbers[1] + numbers[3] + numbers[5] + numbers[7] + numbers[9] + numbers[11]);
int checksum_value = sum1 + sum2;
int checksum_digit = 10 - (checksum_value % 10);
if (checksum_digit == 10)
checksum_digit = 0;
#ifdef Barcode_DEBUG
fprintf( stderr, "barcodeRecognitionThread::isValid(): " );
for (int i=0; i<13; i++)
fprintf( stderr, "%i", numbers[i] );
fprintf( stderr, "\n" );
#endif
return (numbers[12] == checksum_digit);
}
TQValueVector<int> barcodeRecognitionThread::transformPathToBW( TQValueVector<TQRgb> line )
{
int w = line.count();
TQValueVector<int> bw_line(w,0);
bw_line[0] = 255;
// create greyscale values:
TQValueVector<int> grey_line(w,0);
int average_illumination = 0;
for (int x = 0; x < w; x++) {
grey_line[x] = (tqRed(line.at(x)) + tqGreen(line.at(x)) + tqBlue(line.at(x))) / 3;
average_illumination = average_illumination + grey_line[x];
}
average_illumination = average_illumination / w;
// perform the binarization:
int range = w / 20;
// temp values:
int moving_sum;
int moving_average;
int v1_index = -range + 1;
int v2_index = range;
int v1 = grey_line[0];
int v2 = grey_line[range];
int current_value;
int comparison_value;
// initialize the moving sum:
moving_sum = grey_line[0] * range;
for (int i = 0; i < range; i++)
moving_sum = moving_sum + grey_line[i];
// apply the adaptive thresholding algorithm:
for (int i = 1; i < w - 1; i++) {
if (v1_index > 0) v1 = grey_line[v1_index];
if (v2_index < w) v2 = grey_line[v2_index];
else v2 = grey_line[w - 1];
moving_sum = moving_sum - v1 + v2;
moving_average = moving_sum / (range << 1);
v1_index++;
v2_index++;
current_value = (grey_line[i - 1] + grey_line[i]) >> 1;
// decide if the current pixel should be black or white:
comparison_value = (3 * moving_average + average_illumination) >> 2;
if ((current_value < comparison_value - 3)) bw_line[i] = 0;
else bw_line[i] = 255;
}
// filter the values: (remove too small fields)
if (w >= 640) {
for (int x = 1; x < w - 1; x++) {
if ((bw_line[x] != bw_line[x - 1]) && (bw_line[x] != bw_line[x + 1])) bw_line[x] = bw_line[x - 1];
}
}
TQValueVector<int> ret(w,0);
for (int i=0; i<w; i++)
ret[i] = bw_line[i];
#ifdef Barcode_DEBUG
fprintf( stderr, "barcodeRecognitionThread::transformPathToBW(): " );
for (int i=0; i<ret.count(); i++)
if (bw_line[i] == 0)
fprintf( stderr, "0" );
else
fprintf( stderr, "#" );
fprintf( stderr, "\n" );
#endif
return ret;
}
TQValueVector< TQValueVector<int> > barcodeRecognitionThread::extractFieldInformation( TQValueVector<int> string )
{
TQValueVector< TQValueVector<int> > temp_fields( string.count(), TQValueVector<int>(2,0) );
if (string.count() == 0)
return TQValueVector< TQValueVector<int> >();
int field_counter = 0;
int last_value = string.at(0);
int last_fields = 1;
for (uint i = 1; i < string.size(); i++) {
if ((string.at(i) == last_value) && (i < string.size() - 1)) {
last_fields++;
} else {
// create new field entry:
temp_fields[field_counter][0] = last_value;
temp_fields[field_counter][1] = last_fields;
last_value = string.at(i);
last_fields = 0;
field_counter++;
}
}
temp_fields.resize( field_counter );
#ifdef Barcode_DEBUG
fprintf( stderr, "barcodeRecognitionThread::extractFieldInformation(): " );
for (int i=0; i<temp_fields.count(); i++)
fprintf( stderr, "%i,%i ", temp_fields.at(i).at(0), temp_fields.at(i).at(1) );
fprintf( stderr, "\n" );
#endif
return temp_fields;
}
//ok
Barcode_EAN13::Barcode_EAN13()
{
m_numbers.resize(13,-1);
m_null = true;
}
//ok
Barcode_EAN13::Barcode_EAN13( TQValueVector<int> code )
{
setCode( code );
}
//ok
void Barcode_EAN13::setCode( TQValueVector<int> code )
{
if (code.count() != 13) {
m_numbers.clear();
m_numbers.resize(13,-1);
m_null = true;
return;
}
m_numbers = code;
m_null = false;
}
//ok
bool Barcode_EAN13::isValid() const
{
if (m_null)
return false;
for (int i = 0; i < 13; i++)
if ((m_numbers[i] < 0) || (m_numbers[i] > 9))
return false;
// calculate the checksum of the barcode:
int sum1 = m_numbers[0] + m_numbers[2] + m_numbers[4] + m_numbers[6] + m_numbers[8] + m_numbers[10];
int sum2 = 3 * (m_numbers[1] + m_numbers[3] + m_numbers[5] + m_numbers[7] + m_numbers[9] + m_numbers[11]);
int checksum_value = sum1 + sum2;
int checksum_digit = 10 - (checksum_value % 10);
if (checksum_digit == 10)
checksum_digit = 0;
return (m_numbers[12] == checksum_digit);
}
//ok
TQValueVector<int> Barcode_EAN13::getNumbers() const
{
return m_numbers;
}
//ok
TQString Barcode_EAN13::toString() const
{
TQString s;
for (int i = 0; i < 13; i++)
if ((m_numbers[i] >= 0) && (m_numbers[i] <= 9))
s += TQString::number(m_numbers[i]);
else
s += '?';
return s;
}
//ok
bool Barcode_EAN13::operator!= ( const Barcode_EAN13 &code )
{
if (m_null != code.m_null)
return true;
if (!m_null)
for (int i=0; i<13; i++)
if (m_numbers[i] != code.m_numbers[i])
return true;
return false;
}
//ok
Barcode_EAN13 Decoder_EAN13::recognize( TQValueVector< TQValueVector<int> > fields )
{
// try to extract the encoded information from the field series:
TQValueVector<int> numbers = decode( fields, 0, fields.count() );
Barcode_EAN13 barcode( numbers );
// return the results:
return barcode;
}
TQValueVector<int> Decoder_EAN13::decode( TQValueVector< TQValueVector<int> > fields, int start_i, int end_i )
{
// determine the length of the path in pixels
int length = 0;
for (uint i = 0; i < fields.size(); i++)
length += fields.at(i).at(1);
// set the parameters accordingly:
int max_start_sentry_bar_differences;
int max_unit_length;
int min_unit_length;
if (length <= 800) {
max_start_sentry_bar_differences = 6;
max_unit_length = 10;
min_unit_length = 1;
} else {
max_start_sentry_bar_differences = 30;
max_unit_length = 50;
min_unit_length = 1;
}
// consistency checks:
if (fields.count() <= 0)
return TQValueVector<int>();
if (start_i > end_i - 3)
return TQValueVector<int>();
if (end_i - start_i < 30)
return TQValueVector<int>(); // (just a rough value)
// relevant indexes:
int start_sentinel_i;
int end_sentinel_i;
int left_numbers_i;
int middle_guard_i;
int right_numbers_i;
// relevant parameters:
float unit_length;
// results:
TQValueVector<int> numbers( 13, -1 ); // the java source does no initialization
// determine the relevant positions:
// Try to detect the start sentinel (a small black-white-black serie):
start_sentinel_i = -1;
for (int i = start_i; i < end_i - 56; i++) {
if (fields[i][0] == 0) {
if ((fields[i][1] >= min_unit_length) && (fields[i][1] <= max_unit_length)) {
if ((abs(fields[i][1] - fields[i + 1][1]) <= max_start_sentry_bar_differences)
&& (abs(fields[i][1] - fields[i + 2][1]) <= max_start_sentry_bar_differences) && (fields[i + 3][1] < fields[i][1] << 3)) {
start_sentinel_i = i;
break;
}
}
}
}
#ifdef Decoder_EAN13_DEBUG
fprintf( stderr, "start_sentinal_index: %i\n", start_sentinel_i );
#endif
if (start_sentinel_i < 0)
return TQValueVector<int>();
// calculate the other positions:
left_numbers_i = start_sentinel_i + 3;
middle_guard_i = left_numbers_i + 6 * 4;
right_numbers_i = middle_guard_i + 5;
end_sentinel_i = right_numbers_i + 6 * 4;
if (end_sentinel_i + 3 > end_i)
return TQValueVector<int>();
// calculate the average (pixel) length of a bar that is one unit wide:
// (a complete barcode consists out of 95 length units)
int temp_length = 0;
int field_amount = (end_sentinel_i - start_sentinel_i + 3);
for (int i = start_sentinel_i; i < start_sentinel_i + field_amount; i++)
temp_length += fields[i][1];
unit_length = (float) ((float) temp_length / 95.0f);
#ifdef Decoder_EAN13_DEBUG
fprintf( stderr, "unit_width: %f\n", unit_length );
#endif
TQValueVector< TQValueVector<int> > current_number_field( 4, TQValueVector<int>(2,0) );
if (left_numbers_i + 1 > end_i)
return TQValueVector<int>();
// test the side from which we are reading the barcode:
for (int j = 0; j < 4; j++) {
current_number_field[j][0] = fields[left_numbers_i + j][0];
current_number_field[j][1] = fields[left_numbers_i + j][1];
}
MatchMakerResult matchMakerResult = recognizeNumber( current_number_field, BOTH_TABLES );
if (matchMakerResult.isEven()) {
// we are reading the barcode from the back side:
// use the already obtained information:
numbers[12] = matchMakerResult.getDigit();
// try to recognize the "right" numbers:
int counter = 11;
for (int i = left_numbers_i + 4; i < left_numbers_i + 24; i = i + 4) {
for (int j = 0; j < 4; j++) {
current_number_field[j][0] = fields[i + j][0];
current_number_field[j][1] = fields[i + j][1];
}
matchMakerResult = recognizeNumber(current_number_field, EVEN_TABLE);
numbers[counter] = matchMakerResult.getDigit();
counter--;
}
bool parity_pattern[6]; // true = even, false = odd
//(counter has now the value 6)
// try to recognize the "left" numbers:
for (int i = right_numbers_i; i < right_numbers_i + 24; i = i + 4) {
for (int j = 0; j < 4; j++) {
current_number_field[j][0] = fields[i + j][0];
current_number_field[j][1] = fields[i + j][1];
}
matchMakerResult = recognizeNumber(current_number_field, BOTH_TABLES);
numbers[counter] = matchMakerResult.getDigit();
parity_pattern[counter-1] = !matchMakerResult.isEven();
counter--;
}
// try to determine the system code:
matchMakerResult = recognizeSystemCode(parity_pattern);
numbers[0] = matchMakerResult.getDigit();
} else {
// we are reading the barcode from the "correct" side:
bool parity_pattern[6]; // true = even, false = odd
// use the already obtained information:
numbers[1] = matchMakerResult.getDigit();
parity_pattern[0] = matchMakerResult.isEven();
// try to recognize the left numbers:
int counter = 2;
for (int i = left_numbers_i + 4; i < left_numbers_i + 24; i = i + 4) {
for (int j = 0; j < 4; j++) {
current_number_field[j][0] = fields[i + j][0];
current_number_field[j][1] = fields[i + j][1];
}
matchMakerResult = recognizeNumber(current_number_field, BOTH_TABLES);
numbers[counter] = matchMakerResult.getDigit();
parity_pattern[counter-1] = matchMakerResult.isEven();
counter++;
}
// try to determine the system code:
matchMakerResult = recognizeSystemCode(parity_pattern);
numbers[0] = matchMakerResult.getDigit();
// try to recognize the right numbers:
counter = 0;
for (int i = right_numbers_i; i < right_numbers_i + 24; i = i + 4) {
for (int j = 0; j < 4; j++) {
current_number_field[j][0] = fields[i + j][0];
current_number_field[j][1] = fields[i + j][1];
}
matchMakerResult = recognizeNumber(current_number_field, ODD_TABLE);
numbers[counter + 7] = matchMakerResult.getDigit();
counter++;
}
}
return numbers;
}
MatchMakerResult Decoder_EAN13::recognizeNumber( TQValueVector< TQValueVector<int> > fields, int code_table_to_use)
{
// convert the pixel lengths of the four black&white fields into
// normed values that have together a length of 70;
int pixel_sum = fields[0][1] + fields[1][1] + fields[2][1] + fields[3][1];
int b[4];
for (int i = 0; i < 4; i++) {
b[i] = round((((float) fields[i][1]) / ((float) pixel_sum)) * 70);
}
#ifdef Decoder_EAN13_DEBUG
fprintf( stderr, "Recognize Number (code table to use: %i):\n", code_table_to_use );
fprintf( stderr, "lengths: %i %i %i %i\n", fields[0][1], fields[1][1], fields[2][1], fields[3][1] );
fprintf( stderr, "normed lengths: %i %i %i %i\n", b[0], b[1], b[2], b[3] );
#endif
// try to detect the digit that is encoded by the set of four normed bar lengths:
int max_difference_for_acceptance = 60;
int temp;
int even_min_difference = 100000;
int even_min_difference_index = 0;
int odd_min_difference = 100000;
int odd_min_difference_index = 0;
if ((code_table_to_use == BOTH_TABLES)||(code_table_to_use == EVEN_TABLE)) {
TQValueVector<int> even_differences(10,0);
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 4; j++) {
// calculate the differences in the even group:
temp = b[j] - code_even[i][j];
if (temp < 0)
even_differences[i] = even_differences[i] + ((-temp) << 1);
else
even_differences[i] = even_differences[i] + (temp << 1);
}
if (even_differences[i] < even_min_difference) {
even_min_difference = even_differences[i];
even_min_difference_index = i;
}
}
}
if ((code_table_to_use == BOTH_TABLES) || (code_table_to_use == ODD_TABLE)) {
TQValueVector<int> odd_differences(10,0);
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 4; j++) {
// calculate the differences in the odd group:
temp = b[j] - code_odd[i][j];
if (temp < 0)
odd_differences[i] = odd_differences[i] + ((-temp) << 1);
else
odd_differences[i] = odd_differences[i] + (temp << 1);
}
if (odd_differences[i] < odd_min_difference) {
odd_min_difference = odd_differences[i];
odd_min_difference_index = i;
}
}
}
// select the digit and parity with the lowest difference to the found pattern:
if (even_min_difference <= odd_min_difference) {
if (even_min_difference < max_difference_for_acceptance)
return MatchMakerResult( true, even_min_difference_index );
} else {
if (odd_min_difference < max_difference_for_acceptance)
return MatchMakerResult( false, odd_min_difference_index );
}
return MatchMakerResult( false, -1 );
}
MatchMakerResult Decoder_EAN13::recognizeSystemCode( bool parity_pattern[6] )
{
// search for a fitting parity pattern:
bool fits = false;
for (int i = 0; i < 10; i++) {
fits = true;
for (int j = 0; j < 6; j++) {
if (parity_pattern_list[i][j] != parity_pattern[j]) {
fits = false;
break;
}
}
if (fits)
return MatchMakerResult( false, i );
}
return MatchMakerResult( false, -1 );
}
//ok
MatchMakerResult::MatchMakerResult( bool even, int digit )
{
m_even = even;
m_digit = digit;
}
#include "barcode.moc"