You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdepim/libkpgp/kpgpbaseG.cpp

856 lines
26 KiB

/*
kpgpbaseG.cpp
Copyright (C) 2001,2002 the KPGP authors
See file AUTHORS.kpgp for details
This file is part of KPGP, the KDE PGP/GnuPG support library.
KPGP is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "kpgpbase.h"
#include "kpgp.h"
#include <klocale.h>
#include <kprocess.h>
#include <kdebug.h>
#include <tqtextcodec.h>
#include <string.h> /* strncmp */
namespace Kpgp {
BaseG::BaseG()
: Base()
{
// determine the version of gpg (the method is equivalent to gpgme's method)
runGpg( "--version", 0 );
int eol = output.find( '\n' );
if( eol > 0 ) {
int pos = output.findRev( ' ', eol - 1 );
if( pos != -1 ) {
mVersion = output.mid( pos + 1, eol - pos - 1 );
kdDebug(5100) << "found GnuPG " << mVersion << endl;
}
}
}
BaseG::~BaseG()
{
}
int
BaseG::encrypt( Block& block, const KeyIDList& recipients )
{
return encsign( block, recipients, 0 );
}
int
BaseG::clearsign( Block& block, const char *passphrase )
{
return encsign( block, KeyIDList(), passphrase );
}
int
BaseG::encsign( Block& block, const KeyIDList& recipients,
const char *passphrase )
{
TQCString cmd;
int exitStatus = 0;
if(!recipients.isEmpty() && passphrase != 0)
cmd = "--batch --armor --sign --encrypt --textmode";
else if(!recipients.isEmpty())
cmd = "--batch --armor --encrypt --textmode";
else if(passphrase != 0)
cmd = "--batch --escape-from --clearsign";
else
{
kdDebug(5100) << "kpgpbase: Neither recipients nor passphrase specified." << endl;
return OK;
}
if(passphrase != 0)
cmd += addUserId();
if(!recipients.isEmpty())
{
cmd += " --set-filename stdin";
TQCString pgpUser = Module::getKpgp()->user();
if(Module::getKpgp()->encryptToSelf() && !pgpUser.isEmpty()) {
cmd += " -r 0x";
cmd += pgpUser;
}
for( KeyIDList::ConstIterator it = recipients.begin();
it != recipients.end(); ++it ) {
cmd += " -r 0x";
cmd += (*it);
}
}
clear();
input = block.text();
exitStatus = runGpg(cmd.data(), passphrase);
if( !output.isEmpty() )
block.setProcessedText( output );
block.setError( error );
if( exitStatus != 0 )
{
// this error message is later hopefully overwritten
errMsg = i18n( "Unknown error." );
status = ERROR;
}
#if 0
// #### FIXME: As we check the keys ourselves the following problems
// shouldn't occur. Therefore I don't handle them for now.
// IK 01/2002
if(!recipients.isEmpty())
{
int index = 0;
bool bad = FALSE;
unsigned int num = 0;
TQCString badkeys = "";
// Examples:
// gpg: 0x12345678: skipped: public key not found
// gpg: 0x12345678: skipped: public key is disabled
// gpg: 0x12345678: skipped: unusable public key
// (expired or revoked key)
// gpg: 23456789: no info to calculate a trust probability
// (untrusted key, 23456789 is the key Id of the encryption sub key)
while((index = error.find("skipped: ",index)) != -1)
{
bad = TRUE;
index = error.find('\'',index);
int index2 = error.find('\'',index+1);
badkeys += error.mid(index, index2-index+1) + ", ";
num++;
}
if(bad)
{
badkeys.stripWhiteSpace();
if(num == recipients.count())
errMsg = i18n("Could not find public keys matching the userid(s)\n"
"%1;\n"
"the message is not encrypted.")
.arg( badkeys.data() );
else
errMsg = i18n("Could not find public keys matching the userid(s)\n"
"%1;\n"
"these persons will not be able to read the message.")
.arg( badkeys.data() );
status |= MISSINGKEY;
status |= ERROR;
}
}
#endif
if( passphrase != 0 )
{
// Example 1 (bad passphrase, clearsign only):
// gpg: skipped `0x12345678': bad passphrase
// gpg: [stdin]: clearsign failed: bad passphrase
// Example 2 (bad passphrase, sign & encrypt):
// gpg: skipped `0x12345678': bad passphrase
// gpg: [stdin]: sign+encrypt failed: bad passphrase
// Example 3 (unusable secret key, clearsign only):
// gpg: skipped `0x12345678': unusable secret key
// gpg: [stdin]: clearsign failed: unusable secret key
// Example 4 (unusable secret key, sign & encrypt):
// gpg: skipped `0xAC0EB35D': unusable secret key
// gpg: [stdin]: sign+encrypt failed: unusable secret key
if( error.find("bad passphrase") != -1 )
{
errMsg = i18n("Signing failed because the passphrase is wrong.");
status |= BADPHRASE;
status |= ERR_SIGNING;
status |= ERROR;
}
else if( error.find("unusable secret key") != -1 )
{
errMsg = i18n("Signing failed because your secret key is unusable.");
status |= ERR_SIGNING;
status |= ERROR;
}
else if( !( status & ERROR ) )
{
//kdDebug(5100) << "Base: Good Passphrase!" << endl;
status |= SIGNED;
}
}
//kdDebug(5100) << "status = " << status << endl;
block.setStatus( status );
return status;
}
int
BaseG::decrypt( Block& block, const char *passphrase )
{
int index, index2;
int exitStatus = 0;
clear();
input = block.text();
exitStatus = runGpg("--batch --decrypt", passphrase);
if( !output.isEmpty() && ( error.find( "gpg: quoted printable" ) == -1 ) )
block.setProcessedText( output );
block.setError( error );
if(exitStatus == -1) {
errMsg = i18n("Error running gpg");
status = RUN_ERR;
block.setStatus( status );
return status;
}
// Example 1 (good passphrase, decryption successful):
// gpg: encrypted with 2048-bit ELG-E key, ID 12345678, created 2000-11-11
// "Foo Bar <foo@bar.xyz>"
//
// Example 2 (bad passphrase):
// gpg: encrypted with 1024-bit RSA key, ID 12345678, created 1991-01-01
// "Foo Bar <foo@bar.xyz>"
// gpg: public key decryption failed: bad passphrase
// gpg: decryption failed: secret key not available
//
// Example 3 (no secret key available):
// gpg: encrypted with RSA key, ID 12345678
// gpg: decryption failed: secret key not available
//
// Example 4 (good passphrase for second key, decryption successful):
// gpg: encrypted with 2048-bit ELG-E key, ID 12345678, created 2000-01-01
// "Foo Bar (work) <foo@bar.xyz>"
// gpg: public key decryption failed: bad passphrase
// gpg: encrypted with 2048-bit ELG-E key, ID 23456789, created 2000-02-02
// "Foo Bar (home) <foo@bar.xyz>"
if( error.find( "gpg: encrypted with" ) != -1 )
{
//kdDebug(5100) << "kpgpbase: message is encrypted" << endl;
status |= ENCRYPTED;
if( error.find( "\ngpg: decryption failed" ) != -1 )
{
if( ( index = error.find( "bad passphrase" ) ) != -1 )
{
if( passphrase != 0 )
{
errMsg = i18n( "Bad passphrase; could not decrypt." );
kdDebug(5100) << "Base: passphrase is bad" << endl;
status |= BADPHRASE;
status |= ERROR;
}
else
{
// Search backwards the user ID of the needed key
index2 = error.findRev('"', index) - 1;
index = error.findRev(" \"", index2) + 7;
// The conversion from UTF8 is necessary because gpg stores and
// prints user IDs in UTF8
block.setRequiredUserId( TQString::fromUtf8( error.mid( index, index2 - index + 1 ) ) );
kdDebug(5100) << "Base: key needed is \"" << block.requiredUserId() << "\"!" << endl;
}
}
else if( error.find( "secret key not available" ) != -1 )
{
// no secret key fitting this message
status |= NO_SEC_KEY;
status |= ERROR;
errMsg = i18n("You do not have the secret key needed to decrypt this message.");
kdDebug(5100) << "Base: no secret key for this message" << endl;
}
}
// check for persons
#if 0
// ##### FIXME: This information is anyway currently not used
// I'll change it to always determine the recipients.
index = error.find("can only be read by:");
if(index != -1)
{
index = error.find('\n',index);
int end = error.find("\n\n",index);
mRecipients.clear();
while( (index2 = error.find('\n',index+1)) <= end )
{
TQCString item = error.mid(index+1,index2-index-1);
item.stripWhiteSpace();
mRecipients.append(item);
index = index2;
}
}
#endif
}
// Example 1 (unknown signature key):
// gpg: Signature made Wed 02 Jan 2002 11:26:33 AM CET using DSA key ID 2E250C64
// gpg: Can't check signature: public key not found
if((index = error.find("Signature made")) != -1)
{
//kdDebug(5100) << "Base: message is signed" << endl;
status |= SIGNED;
// get signature date and signature key ID
// Example: Signature made Sun 06 May 2001 03:49:27 PM CEST using DSA key ID 12345678
index2 = error.find("using", index+15);
block.setSignatureDate( error.mid(index+15, index2-(index+15)-1) );
kdDebug(5100) << "Message was signed on '" << block.signatureDate() << "'\n";
index2 = error.find("key ID ", index2) + 7;
block.setSignatureKeyId( error.mid(index2,8) );
kdDebug(5100) << "Message was signed with key '" << block.signatureKeyId() << "'\n";
// move index to start of next line
index = error.find('\n', index2)+1;
if ((error.find("Key matching expected", index) != -1)
|| (error.find("Can't check signature", index) != -1))
{
status |= UNKNOWN_SIG;
status |= GOODSIG;
block.setSignatureUserId( TQString() );
}
else if( error.find("Good signature", index) != -1 )
{
status |= GOODSIG;
// get the primary user ID of the signer
index = error.find('"',index);
index2 = error.find('\n',index+1);
index2 = error.findRev('"', index2-1);
block.setSignatureUserId( error.mid( index+1, index2-index-1 ) );
}
else if( error.find("BAD signature", index) != -1 )
{
//kdDebug(5100) << "BAD signature" << endl;
status |= ERROR;
// get the primary user ID of the signer
index = error.find('"',index);
index2 = error.find('\n',index+1);
index2 = error.findRev('"', index2-1);
block.setSignatureUserId( error.mid( index+1, index2-index-1 ) );
}
else if( error.find("Can't find the right public key", index) != -1 )
{
// #### fix this hack
// I think this can't happen anymore because if the pubring is missing
// the current GnuPG creates a new empty one.
status |= UNKNOWN_SIG;
status |= GOODSIG; // this is a hack...
block.setSignatureUserId( i18n("??? (file ~/.gnupg/pubring.gpg not found)") );
}
else
{
status |= ERROR;
block.setSignatureUserId( TQString() );
}
}
//kdDebug(5100) << "status = " << status << endl;
block.setStatus( status );
return status;
}
Key*
BaseG::readPublicKey( const KeyID& keyID,
const bool readTrust /* = false */,
Key* key /* = 0 */ )
{
int exitStatus = 0;
status = 0;
if( readTrust )
exitStatus = runGpg( "--batch --list-public-keys --with-fingerprint --with-colons --fixed-list-mode 0x" + keyID, 0, true );
else
exitStatus = runGpg( "--batch --list-public-keys --with-fingerprint --with-colons --fixed-list-mode --no-expensive-trust-checks 0x" + keyID, 0, true );
if(exitStatus != 0) {
status = ERROR;
return 0;
}
int offset;
// search start of key data
if( !strncmp( output.data(), "pub:", 4 ) )
offset = 0;
else {
offset = output.find( "\npub:" );
if( offset == -1 )
return 0;
else
offset++;
}
key = parseKeyData( output, offset, key );
return key;
}
KeyList
BaseG::publicKeys( const TQStringList & patterns )
{
int exitStatus = 0;
// the option --with-colons should be used for interprocess communication
// with gpg (according to Werner Koch)
TQCString cmd = "--batch --list-public-keys --with-fingerprint --with-colons "
"--fixed-list-mode --no-expensive-trust-checks";
for ( TQStringList::ConstIterator it = patterns.begin();
it != patterns.end(); ++it ) {
cmd += " ";
cmd += TDEProcess::quote( *it ).local8Bit();
}
status = 0;
exitStatus = runGpg( cmd, 0, true );
if(exitStatus != 0) {
status = ERROR;
return KeyList();
}
// now we need to parse the output for public keys
KeyList publicKeys = parseKeyList(output, false);
// sort the list of public keys
publicKeys.sort();
return publicKeys;
}
KeyList
BaseG::secretKeys( const TQStringList & patterns )
{
int exitStatus = 0;
// the option --with-colons should be used for interprocess communication
// with gpg (according to Werner Koch)
TQCString cmd = "--batch --list-secret-keys --with-fingerprint --with-colons "
"--fixed-list-mode";
for ( TQStringList::ConstIterator it = patterns.begin();
it != patterns.end(); ++it ) {
cmd += " ";
cmd += TDEProcess::quote( *it ).local8Bit();
}
status = 0;
exitStatus = runGpg( cmd, 0, true );
if(exitStatus != 0) {
status = ERROR;
return KeyList();
}
// now we need to parse the output for secret keys
KeyList secretKeys = parseKeyList(output, true);
// sort the list of secret keys
secretKeys.sort();
return secretKeys;
}
int
BaseG::signKey(const KeyID& keyID, const char *passphrase)
{
TQCString cmd;
int exitStatus = 0;
cmd = "--batch";
cmd += addUserId();
cmd += " --sign-key 0x";
cmd += keyID;
status = 0;
exitStatus = runGpg(cmd.data(), passphrase);
if (exitStatus != 0)
status = ERROR;
return status;
}
TQCString
BaseG::getAsciiPublicKey(const KeyID& keyID)
{
int exitStatus = 0;
if (keyID.isEmpty())
return TQCString();
status = 0;
exitStatus = runGpg("--batch --armor --export 0x" + keyID, 0, true);
if(exitStatus != 0) {
status = ERROR;
return TQCString();
}
return output;
}
Key*
BaseG::parseKeyData( const TQCString& output, int& offset, Key* key /* = 0 */ )
// This function parses the data for a single key which is output by GnuPG
// with the following command line arguments:
// --batch --list-public-keys --with-fingerprint --with-colons
// --fixed-list-mode [--no-expensive-trust-checks]
// It expects the key data to start at offset and returns the start of
// the next key's data in offset.
// Subkeys are currently ignored.
{
int index = offset;
if( ( strncmp( output.data() + offset, "pub:", 4 ) != 0 )
&& ( strncmp( output.data() + offset, "sec:", 4 ) != 0 ) ) {
return 0;
}
if( key == 0 )
key = new Key();
else
key->clear();
TQCString keyID;
bool firstKey = true;
while( true )
{
int eol;
// search the end of the current line
if( ( eol = output.find( '\n', index ) ) == -1 )
break;
bool bIsPublicKey = false;
if( ( bIsPublicKey = !strncmp( output.data() + index, "pub:", 4 ) )
|| !strncmp( output.data() + index, "sec:", 4 ) )
{ // line contains primary key data
// Example: pub:f:1024:17:63CB691DFAEBD5FC:860451781::379:-:::scESC:
// abort parsing if we found the start of the next key
if( !firstKey )
break;
firstKey = false;
key->setSecret( !bIsPublicKey );
Subkey *subkey = new Subkey( TQCString(), !bIsPublicKey );
int pos = index + 4; // begin of 2nd field
int pos2 = output.find( ':', pos );
for( int field = 2; field <= 12; field++ )
{
switch( field )
{
case 2: // the calculated trust
if( pos2 > pos )
{
switch( output[pos] )
{
case 'o': // unknown (this key is new to the system)
break;
case 'i': // the key is invalid, e.g. missing self-signature
subkey->setInvalid( true );
key->setInvalid( true );
break;
case 'd': // the key has been disabled
subkey->setDisabled( true );
key->setDisabled( true );
break;
case 'r': // the key has been revoked
subkey->setRevoked( true );
key->setRevoked( true );
break;
case 'e': // the key has expired
subkey->setExpired( true );
key->setExpired( true );
break;
case '-': // undefined (no path leads to the key)
case 'q': // undefined (no trusted path leads to the key)
case 'n': // don't trust this key at all
case 'm': // the key is marginally trusted
case 'f': // the key is fully trusted
case 'u': // the key is ultimately trusted (secret key available)
// These values are ignored since we determine the key trust
// from the trust values of the user ids.
break;
default:
kdDebug(5100) << "Unknown trust value\n";
}
}
break;
case 3: // length of key in bits
if( pos2 > pos )
subkey->setKeyLength( output.mid( pos, pos2-pos ).toUInt() );
break;
case 4: // the key algorithm
if( pos2 > pos )
subkey->setKeyAlgorithm( output.mid( pos, pos2-pos ).toUInt() );
break;
case 5: // the long key id
keyID = output.mid( pos, pos2-pos );
subkey->setKeyID( keyID );
break;
case 6: // the creation date (in seconds since 1970-01-01 00:00:00)
if( pos2 > pos )
subkey->setCreationDate( output.mid( pos, pos2-pos ).toLong() );
break;
case 7: // the expiration date (in seconds since 1970-01-01 00:00:00)
if( pos2 > pos )
subkey->setExpirationDate( output.mid( pos, pos2-pos ).toLong() );
else
subkey->setExpirationDate( -1 ); // key expires never
break;
case 8: // local ID (ignored)
case 9: // Ownertrust (ignored for now)
case 10: // User-ID (always empty in --fixed-list-mode)
case 11: // signature class (always empty except for key signatures)
break;
case 12: // key capabilities
for( int i=pos; i<pos2; i++ )
switch( output[i] )
{
case 'e':
subkey->setCanEncrypt( true );
break;
case 's':
subkey->setCanSign( true );
break;
case 'c':
subkey->setCanCertify( true );
break;
case 'E':
key->setCanEncrypt( true );
break;
case 'S':
key->setCanSign( true );
break;
case 'C':
key->setCanCertify( true );
break;
default:
kdDebug(5100) << "Unknown key capability\n";
}
break;
}
pos = pos2 + 1;
pos2 = output.find( ':', pos );
}
key->addSubkey( subkey );
}
else if( !strncmp( output.data() + index, "uid:", 4 ) )
{ // line contains a user id
// Example: uid:f::::::::Philip R. Zimmermann <prz@pgp.com>:
UserID *userID = new UserID( "" );
int pos = index + 4; // begin of 2nd field
int pos2 = output.find( ':', pos );
for( int field=2; field <= 10; field++ )
{
switch( field )
{
case 2: // the calculated trust
if( pos2 > pos )
{
switch( output[pos] )
{
case 'i': // the user id is invalid, e.g. missing self-signature
userID->setInvalid( true );
break;
case 'r': // the user id has been revoked
userID->setRevoked( true );
break;
case '-': // undefined (no path leads to the key)
case 'q': // undefined (no trusted path leads to the key)
userID->setValidity( KPGP_VALIDITY_UNDEFINED );
break;
case 'n': // don't trust this key at all
userID->setValidity( KPGP_VALIDITY_NEVER );
break;
case 'm': // the key is marginally trusted
userID->setValidity( KPGP_VALIDITY_MARGINAL );
break;
case 'f': // the key is fully trusted
userID->setValidity( KPGP_VALIDITY_FULL );
break;
case 'u': // the key is ultimately trusted (secret key available)
userID->setValidity( KPGP_VALIDITY_ULTIMATE );
break;
default:
kdDebug(5100) << "Unknown trust value\n";
}
}
break;
case 3: // these fields are empty
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
break;
case 10: // User-ID
TQCString uid = output.mid( pos, pos2-pos );
// replace "\xXX" with the corresponding character;
// other escaped characters, i.e. \n, \r etc., are ignored
// because they shouldn't appear in user IDs
for ( int idx = 0 ; (idx = uid.find( "\\x", idx )) >= 0 ; ++idx ) {
char str[2] = "x";
str[0] = (char) TQString( uid.mid( idx + 2, 2 ) ).toShort( 0, 16 );
uid.replace( idx, 4, str );
}
TQString uidString = TQString::fromUtf8( uid.data() );
// check whether uid was utf-8 encoded
bool isUtf8 = true;
for ( unsigned int i = 0; i + 1 < uidString.length(); ++i ) {
if ( uidString[i].unicode() == 0xdbff &&
uidString[i+1].row() == 0xde ) {
// we found a non-Unicode character (see TQString::fromUtf8())
isUtf8 = false;
break;
}
}
if( !isUtf8 ) {
// The user id isn't utf-8 encoded. It was most likely
// created with PGP which either used latin1 or koi8-r.
kdDebug(5100) << "User Id '" << uid
<< "' doesn't seem to be utf-8 encoded." << endl;
// We determine the ratio between non-ASCII and ASCII chars.
// A koi8-r user id should have lots of non-ASCII chars.
int nonAsciiCount = 0, asciiCount = 0;
// We only look at the first part of the user id (i. e. everything
// before the email address resp. before a comment)
for( signed char* ch = (signed char*)uid.data();
*ch && ( *ch != '(' ) && ( *ch != '<' );
++ch ) {
if( ( ( *ch >= 'A' ) && ( *ch <= 'Z' ) )
|| ( ( *ch >= 'a' ) && ( *ch <= 'z' ) ) )
++asciiCount;
else if( *ch < 0 )
++nonAsciiCount;
}
kdDebug(5100) << "ascii-nonAscii ratio : " << asciiCount
<< ":" << nonAsciiCount << endl;
if( nonAsciiCount > asciiCount ) {
// assume koi8-r encoding
kdDebug(5100) << "Assume koi8-r encoding." << endl;
TQTextCodec *codec = TQTextCodec::codecForName("KOI8-R");
uidString = codec->toUnicode( uid.data() );
// check the case of the first two characters to find out
// whether the user id is probably CP1251 encoded (for some
// reason in CP1251 the lower case characters have smaller
// codes than the upper case characters, so if the first char
// of the koi8-r decoded user id is lower case and the second
// char is upper case then it's likely that the user id is
// CP1251 encoded)
if( ( uidString.length() >= 2 )
&& ( uidString[0].lower() == uidString[0] )
&& ( uidString[1].upper() == uidString[1] ) ) {
// koi8-r decoded user id has inverted case, so assume
// CP1251 encoding
kdDebug(5100) << "No, it doesn't seem to be koi8-r. "
"Use CP 1251 instead." << endl;
TQTextCodec *codec = TQTextCodec::codecForName("CP1251");
uidString = codec->toUnicode( uid.data() );
}
}
else {
// assume latin1 encoding
kdDebug(5100) << "Assume latin1 encoding." << endl;
uidString = TQString::fromLatin1( uid.data() );
}
}
userID->setText( uidString );
break;
}
pos = pos2 + 1;
pos2 = output.find( ':', pos );
}
// user IDs are printed in UTF-8 by gpg (if one uses --with-colons)
key->addUserID( userID );
}
else if( !strncmp( output.data() + index, "fpr:", 4 ) )
{ // line contains a fingerprint
// Example: fpr:::::::::17AFBAAF21064E513F037E6E63CB691DFAEBD5FC:
if (key == 0) // invalid key data
break;
// search the fingerprint (it's in the 10th field)
int pos = index + 4;
for( int i = 0; i < 8; i++ )
pos = output.find( ':', pos ) + 1;
int pos2 = output.find( ':', pos );
key->setFingerprint( keyID, output.mid( pos, pos2-pos ) );
}
index = eol + 1;
}
//kdDebug(5100) << "finished parsing key data\n";
offset = index;
return key;
}
KeyList
BaseG::parseKeyList( const TQCString& output, bool secretKeys )
{
KeyList keys;
Key *key = 0;
int offset;
// search start of key data
if( !strncmp( output.data(), "pub:", 4 )
|| !strncmp( output.data(), "sec:", 4 ) )
offset = 0;
else {
if( secretKeys )
offset = output.find( "\nsec:" );
else
offset = output.find( "\npub:" );
if( offset == -1 )
return keys;
else
offset++;
}
do {
key = parseKeyData( output, offset );
if( key != 0 )
keys.append( key );
}
while( key != 0 );
//kdDebug(5100) << "finished parsing keys" << endl;
return keys;
}
} // namespace Kpgp