You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4451 lines
128 KiB
C
4451 lines
128 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** The code in this file implements execution method of the
|
|
** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
|
|
** handles housekeeping details such as creating and deleting
|
|
** VDBE instances. This file is solely interested in executing
|
|
** the VDBE program.
|
|
**
|
|
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
|
|
** to a VDBE.
|
|
**
|
|
** The SQL parser generates a program which is then executed by
|
|
** the VDBE to do the work of the SQL statement. VDBE programs are
|
|
** similar in form to assembly language. The program consists of
|
|
** a linear sequence of operations. Each operation has an opcode
|
|
** and 3 operands. Operands P1 and P2 are integers. Operand P3
|
|
** is a null-terminated string. The P2 operand must be non-negative.
|
|
** Opcodes will typically ignore one or more operands. Many opcodes
|
|
** ignore all three operands.
|
|
**
|
|
** Computation results are stored on a stack. Each entry on the
|
|
** stack is either an integer, a null-terminated string, a floating point
|
|
** number, or the SQL "NULL" value. An inplicit conversion from one
|
|
** type to the other occurs as necessary.
|
|
**
|
|
** Most of the code in this file is taken up by the sqlite3VdbeExec()
|
|
** function which does the work of interpreting a VDBE program.
|
|
** But other routines are also provided to help in building up
|
|
** a program instruction by instruction.
|
|
**
|
|
** Various scripts scan this source file in order to generate HTML
|
|
** documentation, headers files, or other derived files. The formatting
|
|
** of the code in this file is, therefore, important. See other comments
|
|
** in this file for details. If in doubt, do not deviate from existing
|
|
** commenting and indentation practices when changing or adding code.
|
|
**
|
|
** $Id$
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include "os.h"
|
|
#include <ctype.h>
|
|
#include "vdbeInt.h"
|
|
|
|
/*
|
|
** The following global variable is incremented every time a cursor
|
|
** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test
|
|
** procedures use this information to make sure that indices are
|
|
** working correctly. This variable has no function other than to
|
|
** help verify the correct operation of the library.
|
|
*/
|
|
int sqlite3_search_count = 0;
|
|
|
|
/*
|
|
** When this global variable is positive, it gets decremented once before
|
|
** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt
|
|
** of the db.flags field is set in order to simulate and interrupt.
|
|
**
|
|
** This facility is used for testing purposes only. It does not function
|
|
** in an ordinary build.
|
|
*/
|
|
int sqlite3_interrupt_count = 0;
|
|
|
|
/*
|
|
** Release the memory associated with the given stack level. This
|
|
** leaves the Mem.flags field in an inconsistent state.
|
|
*/
|
|
#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
|
|
|
|
/*
|
|
** Convert the given stack entity into a string if it isn't one
|
|
** already. Return non-zero if a malloc() fails.
|
|
*/
|
|
#define Stringify(P, enc) \
|
|
if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
|
|
{ goto no_mem; }
|
|
|
|
/*
|
|
** Convert the given stack entity into a string that has been obtained
|
|
** from sqliteMalloc(). This is different from Stringify() above in that
|
|
** Stringify() will use the NBFS bytes of static string space if the string
|
|
** will fit but this routine always mallocs for space.
|
|
** Return non-zero if we run out of memory.
|
|
*/
|
|
#define Dynamicify(P,enc) sqlite3VdbeMemDynamicify(P)
|
|
|
|
|
|
/*
|
|
** An ephemeral string value (signified by the MEM_Ephem flag) contains
|
|
** a pointer to a dynamically allocated string where some other entity
|
|
** is responsible for deallocating that string. Because the stack entry
|
|
** does not control the string, it might be deleted without the stack
|
|
** entry knowing it.
|
|
**
|
|
** This routine converts an ephemeral string into a dynamically allocated
|
|
** string that the stack entry itself controls. In other words, it
|
|
** converts an MEM_Ephem string into an MEM_Dyn string.
|
|
*/
|
|
#define Deephemeralize(P) \
|
|
if( ((P)->flags&MEM_Ephem)!=0 \
|
|
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
|
|
|
|
/*
|
|
** Convert the given stack entity into a integer if it isn't one
|
|
** already.
|
|
**
|
|
** Any prior string or real representation is invalidated.
|
|
** NULLs are converted into 0.
|
|
*/
|
|
#define Integerify(P) sqlite3VdbeMemIntegerify(P)
|
|
|
|
/*
|
|
** Convert P so that it has type MEM_Real.
|
|
**
|
|
** Any prior string or integer representation is invalidated.
|
|
** NULLs are converted into 0.0.
|
|
*/
|
|
#define Realify(P) sqlite3VdbeMemRealify(P)
|
|
|
|
/*
|
|
** Argument pMem points at a memory cell that will be passed to a
|
|
** user-defined function or returned to the user as the result of a query.
|
|
** The second argument, 'db_enc' is the text encoding used by the vdbe for
|
|
** stack variables. This routine sets the pMem->enc and pMem->type
|
|
** variables used by the sqlite3_value_*() routines.
|
|
*/
|
|
#define storeTypeInfo(A,B) _storeTypeInfo(A)
|
|
static void _storeTypeInfo(Mem *pMem){
|
|
int flags = pMem->flags;
|
|
if( flags & MEM_Null ){
|
|
pMem->type = SQLITE_NULL;
|
|
}
|
|
else if( flags & MEM_Int ){
|
|
pMem->type = SQLITE_INTEGER;
|
|
}
|
|
else if( flags & MEM_Real ){
|
|
pMem->type = SQLITE_FLOAT;
|
|
}
|
|
else if( flags & MEM_Str ){
|
|
pMem->type = SQLITE_TEXT;
|
|
}else{
|
|
pMem->type = SQLITE_BLOB;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Insert a new aggregate element and make it the element that
|
|
** has focus.
|
|
**
|
|
** Return 0 on success and 1 if memory is exhausted.
|
|
*/
|
|
static int AggInsert(Agg *p, char *zKey, int nKey){
|
|
AggElem *pElem;
|
|
int i;
|
|
int rc;
|
|
pElem = sqliteMalloc( sizeof(AggElem) + nKey +
|
|
(p->nMem-1)*sizeof(pElem->aMem[0]) );
|
|
if( pElem==0 ) return SQLITE_NOMEM;
|
|
pElem->zKey = (char*)&pElem->aMem[p->nMem];
|
|
memcpy(pElem->zKey, zKey, nKey);
|
|
pElem->nKey = nKey;
|
|
|
|
if( p->pCsr ){
|
|
rc = sqlite3BtreeInsert(p->pCsr, zKey, nKey, &pElem, sizeof(AggElem*));
|
|
if( rc!=SQLITE_OK ){
|
|
sqliteFree(pElem);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
for(i=0; i<p->nMem; i++){
|
|
pElem->aMem[i].flags = MEM_Null;
|
|
}
|
|
p->pCurrent = pElem;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Pop the stack N times.
|
|
*/
|
|
static void popStack(Mem **ppTos, int N){
|
|
Mem *pTos = *ppTos;
|
|
while( N>0 ){
|
|
N--;
|
|
Release(pTos);
|
|
pTos--;
|
|
}
|
|
*ppTos = pTos;
|
|
}
|
|
|
|
/*
|
|
** The parameters are pointers to the head of two sorted lists
|
|
** of Sorter structures. Merge these two lists together and return
|
|
** a single sorted list. This routine forms the core of the merge-sort
|
|
** algorithm.
|
|
**
|
|
** In the case of a tie, left sorts in front of right.
|
|
*/
|
|
static Sorter *Merge(Sorter *pLeft, Sorter *pRight, KeyInfo *pKeyInfo){
|
|
Sorter sHead;
|
|
Sorter *pTail;
|
|
pTail = &sHead;
|
|
pTail->pNext = 0;
|
|
while( pLeft && pRight ){
|
|
int c = sqlite3VdbeRecordCompare(pKeyInfo, pLeft->nKey, pLeft->zKey,
|
|
pRight->nKey, pRight->zKey);
|
|
if( c<=0 ){
|
|
pTail->pNext = pLeft;
|
|
pLeft = pLeft->pNext;
|
|
}else{
|
|
pTail->pNext = pRight;
|
|
pRight = pRight->pNext;
|
|
}
|
|
pTail = pTail->pNext;
|
|
}
|
|
if( pLeft ){
|
|
pTail->pNext = pLeft;
|
|
}else if( pRight ){
|
|
pTail->pNext = pRight;
|
|
}
|
|
return sHead.pNext;
|
|
}
|
|
|
|
/*
|
|
** Allocate cursor number iCur. Return a pointer to it. Return NULL
|
|
** if we run out of memory.
|
|
*/
|
|
static Cursor *allocateCursor(Vdbe *p, int iCur){
|
|
Cursor *pCx;
|
|
assert( iCur<p->nCursor );
|
|
if( p->apCsr[iCur] ){
|
|
sqlite3VdbeFreeCursor(p->apCsr[iCur]);
|
|
}
|
|
p->apCsr[iCur] = pCx = sqliteMalloc( sizeof(Cursor) );
|
|
return pCx;
|
|
}
|
|
|
|
/*
|
|
** Apply any conversion required by the supplied column affinity to
|
|
** memory cell pRec. affinity may be one of:
|
|
**
|
|
** SQLITE_AFF_NUMERIC
|
|
** SQLITE_AFF_TEXT
|
|
** SQLITE_AFF_NONE
|
|
** SQLITE_AFF_INTEGER
|
|
**
|
|
*/
|
|
static void applyAffinity(Mem *pRec, char affinity, u8 enc){
|
|
if( affinity==SQLITE_AFF_NONE ){
|
|
/* do nothing */
|
|
}else if( affinity==SQLITE_AFF_TEXT ){
|
|
/* Only attempt the conversion to TEXT if there is an integer or real
|
|
** representation (blob and NULL do not get converted) but no string
|
|
** representation.
|
|
*/
|
|
if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
|
|
sqlite3VdbeMemStringify(pRec, enc);
|
|
}
|
|
pRec->flags &= ~(MEM_Real|MEM_Int);
|
|
}else{
|
|
if( 0==(pRec->flags&(MEM_Real|MEM_Int)) ){
|
|
/* pRec does not have a valid integer or real representation.
|
|
** Attempt a conversion if pRec has a string representation and
|
|
** it looks like a number.
|
|
*/
|
|
int realnum;
|
|
sqlite3VdbeMemNulTerminate(pRec);
|
|
if( pRec->flags&MEM_Str && sqlite3IsNumber(pRec->z, &realnum, enc) ){
|
|
if( realnum ){
|
|
Realify(pRec);
|
|
}else{
|
|
Integerify(pRec);
|
|
}
|
|
}
|
|
}
|
|
|
|
if( affinity==SQLITE_AFF_INTEGER ){
|
|
/* For INTEGER affinity, try to convert a real value to an int */
|
|
if( (pRec->flags&MEM_Real) && !(pRec->flags&MEM_Int) ){
|
|
pRec->i = pRec->r;
|
|
if( ((double)pRec->i)==pRec->r ){
|
|
pRec->flags |= MEM_Int;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
** Write a nice string representation of the contents of cell pMem
|
|
** into buffer zBuf, length nBuf.
|
|
*/
|
|
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf){
|
|
char *zCsr = zBuf;
|
|
int f = pMem->flags;
|
|
|
|
static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
|
|
|
|
if( f&MEM_Blob ){
|
|
int i;
|
|
char c;
|
|
if( f & MEM_Dyn ){
|
|
c = 'z';
|
|
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Static ){
|
|
c = 't';
|
|
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Ephem ){
|
|
c = 'e';
|
|
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
}else{
|
|
c = 's';
|
|
}
|
|
|
|
zCsr += sprintf(zCsr, "%c", c);
|
|
zCsr += sprintf(zCsr, "%d[", pMem->n);
|
|
for(i=0; i<16 && i<pMem->n; i++){
|
|
zCsr += sprintf(zCsr, "%02X ", ((int)pMem->z[i] & 0xFF));
|
|
}
|
|
for(i=0; i<16 && i<pMem->n; i++){
|
|
char z = pMem->z[i];
|
|
if( z<32 || z>126 ) *zCsr++ = '.';
|
|
else *zCsr++ = z;
|
|
}
|
|
|
|
zCsr += sprintf(zCsr, "]");
|
|
*zCsr = '\0';
|
|
}else if( f & MEM_Str ){
|
|
int j, k;
|
|
zBuf[0] = ' ';
|
|
if( f & MEM_Dyn ){
|
|
zBuf[1] = 'z';
|
|
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Static ){
|
|
zBuf[1] = 't';
|
|
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Ephem ){
|
|
zBuf[1] = 'e';
|
|
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
}else{
|
|
zBuf[1] = 's';
|
|
}
|
|
k = 2;
|
|
k += sprintf(&zBuf[k], "%d", pMem->n);
|
|
zBuf[k++] = '[';
|
|
for(j=0; j<15 && j<pMem->n; j++){
|
|
u8 c = pMem->z[j];
|
|
if( c>=0x20 && c<0x7f ){
|
|
zBuf[k++] = c;
|
|
}else{
|
|
zBuf[k++] = '.';
|
|
}
|
|
}
|
|
zBuf[k++] = ']';
|
|
k += sprintf(&zBuf[k], encnames[pMem->enc]);
|
|
zBuf[k++] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef VDBE_PROFILE
|
|
/*
|
|
** The following routine only works on pentium-class processors.
|
|
** It uses the RDTSC opcode to read cycle count value out of the
|
|
** processor and returns that value. This can be used for high-res
|
|
** profiling.
|
|
*/
|
|
__inline__ unsigned long long int hwtime(void){
|
|
unsigned long long int x;
|
|
__asm__("rdtsc\n\t"
|
|
"mov %%edx, %%ecx\n\t"
|
|
:"=A" (x));
|
|
return x;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
|
|
** sqlite3_interrupt() routine has been called. If it has been, then
|
|
** processing of the VDBE program is interrupted.
|
|
**
|
|
** This macro added to every instruction that does a jump in order to
|
|
** implement a loop. This test used to be on every single instruction,
|
|
** but that meant we more testing that we needed. By only testing the
|
|
** flag on jump instructions, we get a (small) speed improvement.
|
|
*/
|
|
#define CHECK_FOR_INTERRUPT \
|
|
if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
|
|
|
|
|
|
/*
|
|
** Execute as much of a VDBE program as we can then return.
|
|
**
|
|
** sqlite3VdbeMakeReady() must be called before this routine in order to
|
|
** close the program with a final OP_Halt and to set up the callbacks
|
|
** and the error message pointer.
|
|
**
|
|
** Whenever a row or result data is available, this routine will either
|
|
** invoke the result callback (if there is one) or return with
|
|
** SQLITE_ROW.
|
|
**
|
|
** If an attempt is made to open a locked database, then this routine
|
|
** will either invoke the busy callback (if there is one) or it will
|
|
** return SQLITE_BUSY.
|
|
**
|
|
** If an error occurs, an error message is written to memory obtained
|
|
** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
|
|
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
|
|
**
|
|
** If the callback ever returns non-zero, then the program exits
|
|
** immediately. There will be no error message but the p->rc field is
|
|
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
|
|
**
|
|
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
|
|
** routine to return SQLITE_ERROR.
|
|
**
|
|
** Other fatal errors return SQLITE_ERROR.
|
|
**
|
|
** After this routine has finished, sqlite3VdbeFinalize() should be
|
|
** used to clean up the mess that was left behind.
|
|
*/
|
|
int sqlite3VdbeExec(
|
|
Vdbe *p /* The VDBE */
|
|
){
|
|
int pc; /* The program counter */
|
|
Op *pOp; /* Current operation */
|
|
int rc = SQLITE_OK; /* Value to return */
|
|
sqlite3 *db = p->db; /* The database */
|
|
Mem *pTos; /* Top entry in the operand stack */
|
|
char zBuf[100]; /* Space to sprintf() an integer */
|
|
#ifdef VDBE_PROFILE
|
|
unsigned long long start; /* CPU clock count at start of opcode */
|
|
int origPc; /* Program counter at start of opcode */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
int nProgressOps = 0; /* Opcodes executed since progress callback. */
|
|
#endif
|
|
|
|
if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
|
|
assert( db->magic==SQLITE_MAGIC_BUSY );
|
|
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
|
|
p->rc = SQLITE_OK;
|
|
assert( p->explain==0 );
|
|
pTos = p->pTos;
|
|
if( sqlite3_malloc_failed ) goto no_mem;
|
|
if( p->popStack ){
|
|
popStack(&pTos, p->popStack);
|
|
p->popStack = 0;
|
|
}
|
|
p->resOnStack = 0;
|
|
CHECK_FOR_INTERRUPT;
|
|
for(pc=p->pc; rc==SQLITE_OK; pc++){
|
|
assert( pc>=0 && pc<p->nOp );
|
|
assert( pTos<=&p->aStack[pc] );
|
|
#ifdef VDBE_PROFILE
|
|
origPc = pc;
|
|
start = hwtime();
|
|
#endif
|
|
pOp = &p->aOp[pc];
|
|
|
|
/* Only allow tracing if NDEBUG is not defined.
|
|
*/
|
|
#ifndef NDEBUG
|
|
if( p->trace ){
|
|
if( pc==0 ){
|
|
printf("VDBE Execution Trace:\n");
|
|
sqlite3VdbePrintSql(p);
|
|
}
|
|
sqlite3VdbePrintOp(p->trace, pc, pOp);
|
|
}
|
|
#endif
|
|
#ifdef SQLITE_TEST
|
|
if( p->trace==0 && pc==0 && sqlite3OsFileExists("vdbe_sqltrace") ){
|
|
sqlite3VdbePrintSql(p);
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Check to see if we need to simulate an interrupt. This only happens
|
|
** if we have a special test build.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
if( sqlite3_interrupt_count>0 ){
|
|
sqlite3_interrupt_count--;
|
|
if( sqlite3_interrupt_count==0 ){
|
|
sqlite3_interrupt(db);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
/* Call the progress callback if it is configured and the required number
|
|
** of VDBE ops have been executed (either since this invocation of
|
|
** sqlite3VdbeExec() or since last time the progress callback was called).
|
|
** If the progress callback returns non-zero, exit the virtual machine with
|
|
** a return code SQLITE_ABORT.
|
|
*/
|
|
if( db->xProgress ){
|
|
if( db->nProgressOps==nProgressOps ){
|
|
if( db->xProgress(db->pProgressArg)!=0 ){
|
|
rc = SQLITE_ABORT;
|
|
continue; /* skip to the next iteration of the for loop */
|
|
}
|
|
nProgressOps = 0;
|
|
}
|
|
nProgressOps++;
|
|
}
|
|
#endif
|
|
|
|
switch( pOp->opcode ){
|
|
|
|
/*****************************************************************************
|
|
** What follows is a massive switch statement where each case implements a
|
|
** separate instruction in the virtual machine. If we follow the usual
|
|
** indentation conventions, each case should be indented by 6 spaces. But
|
|
** that is a lot of wasted space on the left margin. So the code within
|
|
** the switch statement will break with convention and be flush-left. Another
|
|
** big comment (similar to this one) will mark the point in the code where
|
|
** we transition back to normal indentation.
|
|
**
|
|
** The formatting of each case is important. The makefile for SQLite
|
|
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
|
|
** file looking for lines that begin with "case OP_". The opcodes.h files
|
|
** will be filled with #defines that give unique integer values to each
|
|
** opcode and the opcodes.c file is filled with an array of strings where
|
|
** each string is the symbolic name for the corresponding opcode. If the
|
|
** case statement is followed by a comment of the form "/# same as ... #/"
|
|
** that comment is used to determine the particular value of the opcode.
|
|
**
|
|
** Documentation about VDBE opcodes is generated by scanning this file
|
|
** for lines of that contain "Opcode:". That line and all subsequent
|
|
** comment lines are used in the generation of the opcode.html documentation
|
|
** file.
|
|
**
|
|
** SUMMARY:
|
|
**
|
|
** Formatting is important to scripts that scan this file.
|
|
** Do not deviate from the formatting style currently in use.
|
|
**
|
|
*****************************************************************************/
|
|
|
|
/* Opcode: Goto * P2 *
|
|
**
|
|
** An unconditional jump to address P2.
|
|
** The next instruction executed will be
|
|
** the one at index P2 from the beginning of
|
|
** the program.
|
|
*/
|
|
case OP_Goto: {
|
|
CHECK_FOR_INTERRUPT;
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Gosub * P2 *
|
|
**
|
|
** Push the current address plus 1 onto the return address stack
|
|
** and then jump to address P2.
|
|
**
|
|
** The return address stack is of limited depth. If too many
|
|
** OP_Gosub operations occur without intervening OP_Returns, then
|
|
** the return address stack will fill up and processing will abort
|
|
** with a fatal error.
|
|
*/
|
|
case OP_Gosub: {
|
|
assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
|
|
p->returnStack[p->returnDepth++] = pc+1;
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Return * * *
|
|
**
|
|
** Jump immediately to the next instruction after the last unreturned
|
|
** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
|
|
** processing aborts with a fatal error.
|
|
*/
|
|
case OP_Return: {
|
|
assert( p->returnDepth>0 );
|
|
p->returnDepth--;
|
|
pc = p->returnStack[p->returnDepth] - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Halt P1 P2 *
|
|
**
|
|
** Exit immediately. All open cursors, Lists, Sorts, etc are closed
|
|
** automatically.
|
|
**
|
|
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
|
|
** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
|
|
** For errors, it can be some other value. If P1!=0 then P2 will determine
|
|
** whether or not to rollback the current transaction. Do not rollback
|
|
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
|
|
** then back out all changes that have occurred during this execution of the
|
|
** VDBE, but do not rollback the transaction.
|
|
**
|
|
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
|
|
** every program. So a jump past the last instruction of the program
|
|
** is the same as executing Halt.
|
|
*/
|
|
case OP_Halt: {
|
|
p->pTos = pTos;
|
|
p->rc = pOp->p1;
|
|
p->pc = pc;
|
|
p->errorAction = pOp->p2;
|
|
if( pOp->p3 ){
|
|
sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
|
|
}
|
|
rc = sqlite3VdbeHalt(p);
|
|
if( rc==SQLITE_BUSY ){
|
|
p->rc = SQLITE_BUSY;
|
|
return SQLITE_BUSY;
|
|
}else if( rc!=SQLITE_OK ){
|
|
p->rc = rc;
|
|
}
|
|
return p->rc ? SQLITE_ERROR : SQLITE_DONE;
|
|
}
|
|
|
|
/* Opcode: Integer P1 * P3
|
|
**
|
|
** The integer value P1 is pushed onto the stack. If P3 is not zero
|
|
** then it is assumed to be a string representation of the same integer.
|
|
** If P1 is zero and P3 is not zero, then the value is derived from P3.
|
|
*/
|
|
case OP_Integer: {
|
|
pTos++;
|
|
if( pOp->p3==0 ){
|
|
pTos->flags = MEM_Int;
|
|
pTos->i = pOp->p1;
|
|
}else{
|
|
pTos->flags = MEM_Str|MEM_Static|MEM_Term;
|
|
pTos->z = pOp->p3;
|
|
pTos->n = strlen(pTos->z);
|
|
pTos->enc = SQLITE_UTF8;
|
|
pTos->i = sqlite3VdbeIntValue(pTos);
|
|
pTos->flags |= MEM_Int;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Real * * P3
|
|
**
|
|
** The string value P3 is converted to a real and pushed on to the stack.
|
|
*/
|
|
case OP_Real: { /* same as TK_FLOAT */
|
|
pTos++;
|
|
pTos->flags = MEM_Str|MEM_Static|MEM_Term;
|
|
pTos->z = pOp->p3;
|
|
pTos->n = strlen(pTos->z);
|
|
pTos->enc = SQLITE_UTF8;
|
|
pTos->r = sqlite3VdbeRealValue(pTos);
|
|
pTos->flags |= MEM_Real;
|
|
sqlite3VdbeChangeEncoding(pTos, db->enc);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: String8 * * P3
|
|
**
|
|
** P3 points to a nul terminated UTF-8 string. This opcode is transformed
|
|
** into an OP_String before it is executed for the first time.
|
|
*/
|
|
case OP_String8: { /* same as TK_STRING */
|
|
pOp->opcode = OP_String;
|
|
|
|
if( db->enc!=SQLITE_UTF8 && pOp->p3 ){
|
|
pTos++;
|
|
sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC);
|
|
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, db->enc) ) goto no_mem;
|
|
if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
|
|
pTos->flags &= ~(MEM_Dyn);
|
|
pTos->flags |= MEM_Static;
|
|
if( pOp->p3type==P3_DYNAMIC ){
|
|
sqliteFree(pOp->p3);
|
|
}
|
|
pOp->p3type = P3_DYNAMIC;
|
|
pOp->p3 = pTos->z;
|
|
break;
|
|
}
|
|
/* Otherwise fall through to the next case, OP_String */
|
|
}
|
|
|
|
/* Opcode: String * * P3
|
|
**
|
|
** The string value P3 is pushed onto the stack. If P3==0 then a
|
|
** NULL is pushed onto the stack. P3 is assumed to be a nul terminated
|
|
** string encoded with the database native encoding.
|
|
*/
|
|
case OP_String: {
|
|
pTos++;
|
|
if( pOp->p3 ){
|
|
pTos->flags = MEM_Str|MEM_Static|MEM_Term;
|
|
pTos->z = pOp->p3;
|
|
if( db->enc==SQLITE_UTF8 ){
|
|
pTos->n = strlen(pTos->z);
|
|
}else{
|
|
pTos->n = sqlite3utf16ByteLen(pTos->z, -1);
|
|
}
|
|
pTos->enc = db->enc;
|
|
}else{
|
|
pTos->flags = MEM_Null;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: HexBlob * * P3
|
|
**
|
|
** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the
|
|
** vdbe stack.
|
|
**
|
|
** The first time this instruction executes, in transforms itself into a
|
|
** 'Blob' opcode with a binary blob as P3.
|
|
*/
|
|
case OP_HexBlob: { /* same as TK_BLOB */
|
|
pOp->opcode = OP_Blob;
|
|
pOp->p1 = strlen(pOp->p3)/2;
|
|
if( pOp->p1 ){
|
|
char *zBlob = sqlite3HexToBlob(pOp->p3);
|
|
if( !zBlob ) goto no_mem;
|
|
if( pOp->p3type==P3_DYNAMIC ){
|
|
sqliteFree(pOp->p3);
|
|
}
|
|
pOp->p3 = zBlob;
|
|
pOp->p3type = P3_DYNAMIC;
|
|
}else{
|
|
if( pOp->p3type==P3_DYNAMIC ){
|
|
sqliteFree(pOp->p3);
|
|
}
|
|
pOp->p3type = P3_STATIC;
|
|
pOp->p3 = "";
|
|
}
|
|
|
|
/* Fall through to the next case, OP_Blob. */
|
|
}
|
|
|
|
/* Opcode: Blob P1 * P3
|
|
**
|
|
** P3 points to a blob of data P1 bytes long. Push this
|
|
** value onto the stack. This instruction is not coded directly
|
|
** by the compiler. Instead, the compiler layer specifies
|
|
** an OP_HexBlob opcode, with the hex string representation of
|
|
** the blob as P3. This opcode is transformed to an OP_Blob
|
|
** before execution (within the sqlite3_prepare() function).
|
|
*/
|
|
case OP_Blob: {
|
|
pTos++;
|
|
sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Variable P1 * *
|
|
**
|
|
** Push the value of variable P1 onto the stack. A variable is
|
|
** an unknown in the original SQL string as handed to sqlite3_compile().
|
|
** Any occurance of the '?' character in the original SQL is considered
|
|
** a variable. Variables in the SQL string are number from left to
|
|
** right beginning with 1. The values of variables are set using the
|
|
** sqlite3_bind() API.
|
|
*/
|
|
case OP_Variable: {
|
|
int j = pOp->p1 - 1;
|
|
assert( j>=0 && j<p->nVar );
|
|
|
|
pTos++;
|
|
sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Pop P1 * *
|
|
**
|
|
** P1 elements are popped off of the top of stack and discarded.
|
|
*/
|
|
case OP_Pop: {
|
|
assert( pOp->p1>=0 );
|
|
popStack(&pTos, pOp->p1);
|
|
assert( pTos>=&p->aStack[-1] );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Dup P1 P2 *
|
|
**
|
|
** A copy of the P1-th element of the stack
|
|
** is made and pushed onto the top of the stack.
|
|
** The top of the stack is element 0. So the
|
|
** instruction "Dup 0 0 0" will make a copy of the
|
|
** top of the stack.
|
|
**
|
|
** If the content of the P1-th element is a dynamically
|
|
** allocated string, then a new copy of that string
|
|
** is made if P2==0. If P2!=0, then just a pointer
|
|
** to the string is copied.
|
|
**
|
|
** Also see the Pull instruction.
|
|
*/
|
|
case OP_Dup: {
|
|
Mem *pFrom = &pTos[-pOp->p1];
|
|
assert( pFrom<=pTos && pFrom>=p->aStack );
|
|
pTos++;
|
|
sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem);
|
|
if( pOp->p2 ){
|
|
Deephemeralize(pTos);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Pull P1 * *
|
|
**
|
|
** The P1-th element is removed from its current location on
|
|
** the stack and pushed back on top of the stack. The
|
|
** top of the stack is element 0, so "Pull 0 0 0" is
|
|
** a no-op. "Pull 1 0 0" swaps the top two elements of
|
|
** the stack.
|
|
**
|
|
** See also the Dup instruction.
|
|
*/
|
|
case OP_Pull: {
|
|
Mem *pFrom = &pTos[-pOp->p1];
|
|
int i;
|
|
Mem ts;
|
|
|
|
ts = *pFrom;
|
|
Deephemeralize(pTos);
|
|
for(i=0; i<pOp->p1; i++, pFrom++){
|
|
Deephemeralize(&pFrom[1]);
|
|
assert( (pFrom->flags & MEM_Ephem)==0 );
|
|
*pFrom = pFrom[1];
|
|
if( pFrom->flags & MEM_Short ){
|
|
assert( pFrom->flags & (MEM_Str|MEM_Blob) );
|
|
assert( pFrom->z==pFrom[1].zShort );
|
|
pFrom->z = pFrom->zShort;
|
|
}
|
|
}
|
|
*pTos = ts;
|
|
if( pTos->flags & MEM_Short ){
|
|
assert( pTos->flags & (MEM_Str|MEM_Blob) );
|
|
assert( pTos->z==pTos[-pOp->p1].zShort );
|
|
pTos->z = pTos->zShort;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Push P1 * *
|
|
**
|
|
** Overwrite the value of the P1-th element down on the
|
|
** stack (P1==0 is the top of the stack) with the value
|
|
** of the top of the stack. Then pop the top of the stack.
|
|
*/
|
|
case OP_Push: {
|
|
Mem *pTo = &pTos[-pOp->p1];
|
|
|
|
assert( pTo>=p->aStack );
|
|
sqlite3VdbeMemMove(pTo, pTos);
|
|
pTos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Callback P1 * *
|
|
**
|
|
** Pop P1 values off the stack and form them into an array. Then
|
|
** invoke the callback function using the newly formed array as the
|
|
** 3rd parameter.
|
|
*/
|
|
case OP_Callback: {
|
|
int i;
|
|
assert( p->nResColumn==pOp->p1 );
|
|
|
|
for(i=0; i<pOp->p1; i++){
|
|
Mem *pVal = &pTos[0-i];
|
|
sqlite3VdbeMemNulTerminate(pVal);
|
|
storeTypeInfo(pVal, db->enc);
|
|
}
|
|
|
|
p->resOnStack = 1;
|
|
p->nCallback++;
|
|
p->popStack = pOp->p1;
|
|
p->pc = pc + 1;
|
|
p->pTos = pTos;
|
|
return SQLITE_ROW;
|
|
}
|
|
|
|
/* Opcode: Concat P1 P2 *
|
|
**
|
|
** Look at the first P1+2 elements of the stack. Append them all
|
|
** together with the lowest element first. The original P1+2 elements
|
|
** are popped from the stack if P2==0 and retained if P2==1. If
|
|
** any element of the stack is NULL, then the result is NULL.
|
|
**
|
|
** When P1==1, this routine makes a copy of the top stack element
|
|
** into memory obtained from sqliteMalloc().
|
|
*/
|
|
case OP_Concat: { /* same as TK_CONCAT */
|
|
char *zNew;
|
|
int nByte;
|
|
int nField;
|
|
int i, j;
|
|
Mem *pTerm;
|
|
|
|
/* Loop through the stack elements to see how long the result will be. */
|
|
nField = pOp->p1 + 2;
|
|
pTerm = &pTos[1-nField];
|
|
nByte = 0;
|
|
for(i=0; i<nField; i++, pTerm++){
|
|
assert( pOp->p2==0 || (pTerm->flags&MEM_Str) );
|
|
if( pTerm->flags&MEM_Null ){
|
|
nByte = -1;
|
|
break;
|
|
}
|
|
Stringify(pTerm, db->enc);
|
|
nByte += pTerm->n;
|
|
}
|
|
|
|
if( nByte<0 ){
|
|
/* If nByte is less than zero, then there is a NULL value on the stack.
|
|
** In this case just pop the values off the stack (if required) and
|
|
** push on a NULL.
|
|
*/
|
|
if( pOp->p2==0 ){
|
|
popStack(&pTos, nField);
|
|
}
|
|
pTos++;
|
|
pTos->flags = MEM_Null;
|
|
}else{
|
|
/* Otherwise malloc() space for the result and concatenate all the
|
|
** stack values.
|
|
*/
|
|
zNew = sqliteMallocRaw( nByte+2 );
|
|
if( zNew==0 ) goto no_mem;
|
|
j = 0;
|
|
pTerm = &pTos[1-nField];
|
|
for(i=j=0; i<nField; i++, pTerm++){
|
|
int n = pTerm->n;
|
|
assert( pTerm->flags & MEM_Str );
|
|
memcpy(&zNew[j], pTerm->z, n);
|
|
j += n;
|
|
}
|
|
zNew[j] = 0;
|
|
zNew[j+1] = 0;
|
|
assert( j==nByte );
|
|
|
|
if( pOp->p2==0 ){
|
|
popStack(&pTos, nField);
|
|
}
|
|
pTos++;
|
|
pTos->n = j;
|
|
pTos->flags = MEM_Str|MEM_Dyn|MEM_Term;
|
|
pTos->xDel = 0;
|
|
pTos->enc = db->enc;
|
|
pTos->z = zNew;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Add * * *
|
|
**
|
|
** Pop the top two elements from the stack, add them together,
|
|
** and push the result back onto the stack. If either element
|
|
** is a string then it is converted to a double using the atof()
|
|
** function before the addition.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Multiply * * *
|
|
**
|
|
** Pop the top two elements from the stack, multiply them together,
|
|
** and push the result back onto the stack. If either element
|
|
** is a string then it is converted to a double using the atof()
|
|
** function before the multiplication.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Subtract * * *
|
|
**
|
|
** Pop the top two elements from the stack, subtract the
|
|
** first (what was on top of the stack) from the second (the
|
|
** next on stack)
|
|
** and push the result back onto the stack. If either element
|
|
** is a string then it is converted to a double using the atof()
|
|
** function before the subtraction.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Divide * * *
|
|
**
|
|
** Pop the top two elements from the stack, divide the
|
|
** first (what was on top of the stack) from the second (the
|
|
** next on stack)
|
|
** and push the result back onto the stack. If either element
|
|
** is a string then it is converted to a double using the atof()
|
|
** function before the division. Division by zero returns NULL.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Remainder * * *
|
|
**
|
|
** Pop the top two elements from the stack, divide the
|
|
** first (what was on top of the stack) from the second (the
|
|
** next on stack)
|
|
** and push the remainder after division onto the stack. If either element
|
|
** is a string then it is converted to a double using the atof()
|
|
** function before the division. Division by zero returns NULL.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
case OP_Add: /* same as TK_PLUS */
|
|
case OP_Subtract: /* same as TK_MINUS */
|
|
case OP_Multiply: /* same as TK_STAR */
|
|
case OP_Divide: /* same as TK_SLASH */
|
|
case OP_Remainder: { /* same as TK_REM */
|
|
Mem *pNos = &pTos[-1];
|
|
assert( pNos>=p->aStack );
|
|
if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
|
|
Release(pTos);
|
|
pTos--;
|
|
Release(pTos);
|
|
pTos->flags = MEM_Null;
|
|
}else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
|
|
i64 a, b;
|
|
a = pTos->i;
|
|
b = pNos->i;
|
|
switch( pOp->opcode ){
|
|
case OP_Add: b += a; break;
|
|
case OP_Subtract: b -= a; break;
|
|
case OP_Multiply: b *= a; break;
|
|
case OP_Divide: {
|
|
if( a==0 ) goto divide_by_zero;
|
|
b /= a;
|
|
break;
|
|
}
|
|
default: {
|
|
if( a==0 ) goto divide_by_zero;
|
|
b %= a;
|
|
break;
|
|
}
|
|
}
|
|
Release(pTos);
|
|
pTos--;
|
|
Release(pTos);
|
|
pTos->i = b;
|
|
pTos->flags = MEM_Int;
|
|
}else{
|
|
double a, b;
|
|
a = sqlite3VdbeRealValue(pTos);
|
|
b = sqlite3VdbeRealValue(pNos);
|
|
switch( pOp->opcode ){
|
|
case OP_Add: b += a; break;
|
|
case OP_Subtract: b -= a; break;
|
|
case OP_Multiply: b *= a; break;
|
|
case OP_Divide: {
|
|
if( a==0.0 ) goto divide_by_zero;
|
|
b /= a;
|
|
break;
|
|
}
|
|
default: {
|
|
int ia = (int)a;
|
|
int ib = (int)b;
|
|
if( ia==0.0 ) goto divide_by_zero;
|
|
b = ib % ia;
|
|
break;
|
|
}
|
|
}
|
|
Release(pTos);
|
|
pTos--;
|
|
Release(pTos);
|
|
pTos->r = b;
|
|
pTos->flags = MEM_Real;
|
|
}
|
|
break;
|
|
|
|
divide_by_zero:
|
|
Release(pTos);
|
|
pTos--;
|
|
Release(pTos);
|
|
pTos->flags = MEM_Null;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: CollSeq * * P3
|
|
**
|
|
** P3 is a pointer to a CollSeq struct. If the next call to a user function
|
|
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
|
|
** be returned. This is used by the built-in min(), max() and nullif()
|
|
** built-in functions.
|
|
**
|
|
** The interface used by the implementation of the aforementioned functions
|
|
** to retrieve the collation sequence set by this opcode is not available
|
|
** publicly, only to user functions defined in func.c.
|
|
*/
|
|
case OP_CollSeq: {
|
|
assert( pOp->p3type==P3_COLLSEQ );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Function P1 P2 P3
|
|
**
|
|
** Invoke a user function (P3 is a pointer to a Function structure that
|
|
** defines the function) with P1 arguments taken from the stack. Pop all
|
|
** arguments from the stack and push back the result.
|
|
**
|
|
** P2 is a 32-bit bitmask indicating whether or not each argument to the
|
|
** function was determined to be constant at compile time. If the first
|
|
** argument was constant then bit 0 of P2 is set. This is used to determine
|
|
** whether meta data associated with a user function argument using the
|
|
** sqlite3_set_auxdata() API may be safely retained until the next
|
|
** invocation of this opcode.
|
|
**
|
|
** See also: AggFunc
|
|
*/
|
|
case OP_Function: {
|
|
int i;
|
|
Mem *pArg;
|
|
sqlite3_context ctx;
|
|
sqlite3_value **apVal;
|
|
int n = pOp->p1;
|
|
|
|
n = pOp->p1;
|
|
apVal = p->apArg;
|
|
assert( apVal || n==0 );
|
|
|
|
pArg = &pTos[1-n];
|
|
for(i=0; i<n; i++, pArg++){
|
|
apVal[i] = pArg;
|
|
storeTypeInfo(pArg, db->enc);
|
|
}
|
|
|
|
assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC );
|
|
if( pOp->p3type==P3_FUNCDEF ){
|
|
ctx.pFunc = (FuncDef*)pOp->p3;
|
|
ctx.pVdbeFunc = 0;
|
|
}else{
|
|
ctx.pVdbeFunc = (VdbeFunc*)pOp->p3;
|
|
ctx.pFunc = ctx.pVdbeFunc->pFunc;
|
|
}
|
|
|
|
ctx.s.flags = MEM_Null;
|
|
ctx.s.z = 0;
|
|
ctx.s.xDel = 0;
|
|
ctx.isError = 0;
|
|
ctx.isStep = 0;
|
|
if( ctx.pFunc->needCollSeq ){
|
|
assert( pOp>p->aOp );
|
|
assert( pOp[-1].p3type==P3_COLLSEQ );
|
|
assert( pOp[-1].opcode==OP_CollSeq );
|
|
ctx.pColl = (CollSeq *)pOp[-1].p3;
|
|
}
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
(*ctx.pFunc->xFunc)(&ctx, n, apVal);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
if( sqlite3_malloc_failed ) goto no_mem;
|
|
popStack(&pTos, n);
|
|
|
|
/* If any auxilary data functions have been called by this user function,
|
|
** immediately call the destructor for any non-static values.
|
|
*/
|
|
if( ctx.pVdbeFunc ){
|
|
sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p2);
|
|
pOp->p3 = (char *)ctx.pVdbeFunc;
|
|
pOp->p3type = P3_VDBEFUNC;
|
|
}
|
|
|
|
/* Copy the result of the function to the top of the stack */
|
|
sqlite3VdbeChangeEncoding(&ctx.s, db->enc);
|
|
pTos++;
|
|
pTos->flags = 0;
|
|
sqlite3VdbeMemMove(pTos, &ctx.s);
|
|
|
|
/* If the function returned an error, throw an exception */
|
|
if( ctx.isError ){
|
|
if( !(pTos->flags&MEM_Str) ){
|
|
sqlite3SetString(&p->zErrMsg, "user function error", (char*)0);
|
|
}else{
|
|
sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pTos), (char*)0);
|
|
sqlite3VdbeChangeEncoding(pTos, db->enc);
|
|
}
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: BitAnd * * *
|
|
**
|
|
** Pop the top two elements from the stack. Convert both elements
|
|
** to integers. Push back onto the stack the bit-wise AND of the
|
|
** two elements.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: BitOr * * *
|
|
**
|
|
** Pop the top two elements from the stack. Convert both elements
|
|
** to integers. Push back onto the stack the bit-wise OR of the
|
|
** two elements.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: ShiftLeft * * *
|
|
**
|
|
** Pop the top two elements from the stack. Convert both elements
|
|
** to integers. Push back onto the stack the second element shifted
|
|
** left by N bits where N is the top element on the stack.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: ShiftRight * * *
|
|
**
|
|
** Pop the top two elements from the stack. Convert both elements
|
|
** to integers. Push back onto the stack the second element shifted
|
|
** right by N bits where N is the top element on the stack.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
case OP_BitAnd: /* same as TK_BITAND */
|
|
case OP_BitOr: /* same as TK_BITOR */
|
|
case OP_ShiftLeft: /* same as TK_LSHIFT */
|
|
case OP_ShiftRight: { /* same as TK_RSHIFT */
|
|
Mem *pNos = &pTos[-1];
|
|
int a, b;
|
|
|
|
assert( pNos>=p->aStack );
|
|
if( (pTos->flags | pNos->flags) & MEM_Null ){
|
|
popStack(&pTos, 2);
|
|
pTos++;
|
|
pTos->flags = MEM_Null;
|
|
break;
|
|
}
|
|
a = sqlite3VdbeIntValue(pNos);
|
|
b = sqlite3VdbeIntValue(pTos);
|
|
switch( pOp->opcode ){
|
|
case OP_BitAnd: a &= b; break;
|
|
case OP_BitOr: a |= b; break;
|
|
case OP_ShiftLeft: a <<= b; break;
|
|
case OP_ShiftRight: a >>= b; break;
|
|
default: /* CANT HAPPEN */ break;
|
|
}
|
|
Release(pTos);
|
|
pTos--;
|
|
Release(pTos);
|
|
pTos->i = a;
|
|
pTos->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AddImm P1 * *
|
|
**
|
|
** Add the value P1 to whatever is on top of the stack. The result
|
|
** is always an integer.
|
|
**
|
|
** To force the top of the stack to be an integer, just add 0.
|
|
*/
|
|
case OP_AddImm: {
|
|
assert( pTos>=p->aStack );
|
|
Integerify(pTos);
|
|
pTos->i += pOp->p1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ForceInt P1 P2 *
|
|
**
|
|
** Convert the top of the stack into an integer. If the current top of
|
|
** the stack is not numeric (meaning that is is a NULL or a string that
|
|
** does not look like an integer or floating point number) then pop the
|
|
** stack and jump to P2. If the top of the stack is numeric then
|
|
** convert it into the least integer that is greater than or equal to its
|
|
** current value if P1==0, or to the least integer that is strictly
|
|
** greater than its current value if P1==1.
|
|
*/
|
|
case OP_ForceInt: {
|
|
int v;
|
|
assert( pTos>=p->aStack );
|
|
applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc);
|
|
if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
|
|
Release(pTos);
|
|
pTos--;
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
if( pTos->flags & MEM_Int ){
|
|
v = pTos->i + (pOp->p1!=0);
|
|
}else{
|
|
Realify(pTos);
|
|
v = (int)pTos->r;
|
|
if( pTos->r>(double)v ) v++;
|
|
if( pOp->p1 && pTos->r==(double)v ) v++;
|
|
}
|
|
Release(pTos);
|
|
pTos->i = v;
|
|
pTos->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MustBeInt P1 P2 *
|
|
**
|
|
** Force the top of the stack to be an integer. If the top of the
|
|
** stack is not an integer and cannot be converted into an integer
|
|
** with out data loss, then jump immediately to P2, or if P2==0
|
|
** raise an SQLITE_MISMATCH exception.
|
|
**
|
|
** If the top of the stack is not an integer and P2 is not zero and
|
|
** P1 is 1, then the stack is popped. In all other cases, the depth
|
|
** of the stack is unchanged.
|
|
*/
|
|
case OP_MustBeInt: {
|
|
assert( pTos>=p->aStack );
|
|
applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc);
|
|
if( (pTos->flags & MEM_Int)==0 ){
|
|
if( pOp->p2==0 ){
|
|
rc = SQLITE_MISMATCH;
|
|
goto abort_due_to_error;
|
|
}else{
|
|
if( pOp->p1 ) popStack(&pTos, 1);
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}else{
|
|
Release(pTos);
|
|
pTos->flags = MEM_Int;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Eq P1 P2 P3
|
|
**
|
|
** Pop the top two elements from the stack. If they are equal, then
|
|
** jump to instruction P2. Otherwise, continue to the next instruction.
|
|
**
|
|
** The least significant byte of P1 may be either 0x00 or 0x01. If either
|
|
** operand is NULL (and thus if the result is unknown) then take the jump
|
|
** only if the least significant byte of P1 is 0x01.
|
|
**
|
|
** The second least significant byte of P1 must be an affinity character -
|
|
** 'n', 't', 'i' or 'o' - or 0x00. An attempt is made to coerce both values
|
|
** according to the affinity before the comparison is made. If the byte is
|
|
** 0x00, then numeric affinity is used.
|
|
**
|
|
** Once any conversions have taken place, and neither value is NULL,
|
|
** the values are compared. If both values are blobs, or both are text,
|
|
** then memcmp() is used to determine the results of the comparison. If
|
|
** both values are numeric, then a numeric comparison is used. If the
|
|
** two values are of different types, then they are inequal.
|
|
**
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
** stack if the jump would have been taken, or a 0 if not. Push a
|
|
** NULL if either operand was NULL.
|
|
**
|
|
** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq
|
|
** structure) that defines how to compare text.
|
|
*/
|
|
/* Opcode: Ne P1 P2 P3
|
|
**
|
|
** This works just like the Eq opcode except that the jump is taken if
|
|
** the operands from the stack are not equal. See the Eq opcode for
|
|
** additional information.
|
|
*/
|
|
/* Opcode: Lt P1 P2 P3
|
|
**
|
|
** This works just like the Eq opcode except that the jump is taken if
|
|
** the 2nd element down on the stack is less than the top of the stack.
|
|
** See the Eq opcode for additional information.
|
|
*/
|
|
/* Opcode: Le P1 P2 P3
|
|
**
|
|
** This works just like the Eq opcode except that the jump is taken if
|
|
** the 2nd element down on the stack is less than or equal to the
|
|
** top of the stack. See the Eq opcode for additional information.
|
|
*/
|
|
/* Opcode: Gt P1 P2 P3
|
|
**
|
|
** This works just like the Eq opcode except that the jump is taken if
|
|
** the 2nd element down on the stack is greater than the top of the stack.
|
|
** See the Eq opcode for additional information.
|
|
*/
|
|
/* Opcode: Ge P1 P2 P3
|
|
**
|
|
** This works just like the Eq opcode except that the jump is taken if
|
|
** the 2nd element down on the stack is greater than or equal to the
|
|
** top of the stack. See the Eq opcode for additional information.
|
|
*/
|
|
case OP_Eq: /* same as TK_EQ */
|
|
case OP_Ne: /* same as TK_NE */
|
|
case OP_Lt: /* same as TK_LT */
|
|
case OP_Le: /* same as TK_LE */
|
|
case OP_Gt: /* same as TK_GT */
|
|
case OP_Ge: { /* same as TK_GE */
|
|
Mem *pNos;
|
|
int flags;
|
|
int res;
|
|
char affinity;
|
|
|
|
pNos = &pTos[-1];
|
|
flags = pTos->flags|pNos->flags;
|
|
|
|
/* If either value is a NULL P2 is not zero, take the jump if the least
|
|
** significant byte of P1 is true. If P2 is zero, then push a NULL onto
|
|
** the stack.
|
|
*/
|
|
if( flags&MEM_Null ){
|
|
popStack(&pTos, 2);
|
|
if( pOp->p2 ){
|
|
if( (pOp->p1&0xFF) ) pc = pOp->p2-1;
|
|
}else{
|
|
pTos++;
|
|
pTos->flags = MEM_Null;
|
|
}
|
|
break;
|
|
}
|
|
|
|
affinity = (pOp->p1>>8)&0xFF;
|
|
if( affinity ){
|
|
applyAffinity(pNos, affinity, db->enc);
|
|
applyAffinity(pTos, affinity, db->enc);
|
|
}
|
|
|
|
assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 );
|
|
res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3);
|
|
switch( pOp->opcode ){
|
|
case OP_Eq: res = res==0; break;
|
|
case OP_Ne: res = res!=0; break;
|
|
case OP_Lt: res = res<0; break;
|
|
case OP_Le: res = res<=0; break;
|
|
case OP_Gt: res = res>0; break;
|
|
default: res = res>=0; break;
|
|
}
|
|
|
|
popStack(&pTos, 2);
|
|
if( pOp->p2 ){
|
|
if( res ){
|
|
pc = pOp->p2-1;
|
|
}
|
|
}else{
|
|
pTos++;
|
|
pTos->flags = MEM_Int;
|
|
pTos->i = res;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: And * * *
|
|
**
|
|
** Pop two values off the stack. Take the logical AND of the
|
|
** two values and push the resulting boolean value back onto the
|
|
** stack.
|
|
*/
|
|
/* Opcode: Or * * *
|
|
**
|
|
** Pop two values off the stack. Take the logical OR of the
|
|
** two values and push the resulting boolean value back onto the
|
|
** stack.
|
|
*/
|
|
case OP_And: /* same as TK_AND */
|
|
case OP_Or: { /* same as TK_OR */
|
|
Mem *pNos = &pTos[-1];
|
|
int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
|
|
|
|
assert( pNos>=p->aStack );
|
|
if( pTos->flags & MEM_Null ){
|
|
v1 = 2;
|
|
}else{
|
|
Integerify(pTos);
|
|
v1 = pTos->i==0;
|
|
}
|
|
if( pNos->flags & MEM_Null ){
|
|
v2 = 2;
|
|
}else{
|
|
Integerify(pNos);
|
|
v2 = pNos->i==0;
|
|
}
|
|
if( pOp->opcode==OP_And ){
|
|
static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
|
|
v1 = and_logic[v1*3+v2];
|
|
}else{
|
|
static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
|
|
v1 = or_logic[v1*3+v2];
|
|
}
|
|
popStack(&pTos, 2);
|
|
pTos++;
|
|
if( v1==2 ){
|
|
pTos->flags = MEM_Null;
|
|
}else{
|
|
pTos->i = v1==0;
|
|
pTos->flags = MEM_Int;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Negative * * *
|
|
**
|
|
** Treat the top of the stack as a numeric quantity. Replace it
|
|
** with its additive inverse. If the top of the stack is NULL
|
|
** its value is unchanged.
|
|
*/
|
|
/* Opcode: AbsValue * * *
|
|
**
|
|
** Treat the top of the stack as a numeric quantity. Replace it
|
|
** with its absolute value. If the top of the stack is NULL
|
|
** its value is unchanged.
|
|
*/
|
|
case OP_Negative: /* same as TK_UMINUS */
|
|
case OP_AbsValue: {
|
|
assert( pTos>=p->aStack );
|
|
if( pTos->flags & MEM_Real ){
|
|
Release(pTos);
|
|
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
|
|
pTos->r = -pTos->r;
|
|
}
|
|
pTos->flags = MEM_Real;
|
|
}else if( pTos->flags & MEM_Int ){
|
|
Release(pTos);
|
|
if( pOp->opcode==OP_Negative || pTos->i<0 ){
|
|
pTos->i = -pTos->i;
|
|
}
|
|
pTos->flags = MEM_Int;
|
|
}else if( pTos->flags & MEM_Null ){
|
|
/* Do nothing */
|
|
}else{
|
|
Realify(pTos);
|
|
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
|
|
pTos->r = -pTos->r;
|
|
}
|
|
pTos->flags = MEM_Real;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Not * * *
|
|
**
|
|
** Interpret the top of the stack as a boolean value. Replace it
|
|
** with its complement. If the top of the stack is NULL its value
|
|
** is unchanged.
|
|
*/
|
|
case OP_Not: { /* same as TK_NOT */
|
|
assert( pTos>=p->aStack );
|
|
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
|
Integerify(pTos);
|
|
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
pTos->i = !pTos->i;
|
|
pTos->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: BitNot * * *
|
|
**
|
|
** Interpret the top of the stack as an value. Replace it
|
|
** with its ones-complement. If the top of the stack is NULL its
|
|
** value is unchanged.
|
|
*/
|
|
case OP_BitNot: { /* same as TK_BITNOT */
|
|
assert( pTos>=p->aStack );
|
|
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
|
Integerify(pTos);
|
|
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
pTos->i = ~pTos->i;
|
|
pTos->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Noop * * *
|
|
**
|
|
** Do nothing. This instruction is often useful as a jump
|
|
** destination.
|
|
*/
|
|
case OP_Noop: {
|
|
break;
|
|
}
|
|
|
|
/* Opcode: If P1 P2 *
|
|
**
|
|
** Pop a single boolean from the stack. If the boolean popped is
|
|
** true, then jump to p2. Otherwise continue to the next instruction.
|
|
** An integer is false if zero and true otherwise. A string is
|
|
** false if it has zero length and true otherwise.
|
|
**
|
|
** If the value popped of the stack is NULL, then take the jump if P1
|
|
** is true and fall through if P1 is false.
|
|
*/
|
|
/* Opcode: IfNot P1 P2 *
|
|
**
|
|
** Pop a single boolean from the stack. If the boolean popped is
|
|
** false, then jump to p2. Otherwise continue to the next instruction.
|
|
** An integer is false if zero and true otherwise. A string is
|
|
** false if it has zero length and true otherwise.
|
|
**
|
|
** If the value popped of the stack is NULL, then take the jump if P1
|
|
** is true and fall through if P1 is false.
|
|
*/
|
|
case OP_If:
|
|
case OP_IfNot: {
|
|
int c;
|
|
assert( pTos>=p->aStack );
|
|
if( pTos->flags & MEM_Null ){
|
|
c = pOp->p1;
|
|
}else{
|
|
c = sqlite3VdbeIntValue(pTos);
|
|
if( pOp->opcode==OP_IfNot ) c = !c;
|
|
}
|
|
Release(pTos);
|
|
pTos--;
|
|
if( c ) pc = pOp->p2-1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IsNull P1 P2 *
|
|
**
|
|
** If any of the top abs(P1) values on the stack are NULL, then jump
|
|
** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack
|
|
** unchanged.
|
|
*/
|
|
case OP_IsNull: { /* same as TK_ISNULL */
|
|
int i, cnt;
|
|
Mem *pTerm;
|
|
cnt = pOp->p1;
|
|
if( cnt<0 ) cnt = -cnt;
|
|
pTerm = &pTos[1-cnt];
|
|
assert( pTerm>=p->aStack );
|
|
for(i=0; i<cnt; i++, pTerm++){
|
|
if( pTerm->flags & MEM_Null ){
|
|
pc = pOp->p2-1;
|
|
break;
|
|
}
|
|
}
|
|
if( pOp->p1>0 ) popStack(&pTos, cnt);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NotNull P1 P2 *
|
|
**
|
|
** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the
|
|
** stack if P1 times if P1 is greater than zero. If P1 is less than
|
|
** zero then leave the stack unchanged.
|
|
*/
|
|
case OP_NotNull: { /* same as TK_NOTNULL */
|
|
int i, cnt;
|
|
cnt = pOp->p1;
|
|
if( cnt<0 ) cnt = -cnt;
|
|
assert( &pTos[1-cnt] >= p->aStack );
|
|
for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
|
|
if( i>=cnt ) pc = pOp->p2-1;
|
|
if( pOp->p1>0 ) popStack(&pTos, cnt);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SetNumColumns P1 P2 *
|
|
**
|
|
** Before the OP_Column opcode can be executed on a cursor, this
|
|
** opcode must be called to set the number of fields in the table.
|
|
**
|
|
** This opcode sets the number of columns for cursor P1 to P2.
|
|
*/
|
|
case OP_SetNumColumns: {
|
|
assert( (pOp->p1)<p->nCursor );
|
|
assert( p->apCsr[pOp->p1]!=0 );
|
|
p->apCsr[pOp->p1]->nField = pOp->p2;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxColumn P1 * *
|
|
**
|
|
** P1 is a cursor opened on an index. Push the first field from the
|
|
** current index key onto the stack.
|
|
*/
|
|
/* Opcode: Column P1 P2 *
|
|
**
|
|
** Interpret the data that cursor P1 points to as a structure built using
|
|
** the MakeRecord instruction. (See the MakeRecord opcode for additional
|
|
** information about the format of the data.) Push onto the stack the value
|
|
** of the P2-th column contained in the data.
|
|
**
|
|
** If the KeyAsData opcode has previously executed on this cursor, then the
|
|
** field might be extracted from the key rather than the data.
|
|
**
|
|
** If P1 is negative, then the record is stored on the stack rather than in
|
|
** a table. For P1==-1, the top of the stack is used. For P1==-2, the
|
|
** next on the stack is used. And so forth. The value pushed is always
|
|
** just a pointer into the record which is stored further down on the
|
|
** stack. The column value is not copied. The number of columns in the
|
|
** record is stored on the stack just above the record itself.
|
|
*/
|
|
case OP_IdxColumn:
|
|
case OP_Column: {
|
|
u32 payloadSize; /* Number of bytes in the record */
|
|
int p1 = pOp->p1; /* P1 value of the opcode */
|
|
int p2 = pOp->p2; /* column number to retrieve */
|
|
Cursor *pC = 0; /* The VDBE cursor */
|
|
char *zRec; /* Pointer to complete record-data */
|
|
BtCursor *pCrsr; /* The BTree cursor */
|
|
u32 *aType; /* aType[i] holds the numeric type of the i-th column */
|
|
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
|
|
u32 nField; /* number of fields in the record */
|
|
u32 szHdr; /* Number of bytes in the record header */
|
|
int len; /* The length of the serialized data for the column */
|
|
int offset = 0; /* Offset into the data */
|
|
int idx; /* Index into the header */
|
|
int i; /* Loop counter */
|
|
char *zData; /* Part of the record being decoded */
|
|
Mem sMem; /* For storing the record being decoded */
|
|
|
|
sMem.flags = 0;
|
|
assert( p1<p->nCursor );
|
|
pTos++;
|
|
pTos->flags = MEM_Null;
|
|
|
|
/* This block sets the variable payloadSize to be the total number of
|
|
** bytes in the record.
|
|
**
|
|
** zRec is set to be the complete text of the record if it is available.
|
|
** The complete record text is always available for pseudo-tables and
|
|
** when we are decoded a record from the stack. If the record is stored
|
|
** in a cursor, the complete record text might be available in the
|
|
** pC->aRow cache. Or it might not be. If the data is unavailable,
|
|
** zRec is set to NULL.
|
|
**
|
|
** We also compute the number of columns in the record. For cursors,
|
|
** the number of columns is stored in the Cursor.nField element. For
|
|
** records on the stack, the next entry down on the stack is an integer
|
|
** which is the number of records.
|
|
*/
|
|
assert( p1<0 || p->apCsr[p1]!=0 );
|
|
if( p1<0 ){
|
|
/* Take the record off of the stack */
|
|
Mem *pRec = &pTos[p1];
|
|
Mem *pCnt = &pRec[-1];
|
|
assert( pRec>=p->aStack );
|
|
assert( pRec->flags & MEM_Blob );
|
|
payloadSize = pRec->n;
|
|
zRec = pRec->z;
|
|
assert( pCnt>=p->aStack );
|
|
assert( pCnt->flags & MEM_Int );
|
|
nField = pCnt->i;
|
|
pCrsr = 0;
|
|
}else if( (pC = p->apCsr[p1])->pCursor!=0 ){
|
|
/* The record is stored in a B-Tree */
|
|
sqlite3VdbeCursorMoveto(pC);
|
|
zRec = 0;
|
|
pCrsr = pC->pCursor;
|
|
if( pC->nullRow ){
|
|
payloadSize = 0;
|
|
}else if( pC->cacheValid ){
|
|
payloadSize = pC->payloadSize;
|
|
zRec = pC->aRow;
|
|
}else if( pC->keyAsData ){
|
|
i64 payloadSize64;
|
|
sqlite3BtreeKeySize(pCrsr, &payloadSize64);
|
|
payloadSize = payloadSize64;
|
|
}else{
|
|
sqlite3BtreeDataSize(pCrsr, &payloadSize);
|
|
}
|
|
nField = pC->nField;
|
|
}else if( pC->pseudoTable ){
|
|
/* The record is the sole entry of a pseudo-table */
|
|
payloadSize = pC->nData;
|
|
zRec = pC->pData;
|
|
pC->cacheValid = 0;
|
|
assert( payloadSize==0 || zRec!=0 );
|
|
nField = pC->nField;
|
|
pCrsr = 0;
|
|
}else{
|
|
zRec = 0;
|
|
payloadSize = 0;
|
|
pCrsr = 0;
|
|
nField = 0;
|
|
}
|
|
|
|
/* If payloadSize is 0, then just push a NULL onto the stack. */
|
|
if( payloadSize==0 ){
|
|
pTos->flags = MEM_Null;
|
|
break;
|
|
}
|
|
|
|
assert( p2<nField );
|
|
|
|
/* Read and parse the table header. Store the results of the parse
|
|
** into the record header cache fields of the cursor.
|
|
*/
|
|
if( pC && pC->cacheValid ){
|
|
aType = pC->aType;
|
|
aOffset = pC->aOffset;
|
|
}else{
|
|
int avail; /* Number of bytes of available data */
|
|
if( pC && pC->aType ){
|
|
aType = pC->aType;
|
|
}else{
|
|
aType = sqliteMallocRaw( 2*nField*sizeof(aType) );
|
|
}
|
|
aOffset = &aType[nField];
|
|
if( aType==0 ){
|
|
goto no_mem;
|
|
}
|
|
|
|
/* Figure out how many bytes are in the header */
|
|
if( zRec ){
|
|
zData = zRec;
|
|
}else{
|
|
if( pC->keyAsData ){
|
|
zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
|
|
}else{
|
|
zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
|
|
}
|
|
/* If KeyFetch()/DataFetch() managed to get the entire payload,
|
|
** save the payload in the pC->aRow cache. That will save us from
|
|
** having to make additional calls to fetch the content portion of
|
|
** the record.
|
|
*/
|
|
if( avail>=payloadSize ){
|
|
zRec = pC->aRow = zData;
|
|
}else{
|
|
pC->aRow = 0;
|
|
}
|
|
}
|
|
idx = sqlite3GetVarint32(zData, &szHdr);
|
|
|
|
|
|
/* The KeyFetch() or DataFetch() above are fast and will get the entire
|
|
** record header in most cases. But they will fail to get the complete
|
|
** record header if the record header does not fit on a single page
|
|
** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
|
|
** acquire the complete header text.
|
|
*/
|
|
if( !zRec && avail<szHdr ){
|
|
rc = sqlite3VdbeMemFromBtree(pCrsr, 0, szHdr, pC->keyAsData, &sMem);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
zData = sMem.z;
|
|
}
|
|
|
|
/* Scan the header and use it to fill in the aType[] and aOffset[]
|
|
** arrays. aType[i] will contain the type integer for the i-th
|
|
** column and aOffset[i] will contain the offset from the beginning
|
|
** of the record to the start of the data for the i-th column
|
|
*/
|
|
offset = szHdr;
|
|
i = 0;
|
|
while( idx<szHdr && i<nField && offset<=payloadSize ){
|
|
aOffset[i] = offset;
|
|
idx += sqlite3GetVarint32(&zData[idx], &aType[i]);
|
|
offset += sqlite3VdbeSerialTypeLen(aType[i]);
|
|
i++;
|
|
}
|
|
Release(&sMem);
|
|
sMem.flags = MEM_Null;
|
|
|
|
/* The header should end at the start of data and the data should
|
|
** end at last byte of the record. If this is not the case then
|
|
** we are dealing with a malformed record.
|
|
*/
|
|
if( idx!=szHdr || offset!=payloadSize ){
|
|
sqliteFree(aType);
|
|
if( pC ) pC->aType = 0;
|
|
rc = SQLITE_CORRUPT;
|
|
break;
|
|
}
|
|
|
|
/* Remember all aType and aColumn information if we have a cursor
|
|
** to remember it in. */
|
|
if( pC ){
|
|
pC->payloadSize = payloadSize;
|
|
pC->aType = aType;
|
|
pC->aOffset = aOffset;
|
|
pC->cacheValid = 1;
|
|
}
|
|
}
|
|
|
|
/* Get the column information.
|
|
*/
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
if( zRec ){
|
|
zData = &zRec[aOffset[p2]];
|
|
}else{
|
|
len = sqlite3VdbeSerialTypeLen(aType[p2]);
|
|
sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->keyAsData, &sMem);
|
|
zData = sMem.z;
|
|
}
|
|
sqlite3VdbeSerialGet(zData, aType[p2], pTos);
|
|
pTos->enc = db->enc;
|
|
|
|
/* If we dynamically allocated space to hold the data (in the
|
|
** sqlite3VdbeMemFromBtree() call above) then transfer control of that
|
|
** dynamically allocated space over to the pTos structure rather.
|
|
** This prevents a memory copy.
|
|
*/
|
|
if( (sMem.flags & MEM_Dyn)!=0 ){
|
|
assert( pTos->flags & MEM_Ephem );
|
|
assert( pTos->flags & (MEM_Str|MEM_Blob) );
|
|
assert( pTos->z==sMem.z );
|
|
assert( sMem.flags & MEM_Term );
|
|
pTos->flags &= ~MEM_Ephem;
|
|
pTos->flags |= MEM_Dyn|MEM_Term;
|
|
}
|
|
|
|
/* pTos->z might be pointing to sMem.zShort[]. Fix that so that we
|
|
** can abandon sMem */
|
|
rc = sqlite3VdbeMemMakeWriteable(pTos);
|
|
|
|
/* Release the aType[] memory if we are not dealing with cursor */
|
|
if( !pC ){
|
|
sqliteFree(aType);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode MakeRecord P1 P2 P3
|
|
**
|
|
** Convert the top abs(P1) entries of the stack into a single entry
|
|
** suitable for use as a data record in a database table or as a key
|
|
** in an index. The details of the format are irrelavant as long as
|
|
** the OP_Column opcode can decode the record later and as long as the
|
|
** sqlite3VdbeRecordCompare function will correctly compare two encoded
|
|
** records. Refer to source code comments for the details of the record
|
|
** format.
|
|
**
|
|
** The original stack entries are popped from the stack if P1>0 but
|
|
** remain on the stack if P1<0.
|
|
**
|
|
** The P2 argument is divided into two 16-bit words before it is processed.
|
|
** If the hi-word is non-zero, then an extra integer is read from the stack
|
|
** and appended to the record as a varint. If the low-word of P2 is not
|
|
** zero and one or more of the entries are NULL, then jump to the value of
|
|
** the low-word of P2. This feature can be used to skip a uniqueness test
|
|
** on indices.
|
|
**
|
|
** P3 may be a string that is P1 characters long. The nth character of the
|
|
** string indicates the column affinity that should be used for the nth
|
|
** field of the index key (i.e. the first character of P3 corresponds to the
|
|
** lowest element on the stack).
|
|
**
|
|
** Character Column affinity
|
|
** ------------------------------
|
|
** 'n' NUMERIC
|
|
** 'i' INTEGER
|
|
** 't' TEXT
|
|
** 'o' NONE
|
|
**
|
|
** If P3 is NULL then all index fields have the affinity NONE.
|
|
*/
|
|
case OP_MakeRecord: {
|
|
/* Assuming the record contains N fields, the record format looks
|
|
** like this:
|
|
**
|
|
** ------------------------------------------------------------------------
|
|
** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
|
|
** ------------------------------------------------------------------------
|
|
**
|
|
** Data(0) is taken from the lowest element of the stack and data(N-1) is
|
|
** the top of the stack.
|
|
**
|
|
** Each type field is a varint representing the serial type of the
|
|
** corresponding data element (see sqlite3VdbeSerialType()). The
|
|
** hdr-size field is also a varint which is the offset from the beginning
|
|
** of the record to data0.
|
|
*/
|
|
unsigned char *zNewRecord;
|
|
unsigned char *zCsr;
|
|
Mem *pRec;
|
|
Mem *pRowid = 0;
|
|
int nData = 0; /* Number of bytes of data space */
|
|
int nHdr = 0; /* Number of bytes of header space */
|
|
int nByte = 0; /* Space required for this record */
|
|
u32 serial_type; /* Type field */
|
|
int containsNull = 0; /* True if any of the data fields are NULL */
|
|
char zTemp[NBFS]; /* Space to hold small records */
|
|
Mem *pData0;
|
|
|
|
int leaveOnStack; /* If true, leave the entries on the stack */
|
|
int nField; /* Number of fields in the record */
|
|
int jumpIfNull; /* Jump here if non-zero and any entries are NULL. */
|
|
int addRowid; /* True to append a rowid column at the end */
|
|
char *zAffinity; /* The affinity string for the record */
|
|
|
|
leaveOnStack = ((pOp->p1<0)?1:0);
|
|
nField = pOp->p1 * (leaveOnStack?-1:1);
|
|
jumpIfNull = (pOp->p2 & 0x00FFFFFF);
|
|
addRowid = ((pOp->p2>>24) & 0x0000FFFF)?1:0;
|
|
zAffinity = pOp->p3;
|
|
|
|
pData0 = &pTos[1-nField];
|
|
assert( pData0>=p->aStack );
|
|
containsNull = 0;
|
|
|
|
/* Loop through the elements that will make up the record to figure
|
|
** out how much space is required for the new record.
|
|
*/
|
|
for(pRec=pData0; pRec<=pTos; pRec++){
|
|
if( zAffinity ){
|
|
applyAffinity(pRec, zAffinity[pRec-pData0], db->enc);
|
|
}
|
|
if( pRec->flags&MEM_Null ){
|
|
containsNull = 1;
|
|
}
|
|
serial_type = sqlite3VdbeSerialType(pRec);
|
|
nData += sqlite3VdbeSerialTypeLen(serial_type);
|
|
nHdr += sqlite3VarintLen(serial_type);
|
|
}
|
|
|
|
/* If we have to append a varint rowid to this record, set 'rowid'
|
|
** to the value of the rowid and increase nByte by the amount of space
|
|
** required to store it and the 0x00 seperator byte.
|
|
*/
|
|
if( addRowid ){
|
|
pRowid = &pTos[0-nField];
|
|
assert( pRowid>=p->aStack );
|
|
Integerify(pRowid);
|
|
serial_type = sqlite3VdbeSerialType(pRowid);
|
|
nData += sqlite3VdbeSerialTypeLen(serial_type);
|
|
nHdr += sqlite3VarintLen(serial_type);
|
|
}
|
|
|
|
/* Add the initial header varint and total the size */
|
|
nHdr += sqlite3VarintLen(nHdr);
|
|
nByte = nHdr+nData;
|
|
|
|
/* Allocate space for the new record. */
|
|
if( nByte>sizeof(zTemp) ){
|
|
zNewRecord = sqliteMallocRaw(nByte);
|
|
if( !zNewRecord ){
|
|
goto no_mem;
|
|
}
|
|
}else{
|
|
zNewRecord = zTemp;
|
|
}
|
|
|
|
/* Write the record */
|
|
zCsr = zNewRecord;
|
|
zCsr += sqlite3PutVarint(zCsr, nHdr);
|
|
for(pRec=pData0; pRec<=pTos; pRec++){
|
|
serial_type = sqlite3VdbeSerialType(pRec);
|
|
zCsr += sqlite3PutVarint(zCsr, serial_type); /* serial type */
|
|
}
|
|
if( addRowid ){
|
|
zCsr += sqlite3PutVarint(zCsr, sqlite3VdbeSerialType(pRowid));
|
|
}
|
|
for(pRec=pData0; pRec<=pTos; pRec++){
|
|
zCsr += sqlite3VdbeSerialPut(zCsr, pRec); /* serial data */
|
|
}
|
|
if( addRowid ){
|
|
zCsr += sqlite3VdbeSerialPut(zCsr, pRowid);
|
|
}
|
|
|
|
/* If zCsr has not been advanced exactly nByte bytes, then one
|
|
** of the sqlite3PutVarint() or sqlite3VdbeSerialPut() calls above
|
|
** failed. This indicates a corrupted memory cell or code bug.
|
|
*/
|
|
if( zCsr!=(zNewRecord+nByte) ){
|
|
rc = SQLITE_INTERNAL;
|
|
goto abort_due_to_error;
|
|
}
|
|
|
|
/* Pop entries off the stack if required. Push the new record on. */
|
|
if( !leaveOnStack ){
|
|
popStack(&pTos, nField+addRowid);
|
|
}
|
|
pTos++;
|
|
pTos->n = nByte;
|
|
if( nByte<=sizeof(zTemp) ){
|
|
assert( zNewRecord==(unsigned char *)zTemp );
|
|
pTos->z = pTos->zShort;
|
|
memcpy(pTos->zShort, zTemp, nByte);
|
|
pTos->flags = MEM_Blob | MEM_Short;
|
|
}else{
|
|
assert( zNewRecord!=(unsigned char *)zTemp );
|
|
pTos->z = zNewRecord;
|
|
pTos->flags = MEM_Blob | MEM_Dyn;
|
|
pTos->xDel = 0;
|
|
}
|
|
|
|
/* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */
|
|
if( jumpIfNull && containsNull ){
|
|
pc = jumpIfNull - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Statement P1 * *
|
|
**
|
|
** Begin an individual statement transaction which is part of a larger
|
|
** BEGIN..COMMIT transaction. This is needed so that the statement
|
|
** can be rolled back after an error without having to roll back the
|
|
** entire transaction. The statement transaction will automatically
|
|
** commit when the VDBE halts.
|
|
**
|
|
** The statement is begun on the database file with index P1. The main
|
|
** database file has an index of 0 and the file used for temporary tables
|
|
** has an index of 1.
|
|
*/
|
|
case OP_Statement: {
|
|
int i = pOp->p1;
|
|
Btree *pBt;
|
|
if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt) && !(db->autoCommit) ){
|
|
assert( sqlite3BtreeIsInTrans(pBt) );
|
|
if( !sqlite3BtreeIsInStmt(pBt) ){
|
|
rc = sqlite3BtreeBeginStmt(pBt);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AutoCommit P1 P2 *
|
|
**
|
|
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
|
|
** back any currently active btree transactions. If there are any active
|
|
** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
|
|
**
|
|
** This instruction causes the VM to halt.
|
|
*/
|
|
case OP_AutoCommit: {
|
|
u8 i = pOp->p1;
|
|
u8 rollback = pOp->p2;
|
|
|
|
assert( i==1 || i==0 );
|
|
assert( i==1 || rollback==0 );
|
|
|
|
assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
|
|
|
|
if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
|
|
/* If this instruction implements a COMMIT or ROLLBACK, other VMs are
|
|
** still running, and a transaction is active, return an error indicating
|
|
** that the other VMs must complete first.
|
|
*/
|
|
sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit",
|
|
" transaction - SQL statements in progress", 0);
|
|
rc = SQLITE_ERROR;
|
|
}else if( i!=db->autoCommit ){
|
|
db->autoCommit = i;
|
|
if( pOp->p2 ){
|
|
assert( i==1 );
|
|
sqlite3RollbackAll(db);
|
|
}else if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
|
|
p->pTos = pTos;
|
|
p->pc = pc;
|
|
db->autoCommit = 1-i;
|
|
p->rc = SQLITE_BUSY;
|
|
return SQLITE_BUSY;
|
|
}
|
|
return SQLITE_DONE;
|
|
}else{
|
|
sqlite3SetString(&p->zErrMsg,
|
|
(!i)?"cannot start a transaction within a transaction":(
|
|
(rollback)?"cannot rollback - no transaction is active":
|
|
"cannot commit - no transaction is active"), 0);
|
|
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Transaction P1 P2 *
|
|
**
|
|
** Begin a transaction. The transaction ends when a Commit or Rollback
|
|
** opcode is encountered. Depending on the ON CONFLICT setting, the
|
|
** transaction might also be rolled back if an error is encountered.
|
|
**
|
|
** P1 is the index of the database file on which the transaction is
|
|
** started. Index 0 is the main database file and index 1 is the
|
|
** file used for temporary tables.
|
|
**
|
|
** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
|
|
** obtained on the database file when a write-transaction is started. No
|
|
** other process can start another write transaction while this transaction is
|
|
** underway. Starting a write transaction also creates a rollback journal. A
|
|
** write transaction must be started before any changes can be made to the
|
|
** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
|
|
** on the file.
|
|
**
|
|
** If P2 is zero, then a read-lock is obtained on the database file.
|
|
*/
|
|
case OP_Transaction: {
|
|
int i = pOp->p1;
|
|
Btree *pBt;
|
|
|
|
assert( i>=0 && i<db->nDb );
|
|
pBt = db->aDb[i].pBt;
|
|
|
|
if( pBt ){
|
|
rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
|
|
if( rc==SQLITE_BUSY ){
|
|
p->pc = pc;
|
|
p->rc = SQLITE_BUSY;
|
|
p->pTos = pTos;
|
|
return SQLITE_BUSY;
|
|
}
|
|
if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ReadCookie P1 P2 *
|
|
**
|
|
** Read cookie number P2 from database P1 and push it onto the stack.
|
|
** P2==0 is the schema version. P2==1 is the database format.
|
|
** P2==2 is the recommended pager cache size, and so forth. P1==0 is
|
|
** the main database file and P1==1 is the database file used to store
|
|
** temporary tables.
|
|
**
|
|
** There must be a read-lock on the database (either a transaction
|
|
** must be started or there must be an open cursor) before
|
|
** executing this instruction.
|
|
*/
|
|
case OP_ReadCookie: {
|
|
int iMeta;
|
|
assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( db->aDb[pOp->p1].pBt!=0 );
|
|
/* The indexing of meta values at the schema layer is off by one from
|
|
** the indexing in the btree layer. The btree considers meta[0] to
|
|
** be the number of free pages in the database (a read-only value)
|
|
** and meta[1] to be the schema cookie. The schema layer considers
|
|
** meta[1] to be the schema cookie. So we have to shift the index
|
|
** by one in the following statement.
|
|
*/
|
|
rc = sqlite3BtreeGetMeta(db->aDb[pOp->p1].pBt, 1 + pOp->p2, (u32 *)&iMeta);
|
|
pTos++;
|
|
pTos->i = iMeta;
|
|
pTos->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SetCookie P1 P2 *
|
|
**
|
|
** Write the top of the stack into cookie number P2 of database P1.
|
|
** P2==0 is the schema version. P2==1 is the database format.
|
|
** P2==2 is the recommended pager cache size, and so forth. P1==0 is
|
|
** the main database file and P1==1 is the database file used to store
|
|
** temporary tables.
|
|
**
|
|
** A transaction must be started before executing this opcode.
|
|
*/
|
|
case OP_SetCookie: {
|
|
Db *pDb;
|
|
assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
pDb = &db->aDb[pOp->p1];
|
|
assert( pDb->pBt!=0 );
|
|
assert( pTos>=p->aStack );
|
|
Integerify(pTos);
|
|
/* See note about index shifting on OP_ReadCookie */
|
|
rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->i);
|
|
if( pOp->p2==0 ){
|
|
/* When the schema cookie changes, record the new cookie internally */
|
|
pDb->schema_cookie = pTos->i;
|
|
db->flags |= SQLITE_InternChanges;
|
|
}
|
|
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
pTos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: VerifyCookie P1 P2 *
|
|
**
|
|
** Check the value of global database parameter number 0 (the
|
|
** schema version) and make sure it is equal to P2.
|
|
** P1 is the database number which is 0 for the main database file
|
|
** and 1 for the file holding temporary tables and some higher number
|
|
** for auxiliary databases.
|
|
**
|
|
** The cookie changes its value whenever the database schema changes.
|
|
** This operation is used to detect when that the cookie has changed
|
|
** and that the current process needs to reread the schema.
|
|
**
|
|
** Either a transaction needs to have been started or an OP_Open needs
|
|
** to be executed (to establish a read lock) before this opcode is
|
|
** invoked.
|
|
*/
|
|
case OP_VerifyCookie: {
|
|
int iMeta;
|
|
Btree *pBt;
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
if( pBt ){
|
|
rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
iMeta = 0;
|
|
}
|
|
if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
|
|
sqlite3SetString(&p->zErrMsg, "database schema has changed", (char*)0);
|
|
rc = SQLITE_SCHEMA;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenRead P1 P2 P3
|
|
**
|
|
** Open a read-only cursor for the database table whose root page is
|
|
** P2 in a database file. The database file is determined by an
|
|
** integer from the top of the stack. 0 means the main database and
|
|
** 1 means the database used for temporary tables. Give the new
|
|
** cursor an identifier of P1. The P1 values need not be contiguous
|
|
** but all P1 values should be small integers. It is an error for
|
|
** P1 to be negative.
|
|
**
|
|
** If P2==0 then take the root page number from the next of the stack.
|
|
**
|
|
** There will be a read lock on the database whenever there is an
|
|
** open cursor. If the database was unlocked prior to this instruction
|
|
** then a read lock is acquired as part of this instruction. A read
|
|
** lock allows other processes to read the database but prohibits
|
|
** any other process from modifying the database. The read lock is
|
|
** released when all cursors are closed. If this instruction attempts
|
|
** to get a read lock but fails, the script terminates with an
|
|
** SQLITE_BUSY error code.
|
|
**
|
|
** The P3 value is a pointer to a KeyInfo structure that defines the
|
|
** content and collating sequence of indices. P3 is NULL for cursors
|
|
** that are not pointing to indices.
|
|
**
|
|
** See also OpenWrite.
|
|
*/
|
|
/* Opcode: OpenWrite P1 P2 P3
|
|
**
|
|
** Open a read/write cursor named P1 on the table or index whose root
|
|
** page is P2. If P2==0 then take the root page number from the stack.
|
|
**
|
|
** The P3 value is a pointer to a KeyInfo structure that defines the
|
|
** content and collating sequence of indices. P3 is NULL for cursors
|
|
** that are not pointing to indices.
|
|
**
|
|
** This instruction works just like OpenRead except that it opens the cursor
|
|
** in read/write mode. For a given table, there can be one or more read-only
|
|
** cursors or a single read/write cursor but not both.
|
|
**
|
|
** See also OpenRead.
|
|
*/
|
|
case OP_OpenRead:
|
|
case OP_OpenWrite: {
|
|
int i = pOp->p1;
|
|
int p2 = pOp->p2;
|
|
int wrFlag;
|
|
Btree *pX;
|
|
int iDb;
|
|
Cursor *pCur;
|
|
|
|
assert( pTos>=p->aStack );
|
|
Integerify(pTos);
|
|
iDb = pTos->i;
|
|
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
pTos--;
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
pX = db->aDb[iDb].pBt;
|
|
assert( pX!=0 );
|
|
wrFlag = pOp->opcode==OP_OpenWrite;
|
|
if( p2<=0 ){
|
|
assert( pTos>=p->aStack );
|
|
Integerify(pTos);
|
|
p2 = pTos->i;
|
|
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
pTos--;
|
|
if( p2<2 ){
|
|
sqlite3SetString(&p->zErrMsg, "root page number less than 2", (char*)0);
|
|
rc = SQLITE_INTERNAL;
|
|
break;
|
|
}
|
|
}
|
|
assert( i>=0 );
|
|
pCur = allocateCursor(p, i);
|
|
if( pCur==0 ) goto no_mem;
|
|
pCur->nullRow = 1;
|
|
if( pX==0 ) break;
|
|
/* We always provide a key comparison function. If the table being
|
|
** opened is of type INTKEY, the comparision function will be ignored. */
|
|
rc = sqlite3BtreeCursor(pX, p2, wrFlag,
|
|
sqlite3VdbeRecordCompare, pOp->p3,
|
|
&pCur->pCursor);
|
|
pCur->pKeyInfo = (KeyInfo*)pOp->p3;
|
|
if( pCur->pKeyInfo ){
|
|
pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
|
|
pCur->pKeyInfo->enc = p->db->enc;
|
|
}else{
|
|
pCur->pIncrKey = &pCur->bogusIncrKey;
|
|
}
|
|
switch( rc ){
|
|
case SQLITE_BUSY: {
|
|
p->pc = pc;
|
|
p->rc = SQLITE_BUSY;
|
|
p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
|
|
return SQLITE_BUSY;
|
|
}
|
|
case SQLITE_OK: {
|
|
int flags = sqlite3BtreeFlags(pCur->pCursor);
|
|
pCur->intKey = (flags & BTREE_INTKEY)!=0;
|
|
pCur->zeroData = (flags & BTREE_ZERODATA)!=0;
|
|
break;
|
|
}
|
|
case SQLITE_EMPTY: {
|
|
rc = SQLITE_OK;
|
|
break;
|
|
}
|
|
default: {
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenTemp P1 * P3
|
|
**
|
|
** Open a new cursor to a transient table.
|
|
** The transient cursor is always opened read/write even if
|
|
** the main database is read-only. The transient table is deleted
|
|
** automatically when the cursor is closed.
|
|
**
|
|
** The cursor points to a BTree table if P3==0 and to a BTree index
|
|
** if P3 is not 0. If P3 is not NULL, it points to a KeyInfo structure
|
|
** that defines the format of keys in the index.
|
|
**
|
|
** This opcode is used for tables that exist for the duration of a single
|
|
** SQL statement only. Tables created using CREATE TEMPORARY TABLE
|
|
** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the
|
|
** context of this opcode means for the duration of a single SQL statement
|
|
** whereas "Temporary" in the context of CREATE TABLE means for the duration
|
|
** of the connection to the database. Same word; different meanings.
|
|
*/
|
|
case OP_OpenTemp: {
|
|
int i = pOp->p1;
|
|
Cursor *pCx;
|
|
assert( i>=0 );
|
|
pCx = allocateCursor(p, i);
|
|
if( pCx==0 ) goto no_mem;
|
|
pCx->nullRow = 1;
|
|
rc = sqlite3BtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
/* If a transient index is required, create it by calling
|
|
** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
|
|
** opening it. If a transient table is required, just use the
|
|
** automatically created table with root-page 1 (an INTKEY table).
|
|
*/
|
|
if( pOp->p3 ){
|
|
int pgno;
|
|
assert( pOp->p3type==P3_KEYINFO );
|
|
rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
|
|
if( rc==SQLITE_OK ){
|
|
assert( pgno==MASTER_ROOT+1 );
|
|
rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
|
|
pOp->p3, &pCx->pCursor);
|
|
pCx->pKeyInfo = (KeyInfo*)pOp->p3;
|
|
pCx->pKeyInfo->enc = p->db->enc;
|
|
pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
|
|
}
|
|
}else{
|
|
rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
|
|
pCx->intKey = 1;
|
|
pCx->pIncrKey = &pCx->bogusIncrKey;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenPseudo P1 * *
|
|
**
|
|
** Open a new cursor that points to a fake table that contains a single
|
|
** row of data. Any attempt to write a second row of data causes the
|
|
** first row to be deleted. All data is deleted when the cursor is
|
|
** closed.
|
|
**
|
|
** A pseudo-table created by this opcode is useful for holding the
|
|
** NEW or OLD tables in a trigger.
|
|
*/
|
|
case OP_OpenPseudo: {
|
|
int i = pOp->p1;
|
|
Cursor *pCx;
|
|
assert( i>=0 );
|
|
pCx = allocateCursor(p, i);
|
|
if( pCx==0 ) goto no_mem;
|
|
pCx->nullRow = 1;
|
|
pCx->pseudoTable = 1;
|
|
pCx->pIncrKey = &pCx->bogusIncrKey;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Close P1 * *
|
|
**
|
|
** Close a cursor previously opened as P1. If P1 is not
|
|
** currently open, this instruction is a no-op.
|
|
*/
|
|
case OP_Close: {
|
|
int i = pOp->p1;
|
|
if( i>=0 && i<p->nCursor ){
|
|
sqlite3VdbeFreeCursor(p->apCsr[i]);
|
|
p->apCsr[i] = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MoveGe P1 P2 *
|
|
**
|
|
** Pop the top of the stack and use its value as a key. Reposition
|
|
** cursor P1 so that it points to the smallest entry that is greater
|
|
** than or equal to the key that was popped ffrom the stack.
|
|
** If there are no records greater than or equal to the key and P2
|
|
** is not zero, then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
|
|
*/
|
|
/* Opcode: MoveGt P1 P2 *
|
|
**
|
|
** Pop the top of the stack and use its value as a key. Reposition
|
|
** cursor P1 so that it points to the smallest entry that is greater
|
|
** than the key from the stack.
|
|
** If there are no records greater than the key and P2 is not zero,
|
|
** then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
|
|
*/
|
|
/* Opcode: MoveLt P1 P2 *
|
|
**
|
|
** Pop the top of the stack and use its value as a key. Reposition
|
|
** cursor P1 so that it points to the largest entry that is less
|
|
** than the key from the stack.
|
|
** If there are no records less than the key and P2 is not zero,
|
|
** then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
|
|
*/
|
|
/* Opcode: MoveLe P1 P2 *
|
|
**
|
|
** Pop the top of the stack and use its value as a key. Reposition
|
|
** cursor P1 so that it points to the largest entry that is less than
|
|
** or equal to the key that was popped from the stack.
|
|
** If there are no records less than or eqal to the key and P2 is not zero,
|
|
** then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
|
|
*/
|
|
case OP_MoveLt:
|
|
case OP_MoveLe:
|
|
case OP_MoveGe:
|
|
case OP_MoveGt: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
|
|
assert( pTos>=p->aStack );
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
if( pC->pCursor!=0 ){
|
|
int res, oc;
|
|
oc = pOp->opcode;
|
|
pC->nullRow = 0;
|
|
*pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
|
|
if( pC->intKey ){
|
|
i64 iKey;
|
|
assert( !pOp->p3 );
|
|
Integerify(pTos);
|
|
iKey = intToKey(pTos->i);
|
|
if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){
|
|
pC->movetoTarget = iKey;
|
|
pC->deferredMoveto = 1;
|
|
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
pTos--;
|
|
break;
|
|
}
|
|
sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, &res);
|
|
pC->lastRecno = pTos->i;
|
|
pC->recnoIsValid = res==0;
|
|
}else{
|
|
Stringify(pTos, db->enc);
|
|
sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
|
|
pC->recnoIsValid = 0;
|
|
}
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheValid = 0;
|
|
*pC->pIncrKey = 0;
|
|
sqlite3_search_count++;
|
|
if( oc==OP_MoveGe || oc==OP_MoveGt ){
|
|
if( res<0 ){
|
|
sqlite3BtreeNext(pC->pCursor, &res);
|
|
pC->recnoIsValid = 0;
|
|
}else{
|
|
res = 0;
|
|
}
|
|
}else{
|
|
assert( oc==OP_MoveLt || oc==OP_MoveLe );
|
|
if( res>=0 ){
|
|
sqlite3BtreePrevious(pC->pCursor, &res);
|
|
pC->recnoIsValid = 0;
|
|
}else{
|
|
/* res might be negative because the table is empty. Check to
|
|
** see if this is the case.
|
|
*/
|
|
res = sqlite3BtreeEof(pC->pCursor);
|
|
}
|
|
}
|
|
if( res ){
|
|
if( pOp->p2>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}else{
|
|
pC->nullRow = 1;
|
|
}
|
|
}
|
|
}
|
|
Release(pTos);
|
|
pTos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Distinct P1 P2 *
|
|
**
|
|
** Use the top of the stack as a string key. If a record with that key does
|
|
** not exist in the table of cursor P1, then jump to P2. If the record
|
|
** does already exist, then fall thru. The cursor is left pointing
|
|
** at the record if it exists. The key is not popped from the stack.
|
|
**
|
|
** This operation is similar to NotFound except that this operation
|
|
** does not pop the key from the stack.
|
|
**
|
|
** See also: Found, NotFound, MoveTo, IsUnique, NotExists
|
|
*/
|
|
/* Opcode: Found P1 P2 *
|
|
**
|
|
** Use the top of the stack as a string key. If a record with that key
|
|
** does exist in table of P1, then jump to P2. If the record
|
|
** does not exist, then fall thru. The cursor is left pointing
|
|
** to the record if it exists. The key is popped from the stack.
|
|
**
|
|
** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
|
|
*/
|
|
/* Opcode: NotFound P1 P2 *
|
|
**
|
|
** Use the top of the stack as a string key. If a record with that key
|
|
** does not exist in table of P1, then jump to P2. If the record
|
|
** does exist, then fall thru. The cursor is left pointing to the
|
|
** record if it exists. The key is popped from the stack.
|
|
**
|
|
** The difference between this operation and Distinct is that
|
|
** Distinct does not pop the key from the stack.
|
|
**
|
|
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
|
|
*/
|
|
case OP_Distinct:
|
|
case OP_NotFound:
|
|
case OP_Found: {
|
|
int i = pOp->p1;
|
|
int alreadyExists = 0;
|
|
Cursor *pC;
|
|
assert( pTos>=p->aStack );
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pC = p->apCsr[i])->pCursor!=0 ){
|
|
int res, rx;
|
|
assert( pC->intKey==0 );
|
|
Stringify(pTos, db->enc);
|
|
rx = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
|
|
alreadyExists = rx==SQLITE_OK && res==0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheValid = 0;
|
|
}
|
|
if( pOp->opcode==OP_Found ){
|
|
if( alreadyExists ) pc = pOp->p2 - 1;
|
|
}else{
|
|
if( !alreadyExists ) pc = pOp->p2 - 1;
|
|
}
|
|
if( pOp->opcode!=OP_Distinct ){
|
|
Release(pTos);
|
|
pTos--;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IsUnique P1 P2 *
|
|
**
|
|
** The top of the stack is an integer record number. Call this
|
|
** record number R. The next on the stack is an index key created
|
|
** using MakeIdxKey. Call it K. This instruction pops R from the
|
|
** stack but it leaves K unchanged.
|
|
**
|
|
** P1 is an index. So it has no data and its key consists of a
|
|
** record generated by OP_MakeIdxKey. This key contains one or more
|
|
** fields followed by a ROWID field.
|
|
**
|
|
** This instruction asks if there is an entry in P1 where the
|
|
** fields matches K but the rowid is different from R.
|
|
** If there is no such entry, then there is an immediate
|
|
** jump to P2. If any entry does exist where the index string
|
|
** matches K but the record number is not R, then the record
|
|
** number for that entry is pushed onto the stack and control
|
|
** falls through to the next instruction.
|
|
**
|
|
** See also: Distinct, NotFound, NotExists, Found
|
|
*/
|
|
case OP_IsUnique: {
|
|
int i = pOp->p1;
|
|
Mem *pNos = &pTos[-1];
|
|
Cursor *pCx;
|
|
BtCursor *pCrsr;
|
|
i64 R;
|
|
|
|
/* Pop the value R off the top of the stack
|
|
*/
|
|
assert( pNos>=p->aStack );
|
|
Integerify(pTos);
|
|
R = pTos->i;
|
|
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
pTos--;
|
|
assert( i>=0 && i<=p->nCursor );
|
|
pCx = p->apCsr[i];
|
|
assert( pCx!=0 );
|
|
pCrsr = pCx->pCursor;
|
|
if( pCrsr!=0 ){
|
|
int res, rc;
|
|
i64 v; /* The record number on the P1 entry that matches K */
|
|
char *zKey; /* The value of K */
|
|
int nKey; /* Number of bytes in K */
|
|
int len; /* Number of bytes in K without the rowid at the end */
|
|
int szRowid; /* Size of the rowid column at the end of zKey */
|
|
|
|
/* Make sure K is a string and make zKey point to K
|
|
*/
|
|
Stringify(pNos, db->enc);
|
|
zKey = pNos->z;
|
|
nKey = pNos->n;
|
|
|
|
szRowid = sqlite3VdbeIdxRowidLen(nKey, zKey);
|
|
len = nKey-szRowid;
|
|
|
|
/* Search for an entry in P1 where all but the last four bytes match K.
|
|
** If there is no such entry, jump immediately to P2.
|
|
*/
|
|
assert( pCx->deferredMoveto==0 );
|
|
pCx->cacheValid = 0;
|
|
rc = sqlite3BtreeMoveto(pCrsr, zKey, len, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
if( res<0 ){
|
|
rc = sqlite3BtreeNext(pCrsr, &res);
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
}
|
|
rc = sqlite3VdbeIdxKeyCompare(pCx, len, zKey, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
if( res>0 ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* At this point, pCrsr is pointing to an entry in P1 where all but
|
|
** the final entry (the rowid) matches K. Check to see if the
|
|
** final rowid column is different from R. If it equals R then jump
|
|
** immediately to P2.
|
|
*/
|
|
rc = sqlite3VdbeIdxRowid(pCrsr, &v);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
if( v==R ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* The final varint of the key is different from R. Push it onto
|
|
** the stack. (The record number of an entry that violates a UNIQUE
|
|
** constraint.)
|
|
*/
|
|
pTos++;
|
|
pTos->i = v;
|
|
pTos->flags = MEM_Int;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NotExists P1 P2 *
|
|
**
|
|
** Use the top of the stack as a integer key. If a record with that key
|
|
** does not exist in table of P1, then jump to P2. If the record
|
|
** does exist, then fall thru. The cursor is left pointing to the
|
|
** record if it exists. The integer key is popped from the stack.
|
|
**
|
|
** The difference between this operation and NotFound is that this
|
|
** operation assumes the key is an integer and NotFound assumes it
|
|
** is a string.
|
|
**
|
|
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
|
|
*/
|
|
case OP_NotExists: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
assert( pTos>=p->aStack );
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
int res, rx;
|
|
u64 iKey;
|
|
assert( pTos->flags & MEM_Int );
|
|
assert( p->apCsr[i]->intKey );
|
|
iKey = intToKey(pTos->i);
|
|
rx = sqlite3BtreeMoveto(pCrsr, 0, iKey, &res);
|
|
pC->lastRecno = pTos->i;
|
|
pC->recnoIsValid = res==0;
|
|
pC->nullRow = 0;
|
|
pC->cacheValid = 0;
|
|
if( rx!=SQLITE_OK || res!=0 ){
|
|
pc = pOp->p2 - 1;
|
|
pC->recnoIsValid = 0;
|
|
}
|
|
}
|
|
Release(pTos);
|
|
pTos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NewRecno P1 * *
|
|
**
|
|
** Get a new integer record number used as the key to a table.
|
|
** The record number is not previously used as a key in the database
|
|
** table that cursor P1 points to. The new record number is pushed
|
|
** onto the stack.
|
|
*/
|
|
case OP_NewRecno: {
|
|
int i = pOp->p1;
|
|
i64 v = 0;
|
|
Cursor *pC;
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pC = p->apCsr[i])->pCursor==0 ){
|
|
/* The zero initialization above is all that is needed */
|
|
}else{
|
|
/* The next rowid or record number (different terms for the same
|
|
** thing) is obtained in a two-step algorithm.
|
|
**
|
|
** First we attempt to find the largest existing rowid and add one
|
|
** to that. But if the largest existing rowid is already the maximum
|
|
** positive integer, we have to fall through to the second
|
|
** probabilistic algorithm
|
|
**
|
|
** The second algorithm is to select a rowid at random and see if
|
|
** it already exists in the table. If it does not exist, we have
|
|
** succeeded. If the random rowid does exist, we select a new one
|
|
** and try again, up to 1000 times.
|
|
**
|
|
** For a table with less than 2 billion entries, the probability
|
|
** of not finding a unused rowid is about 1.0e-300. This is a
|
|
** non-zero probability, but it is still vanishingly small and should
|
|
** never cause a problem. You are much, much more likely to have a
|
|
** hardware failure than for this algorithm to fail.
|
|
**
|
|
** The analysis in the previous paragraph assumes that you have a good
|
|
** source of random numbers. Is a library function like lrand48()
|
|
** good enough? Maybe. Maybe not. It's hard to know whether there
|
|
** might be subtle bugs is some implementations of lrand48() that
|
|
** could cause problems. To avoid uncertainty, SQLite uses its own
|
|
** random number generator based on the RC4 algorithm.
|
|
**
|
|
** To promote locality of reference for repetitive inserts, the
|
|
** first few attempts at chosing a random rowid pick values just a little
|
|
** larger than the previous rowid. This has been shown experimentally
|
|
** to double the speed of the COPY operation.
|
|
*/
|
|
int res, rx=SQLITE_OK, cnt;
|
|
i64 x;
|
|
cnt = 0;
|
|
assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
|
|
assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
|
|
if( !pC->useRandomRowid ){
|
|
if( pC->nextRowidValid ){
|
|
v = pC->nextRowid;
|
|
}else{
|
|
rx = sqlite3BtreeLast(pC->pCursor, &res);
|
|
if( res ){
|
|
v = 1;
|
|
}else{
|
|
sqlite3BtreeKeySize(pC->pCursor, &v);
|
|
v = keyToInt(v);
|
|
if( v==0x7fffffffffffffff ){
|
|
pC->useRandomRowid = 1;
|
|
}else{
|
|
v++;
|
|
}
|
|
}
|
|
}
|
|
if( v<0x7fffffffffffffff ){
|
|
pC->nextRowidValid = 1;
|
|
pC->nextRowid = v+1;
|
|
}else{
|
|
pC->nextRowidValid = 0;
|
|
}
|
|
}
|
|
if( pC->useRandomRowid ){
|
|
v = db->priorNewRowid;
|
|
cnt = 0;
|
|
do{
|
|
if( v==0 || cnt>2 ){
|
|
sqlite3Randomness(sizeof(v), &v);
|
|
if( cnt<5 ) v &= 0xffffff;
|
|
}else{
|
|
unsigned char r;
|
|
sqlite3Randomness(1, &r);
|
|
v += r + 1;
|
|
}
|
|
if( v==0 ) continue;
|
|
x = intToKey(v);
|
|
rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, &res);
|
|
cnt++;
|
|
}while( cnt<1000 && rx==SQLITE_OK && res==0 );
|
|
db->priorNewRowid = v;
|
|
if( rx==SQLITE_OK && res==0 ){
|
|
rc = SQLITE_FULL;
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
pC->recnoIsValid = 0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheValid = 0;
|
|
}
|
|
pTos++;
|
|
pTos->i = v;
|
|
pTos->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: PutIntKey P1 P2 *
|
|
**
|
|
** Write an entry into the table of cursor P1. A new entry is
|
|
** created if it doesn't already exist or the data for an existing
|
|
** entry is overwritten. The data is the value on the top of the
|
|
** stack. The key is the next value down on the stack. The key must
|
|
** be an integer. The stack is popped twice by this instruction.
|
|
**
|
|
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
|
|
** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P2 is set,
|
|
** then rowid is stored for subsequent return by the
|
|
** sqlite3_last_insert_rowid() function (otherwise it's unmodified).
|
|
*/
|
|
/* Opcode: PutStrKey P1 * *
|
|
**
|
|
** Write an entry into the table of cursor P1. A new entry is
|
|
** created if it doesn't already exist or the data for an existing
|
|
** entry is overwritten. The data is the value on the top of the
|
|
** stack. The key is the next value down on the stack. The key must
|
|
** be a string. The stack is popped twice by this instruction.
|
|
**
|
|
** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
|
|
*/
|
|
case OP_PutIntKey:
|
|
case OP_PutStrKey: {
|
|
Mem *pNos = &pTos[-1];
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
assert( pNos>=p->aStack );
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){
|
|
char *zKey;
|
|
i64 nKey;
|
|
i64 iKey;
|
|
if( pOp->opcode==OP_PutStrKey ){
|
|
Stringify(pNos, db->enc);
|
|
nKey = pNos->n;
|
|
zKey = pNos->z;
|
|
}else{
|
|
assert( pNos->flags & MEM_Int );
|
|
|
|
/* If the table is an INTKEY table, set nKey to the value of
|
|
** the integer key, and zKey to NULL. Otherwise, set nKey to
|
|
** sizeof(i64) and point zKey at iKey. iKey contains the integer
|
|
** key in the on-disk byte order.
|
|
*/
|
|
iKey = intToKey(pNos->i);
|
|
if( pC->intKey ){
|
|
nKey = intToKey(pNos->i);
|
|
zKey = 0;
|
|
}else{
|
|
nKey = sizeof(i64);
|
|
zKey = (char*)&iKey;
|
|
}
|
|
|
|
if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
|
|
if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
|
|
if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
|
|
pC->nextRowidValid = 0;
|
|
}
|
|
}
|
|
if( pTos->flags & MEM_Null ){
|
|
pTos->z = 0;
|
|
pTos->n = 0;
|
|
}else{
|
|
assert( pTos->flags & (MEM_Blob|MEM_Str) );
|
|
}
|
|
if( pC->pseudoTable ){
|
|
/* PutStrKey does not work for pseudo-tables.
|
|
** The following assert makes sure we are not trying to use
|
|
** PutStrKey on a pseudo-table
|
|
*/
|
|
assert( pOp->opcode==OP_PutIntKey );
|
|
sqliteFree(pC->pData);
|
|
pC->iKey = iKey;
|
|
pC->nData = pTos->n;
|
|
if( pTos->flags & MEM_Dyn ){
|
|
pC->pData = pTos->z;
|
|
pTos->flags = MEM_Null;
|
|
}else{
|
|
pC->pData = sqliteMallocRaw( pC->nData+2 );
|
|
if( !pC->pData ) goto no_mem;
|
|
memcpy(pC->pData, pTos->z, pC->nData);
|
|
pC->pData[pC->nData] = 0;
|
|
pC->pData[pC->nData+1] = 0;
|
|
}
|
|
pC->nullRow = 0;
|
|
}else{
|
|
rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
|
|
}
|
|
pC->recnoIsValid = 0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheValid = 0;
|
|
}
|
|
popStack(&pTos, 2);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Delete P1 P2 *
|
|
**
|
|
** Delete the record at which the P1 cursor is currently pointing.
|
|
**
|
|
** The cursor will be left pointing at either the next or the previous
|
|
** record in the table. If it is left pointing at the next record, then
|
|
** the next Next instruction will be a no-op. Hence it is OK to delete
|
|
** a record from within an Next loop.
|
|
**
|
|
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
|
|
** incremented (otherwise not).
|
|
**
|
|
** If P1 is a pseudo-table, then this instruction is a no-op.
|
|
*/
|
|
case OP_Delete: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
if( pC->pCursor!=0 ){
|
|
sqlite3VdbeCursorMoveto(pC);
|
|
rc = sqlite3BtreeDelete(pC->pCursor);
|
|
pC->nextRowidValid = 0;
|
|
pC->cacheValid = 0;
|
|
}
|
|
if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ResetCount P1 * *
|
|
**
|
|
** This opcode resets the VMs internal change counter to 0. If P1 is true,
|
|
** then the value of the change counter is copied to the database handle
|
|
** change counter (returned by subsequent calls to sqlite3_changes())
|
|
** before it is reset. This is used by trigger programs.
|
|
*/
|
|
case OP_ResetCount: {
|
|
if( pOp->p1 ){
|
|
sqlite3VdbeSetChanges(db, p->nChange);
|
|
}
|
|
p->nChange = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: KeyAsData P1 P2 *
|
|
**
|
|
** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
|
|
** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls
|
|
** data off of the key rather than the data. This is used for
|
|
** processing compound selects.
|
|
*/
|
|
case OP_KeyAsData: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
pC->keyAsData = pOp->p2;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: RowData P1 * *
|
|
**
|
|
** Push onto the stack the complete row data for cursor P1.
|
|
** There is no interpretation of the data. It is just copied
|
|
** onto the stack exactly as it is found in the database file.
|
|
**
|
|
** If the cursor is not pointing to a valid row, a NULL is pushed
|
|
** onto the stack.
|
|
*/
|
|
/* Opcode: RowKey P1 * *
|
|
**
|
|
** Push onto the stack the complete row key for cursor P1.
|
|
** There is no interpretation of the key. It is just copied
|
|
** onto the stack exactly as it is found in the database file.
|
|
**
|
|
** If the cursor is not pointing to a valid row, a NULL is pushed
|
|
** onto the stack.
|
|
*/
|
|
case OP_RowKey:
|
|
case OP_RowData: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
u32 n;
|
|
|
|
pTos++;
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
if( pC->nullRow ){
|
|
pTos->flags = MEM_Null;
|
|
}else if( pC->pCursor!=0 ){
|
|
BtCursor *pCrsr = pC->pCursor;
|
|
sqlite3VdbeCursorMoveto(pC);
|
|
if( pC->nullRow ){
|
|
pTos->flags = MEM_Null;
|
|
break;
|
|
}else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
|
|
i64 n64;
|
|
assert( !pC->intKey );
|
|
sqlite3BtreeKeySize(pCrsr, &n64);
|
|
n = n64;
|
|
}else{
|
|
sqlite3BtreeDataSize(pCrsr, &n);
|
|
}
|
|
pTos->n = n;
|
|
if( n<=NBFS ){
|
|
pTos->flags = MEM_Blob | MEM_Short;
|
|
pTos->z = pTos->zShort;
|
|
}else{
|
|
char *z = sqliteMallocRaw( n );
|
|
if( z==0 ) goto no_mem;
|
|
pTos->flags = MEM_Blob | MEM_Dyn;
|
|
pTos->xDel = 0;
|
|
pTos->z = z;
|
|
}
|
|
if( pC->keyAsData || pOp->opcode==OP_RowKey ){
|
|
sqlite3BtreeKey(pCrsr, 0, n, pTos->z);
|
|
}else{
|
|
sqlite3BtreeData(pCrsr, 0, n, pTos->z);
|
|
}
|
|
}else if( pC->pseudoTable ){
|
|
pTos->n = pC->nData;
|
|
pTos->z = pC->pData;
|
|
pTos->flags = MEM_Blob|MEM_Ephem;
|
|
}else{
|
|
pTos->flags = MEM_Null;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Recno P1 * *
|
|
**
|
|
** Push onto the stack an integer which is the first 4 bytes of the
|
|
** the key to the current entry in a sequential scan of the database
|
|
** file P1. The sequential scan should have been started using the
|
|
** Next opcode.
|
|
*/
|
|
case OP_Recno: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
i64 v;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
sqlite3VdbeCursorMoveto(pC);
|
|
pTos++;
|
|
if( pC->recnoIsValid ){
|
|
v = pC->lastRecno;
|
|
}else if( pC->pseudoTable ){
|
|
v = keyToInt(pC->iKey);
|
|
}else if( pC->nullRow || pC->pCursor==0 ){
|
|
pTos->flags = MEM_Null;
|
|
break;
|
|
}else{
|
|
assert( pC->pCursor!=0 );
|
|
sqlite3BtreeKeySize(pC->pCursor, &v);
|
|
v = keyToInt(v);
|
|
}
|
|
pTos->i = v;
|
|
pTos->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: FullKey P1 * *
|
|
**
|
|
** Extract the complete key from the record that cursor P1 is currently
|
|
** pointing to and push the key onto the stack as a string.
|
|
**
|
|
** Compare this opcode to Recno. The Recno opcode extracts the first
|
|
** 4 bytes of the key and pushes those bytes onto the stack as an
|
|
** integer. This instruction pushes the entire key as a string.
|
|
**
|
|
** This opcode may not be used on a pseudo-table.
|
|
*/
|
|
case OP_FullKey: {
|
|
int i = pOp->p1;
|
|
BtCursor *pCrsr;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
assert( p->apCsr[i]->keyAsData );
|
|
assert( !p->apCsr[i]->pseudoTable );
|
|
pTos++;
|
|
pTos->flags = MEM_Null;
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
i64 amt;
|
|
char *z;
|
|
|
|
sqlite3VdbeCursorMoveto(pC);
|
|
assert( pC->intKey==0 );
|
|
sqlite3BtreeKeySize(pCrsr, &amt);
|
|
if( amt<=0 ){
|
|
rc = SQLITE_CORRUPT;
|
|
goto abort_due_to_error;
|
|
}
|
|
if( amt>NBFS ){
|
|
z = sqliteMallocRaw( amt );
|
|
if( z==0 ) goto no_mem;
|
|
pTos->flags = MEM_Blob | MEM_Dyn;
|
|
pTos->xDel = 0;
|
|
}else{
|
|
z = pTos->zShort;
|
|
pTos->flags = MEM_Blob | MEM_Short;
|
|
}
|
|
sqlite3BtreeKey(pCrsr, 0, amt, z);
|
|
pTos->z = z;
|
|
pTos->n = amt;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NullRow P1 * *
|
|
**
|
|
** Move the cursor P1 to a null row. Any OP_Column operations
|
|
** that occur while the cursor is on the null row will always push
|
|
** a NULL onto the stack.
|
|
*/
|
|
case OP_NullRow: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
pC->nullRow = 1;
|
|
pC->recnoIsValid = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Last P1 P2 *
|
|
**
|
|
** The next use of the Recno or Column or Next instruction for P1
|
|
** will refer to the last entry in the database table or index.
|
|
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
** If P2 is 0 or if the table or index is not empty, fall through
|
|
** to the following instruction.
|
|
*/
|
|
case OP_Last: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
if( (pCrsr = pC->pCursor)!=0 ){
|
|
int res;
|
|
rc = sqlite3BtreeLast(pCrsr, &res);
|
|
pC->nullRow = res;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheValid = 0;
|
|
if( res && pOp->p2>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}else{
|
|
pC->nullRow = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Rewind P1 P2 *
|
|
**
|
|
** The next use of the Recno or Column or Next instruction for P1
|
|
** will refer to the first entry in the database table or index.
|
|
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
** If P2 is 0 or if the table or index is not empty, fall through
|
|
** to the following instruction.
|
|
*/
|
|
case OP_Rewind: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
int res;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
if( (pCrsr = pC->pCursor)!=0 ){
|
|
rc = sqlite3BtreeFirst(pCrsr, &res);
|
|
pC->atFirst = res==0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheValid = 0;
|
|
}else{
|
|
res = 1;
|
|
}
|
|
pC->nullRow = res;
|
|
if( res && pOp->p2>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Next P1 P2 *
|
|
**
|
|
** Advance cursor P1 so that it points to the next key/data pair in its
|
|
** table or index. If there are no more key/value pairs then fall through
|
|
** to the following instruction. But if the cursor advance was successful,
|
|
** jump immediately to P2.
|
|
**
|
|
** See also: Prev
|
|
*/
|
|
/* Opcode: Prev P1 P2 *
|
|
**
|
|
** Back up cursor P1 so that it points to the previous key/data pair in its
|
|
** table or index. If there is no previous key/value pairs then fall through
|
|
** to the following instruction. But if the cursor backup was successful,
|
|
** jump immediately to P2.
|
|
*/
|
|
case OP_Prev:
|
|
case OP_Next: {
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
|
|
CHECK_FOR_INTERRUPT;
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
if( (pCrsr = pC->pCursor)!=0 ){
|
|
int res;
|
|
if( pC->nullRow ){
|
|
res = 1;
|
|
}else{
|
|
assert( pC->deferredMoveto==0 );
|
|
rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
|
|
sqlite3BtreePrevious(pCrsr, &res);
|
|
pC->nullRow = res;
|
|
pC->cacheValid = 0;
|
|
}
|
|
if( res==0 ){
|
|
pc = pOp->p2 - 1;
|
|
sqlite3_search_count++;
|
|
}
|
|
}else{
|
|
pC->nullRow = 1;
|
|
}
|
|
pC->recnoIsValid = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxPut P1 P2 P3
|
|
**
|
|
** The top of the stack holds a SQL index key made using the
|
|
** MakeIdxKey instruction. This opcode writes that key into the
|
|
** index P1. Data for the entry is nil.
|
|
**
|
|
** If P2==1, then the key must be unique. If the key is not unique,
|
|
** the program aborts with a SQLITE_CONSTRAINT error and the database
|
|
** is rolled back. If P3 is not null, then it becomes part of the
|
|
** error message returned with the SQLITE_CONSTRAINT.
|
|
*/
|
|
case OP_IdxPut: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
assert( pTos>=p->aStack );
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
assert( pTos->flags & MEM_Blob );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
int nKey = pTos->n;
|
|
const char *zKey = pTos->z;
|
|
if( pOp->p2 ){
|
|
int res;
|
|
int len;
|
|
|
|
/* 'len' is the length of the key minus the rowid at the end */
|
|
len = nKey - sqlite3VdbeIdxRowidLen(nKey, zKey);
|
|
|
|
rc = sqlite3BtreeMoveto(pCrsr, zKey, len, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
while( res!=0 && !sqlite3BtreeEof(pCrsr) ){
|
|
int c;
|
|
if( sqlite3VdbeIdxKeyCompare(pC, len, zKey, &c)==SQLITE_OK && c==0 ){
|
|
rc = SQLITE_CONSTRAINT;
|
|
if( pOp->p3 && pOp->p3[0] ){
|
|
sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
|
|
}
|
|
goto abort_due_to_error;
|
|
}
|
|
if( res<0 ){
|
|
sqlite3BtreeNext(pCrsr, &res);
|
|
res = +1;
|
|
}else{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
assert( pC->intKey==0 );
|
|
rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0);
|
|
assert( pC->deferredMoveto==0 );
|
|
pC->cacheValid = 0;
|
|
}
|
|
Release(pTos);
|
|
pTos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxDelete P1 * *
|
|
**
|
|
** The top of the stack is an index key built using the MakeIdxKey opcode.
|
|
** This opcode removes that entry from the index.
|
|
*/
|
|
case OP_IdxDelete: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
assert( pTos>=p->aStack );
|
|
assert( pTos->flags & MEM_Blob );
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
int rx, res;
|
|
rx = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
|
|
if( rx==SQLITE_OK && res==0 ){
|
|
rc = sqlite3BtreeDelete(pCrsr);
|
|
}
|
|
assert( pC->deferredMoveto==0 );
|
|
pC->cacheValid = 0;
|
|
}
|
|
Release(pTos);
|
|
pTos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxRecno P1 * *
|
|
**
|
|
** Push onto the stack an integer which is the varint located at the
|
|
** end of the index key pointed to by cursor P1. These integer should be
|
|
** the record number of the table entry to which this index entry points.
|
|
**
|
|
** See also: Recno, MakeIdxKey.
|
|
*/
|
|
case OP_IdxRecno: {
|
|
int i = pOp->p1;
|
|
BtCursor *pCrsr;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
pTos++;
|
|
pTos->flags = MEM_Null;
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
i64 rowid;
|
|
|
|
assert( pC->deferredMoveto==0 );
|
|
assert( pC->intKey==0 );
|
|
if( pC->nullRow ){
|
|
pTos->flags = MEM_Null;
|
|
}else{
|
|
rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
pTos->flags = MEM_Int;
|
|
pTos->i = rowid;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxGT P1 P2 *
|
|
**
|
|
** The top of the stack is an index entry that omits the ROWID. Compare
|
|
** the top of stack against the index that P1 is currently pointing to.
|
|
** Ignore the ROWID on the P1 index.
|
|
**
|
|
** The top of the stack might have fewer columns that P1.
|
|
**
|
|
** If the P1 index entry is greater than the top of the stack
|
|
** then jump to P2. Otherwise fall through to the next instruction.
|
|
** In either case, the stack is popped once.
|
|
*/
|
|
/* Opcode: IdxGE P1 P2 P3
|
|
**
|
|
** The top of the stack is an index entry that omits the ROWID. Compare
|
|
** the top of stack against the index that P1 is currently pointing to.
|
|
** Ignore the ROWID on the P1 index.
|
|
**
|
|
** If the P1 index entry is greater than or equal to the top of the stack
|
|
** then jump to P2. Otherwise fall through to the next instruction.
|
|
** In either case, the stack is popped once.
|
|
**
|
|
** If P3 is the "+" string (or any other non-NULL string) then the
|
|
** index taken from the top of the stack is temporarily increased by
|
|
** an epsilon prior to the comparison. This make the opcode work
|
|
** like IdxGT except that if the key from the stack is a prefix of
|
|
** the key in the cursor, the result is false whereas it would be
|
|
** true with IdxGT.
|
|
*/
|
|
/* Opcode: IdxLT P1 P2 P3
|
|
**
|
|
** The top of the stack is an index entry that omits the ROWID. Compare
|
|
** the top of stack against the index that P1 is currently pointing to.
|
|
** Ignore the ROWID on the P1 index.
|
|
**
|
|
** If the P1 index entry is less than the top of the stack
|
|
** then jump to P2. Otherwise fall through to the next instruction.
|
|
** In either case, the stack is popped once.
|
|
**
|
|
** If P3 is the "+" string (or any other non-NULL string) then the
|
|
** index taken from the top of the stack is temporarily increased by
|
|
** an epsilon prior to the comparison. This makes the opcode work
|
|
** like IdxLE.
|
|
*/
|
|
case OP_IdxLT:
|
|
case OP_IdxGT:
|
|
case OP_IdxGE: {
|
|
int i= pOp->p1;
|
|
BtCursor *pCrsr;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
assert( pTos>=p->aStack );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
int res, rc;
|
|
|
|
assert( pTos->flags & MEM_Blob ); /* Created using OP_Make*Key */
|
|
Stringify(pTos, db->enc);
|
|
assert( pC->deferredMoveto==0 );
|
|
*pC->pIncrKey = pOp->p3!=0;
|
|
assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
|
|
rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, pTos->z, &res);
|
|
*pC->pIncrKey = 0;
|
|
if( rc!=SQLITE_OK ){
|
|
break;
|
|
}
|
|
if( pOp->opcode==OP_IdxLT ){
|
|
res = -res;
|
|
}else if( pOp->opcode==OP_IdxGE ){
|
|
res++;
|
|
}
|
|
if( res>0 ){
|
|
pc = pOp->p2 - 1 ;
|
|
}
|
|
}
|
|
Release(pTos);
|
|
pTos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxIsNull P1 P2 *
|
|
**
|
|
** The top of the stack contains an index entry such as might be generated
|
|
** by the MakeIdxKey opcode. This routine looks at the first P1 fields of
|
|
** that key. If any of the first P1 fields are NULL, then a jump is made
|
|
** to address P2. Otherwise we fall straight through.
|
|
**
|
|
** The index entry is always popped from the stack.
|
|
*/
|
|
case OP_IdxIsNull: {
|
|
int i = pOp->p1;
|
|
int k, n;
|
|
const char *z;
|
|
u32 serial_type;
|
|
|
|
assert( pTos>=p->aStack );
|
|
assert( pTos->flags & MEM_Blob );
|
|
z = pTos->z;
|
|
n = pTos->n;
|
|
k = sqlite3GetVarint32(z, &serial_type);
|
|
for(; k<n && i>0; i--){
|
|
k += sqlite3GetVarint32(&z[k], &serial_type);
|
|
if( serial_type==0 ){ /* Serial type 0 is a NULL */
|
|
pc = pOp->p2-1;
|
|
break;
|
|
}
|
|
}
|
|
Release(pTos);
|
|
pTos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Destroy P1 P2 *
|
|
**
|
|
** Delete an entire database table or index whose root page in the database
|
|
** file is given by P1.
|
|
**
|
|
** The table being destroyed is in the main database file if P2==0. If
|
|
** P2==1 then the table to be clear is in the auxiliary database file
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
**
|
|
** See also: Clear
|
|
*/
|
|
case OP_Destroy: {
|
|
rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Clear P1 P2 *
|
|
**
|
|
** Delete all contents of the database table or index whose root page
|
|
** in the database file is given by P1. But, unlike Destroy, do not
|
|
** remove the table or index from the database file.
|
|
**
|
|
** The table being clear is in the main database file if P2==0. If
|
|
** P2==1 then the table to be clear is in the auxiliary database file
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
**
|
|
** See also: Destroy
|
|
*/
|
|
case OP_Clear: {
|
|
rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: CreateTable P1 * *
|
|
**
|
|
** Allocate a new table in the main database file if P2==0 or in the
|
|
** auxiliary database file if P2==1. Push the page number
|
|
** for the root page of the new table onto the stack.
|
|
**
|
|
** The difference between a table and an index is this: A table must
|
|
** have a 4-byte integer key and can have arbitrary data. An index
|
|
** has an arbitrary key but no data.
|
|
**
|
|
** See also: CreateIndex
|
|
*/
|
|
/* Opcode: CreateIndex P1 * *
|
|
**
|
|
** Allocate a new index in the main database file if P2==0 or in the
|
|
** auxiliary database file if P2==1. Push the page number of the
|
|
** root page of the new index onto the stack.
|
|
**
|
|
** See documentation on OP_CreateTable for additional information.
|
|
*/
|
|
case OP_CreateIndex:
|
|
case OP_CreateTable: {
|
|
int pgno;
|
|
int flags;
|
|
Db *pDb;
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
pDb = &db->aDb[pOp->p1];
|
|
assert( pDb->pBt!=0 );
|
|
if( pOp->opcode==OP_CreateTable ){
|
|
/* flags = BTREE_INTKEY; */
|
|
flags = BTREE_LEAFDATA|BTREE_INTKEY;
|
|
}else{
|
|
flags = BTREE_ZERODATA;
|
|
}
|
|
rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
|
|
pTos++;
|
|
if( rc==SQLITE_OK ){
|
|
pTos->i = pgno;
|
|
pTos->flags = MEM_Int;
|
|
}else{
|
|
pTos->flags = MEM_Null;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ParseSchema P1 * P3
|
|
**
|
|
** Read and parse all entries from the SQLITE_MASTER table of database P1
|
|
** that match the WHERE clause P3.
|
|
**
|
|
** This opcode invokes the parser to create a new virtual machine,
|
|
** then runs the new virtual machine. It is thus a reentrant opcode.
|
|
*/
|
|
case OP_ParseSchema: {
|
|
char *zSql;
|
|
int iDb = pOp->p1;
|
|
const char *zMaster;
|
|
InitData initData;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
if( !DbHasProperty(db, iDb, DB_SchemaLoaded) ) break;
|
|
zMaster = iDb==1 ? TEMP_MASTER_NAME : MASTER_NAME;
|
|
initData.db = db;
|
|
initData.pzErrMsg = &p->zErrMsg;
|
|
zSql = sqlite3MPrintf(
|
|
"SELECT name, rootpage, sql, %d FROM '%q'.%s WHERE %s",
|
|
pOp->p1, db->aDb[iDb].zName, zMaster, pOp->p3);
|
|
if( zSql==0 ) goto no_mem;
|
|
sqlite3SafetyOff(db);
|
|
assert( db->init.busy==0 );
|
|
db->init.busy = 1;
|
|
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
|
db->init.busy = 0;
|
|
sqlite3SafetyOn(db);
|
|
sqliteFree(zSql);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: DropTable P1 * P3
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the table named P3 in database P1. This is called after a table
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropTable: {
|
|
sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: DropIndex P1 * P3
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the index named P3 in database P1. This is called after an index
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropIndex: {
|
|
sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: DropTrigger P1 * P3
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the trigger named P3 in database P1. This is called after a trigger
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropTrigger: {
|
|
sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
|
|
break;
|
|
}
|
|
|
|
|
|
/* Opcode: IntegrityCk * P2 *
|
|
**
|
|
** Do an analysis of the currently open database. Push onto the
|
|
** stack the text of an error message describing any problems.
|
|
** If there are no errors, push a "ok" onto the stack.
|
|
**
|
|
** The root page numbers of all tables in the database are integer
|
|
** values on the stack. This opcode pulls as many integers as it
|
|
** can off of the stack and uses those numbers as the root pages.
|
|
**
|
|
** If P2 is not zero, the check is done on the auxiliary database
|
|
** file, not the main database file.
|
|
**
|
|
** This opcode is used for testing purposes only.
|
|
*/
|
|
case OP_IntegrityCk: {
|
|
int nRoot;
|
|
int *aRoot;
|
|
int j;
|
|
char *z;
|
|
|
|
for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){
|
|
if( (pTos[-nRoot].flags & MEM_Int)==0 ) break;
|
|
}
|
|
assert( nRoot>0 );
|
|
aRoot = sqliteMallocRaw( sizeof(int*)*(nRoot+1) );
|
|
if( aRoot==0 ) goto no_mem;
|
|
for(j=0; j<nRoot; j++){
|
|
Mem *pMem = &pTos[-j];
|
|
aRoot[j] = pMem->i;
|
|
}
|
|
aRoot[j] = 0;
|
|
popStack(&pTos, nRoot);
|
|
pTos++;
|
|
z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
|
|
if( z==0 || z[0]==0 ){
|
|
if( z ) sqliteFree(z);
|
|
pTos->z = "ok";
|
|
pTos->n = 2;
|
|
pTos->flags = MEM_Str | MEM_Static | MEM_Term;
|
|
}else{
|
|
pTos->z = z;
|
|
pTos->n = strlen(z);
|
|
pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
|
|
pTos->xDel = 0;
|
|
}
|
|
pTos->enc = SQLITE_UTF8;
|
|
sqlite3VdbeChangeEncoding(pTos, db->enc);
|
|
sqliteFree(aRoot);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ListWrite * * *
|
|
**
|
|
** Write the integer on the top of the stack
|
|
** into the temporary storage list.
|
|
*/
|
|
case OP_ListWrite: {
|
|
Keylist *pKeylist;
|
|
assert( pTos>=p->aStack );
|
|
pKeylist = p->pList;
|
|
if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
|
|
pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
|
|
if( pKeylist==0 ) goto no_mem;
|
|
pKeylist->nKey = 1000;
|
|
pKeylist->nRead = 0;
|
|
pKeylist->nUsed = 0;
|
|
pKeylist->pNext = p->pList;
|
|
p->pList = pKeylist;
|
|
}
|
|
Integerify(pTos);
|
|
pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
|
|
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
pTos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ListRewind * * *
|
|
**
|
|
** Rewind the temporary buffer back to the beginning.
|
|
*/
|
|
case OP_ListRewind: {
|
|
/* What this opcode codes, really, is reverse the order of the
|
|
** linked list of Keylist structures so that they are read out
|
|
** in the same order that they were read in. */
|
|
Keylist *pRev, *pTop;
|
|
pRev = 0;
|
|
while( p->pList ){
|
|
pTop = p->pList;
|
|
p->pList = pTop->pNext;
|
|
pTop->pNext = pRev;
|
|
pRev = pTop;
|
|
}
|
|
p->pList = pRev;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ListRead * P2 *
|
|
**
|
|
** Attempt to read an integer from the temporary storage buffer
|
|
** and push it onto the stack. If the storage buffer is empty,
|
|
** push nothing but instead jump to P2.
|
|
*/
|
|
case OP_ListRead: {
|
|
Keylist *pKeylist;
|
|
CHECK_FOR_INTERRUPT;
|
|
pKeylist = p->pList;
|
|
if( pKeylist!=0 ){
|
|
assert( pKeylist->nRead>=0 );
|
|
assert( pKeylist->nRead<pKeylist->nUsed );
|
|
assert( pKeylist->nRead<pKeylist->nKey );
|
|
pTos++;
|
|
pTos->i = pKeylist->aKey[pKeylist->nRead++];
|
|
pTos->flags = MEM_Int;
|
|
if( pKeylist->nRead>=pKeylist->nUsed ){
|
|
p->pList = pKeylist->pNext;
|
|
sqliteFree(pKeylist);
|
|
}
|
|
}else{
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ListReset * * *
|
|
**
|
|
** Reset the temporary storage buffer so that it holds nothing.
|
|
*/
|
|
case OP_ListReset: {
|
|
if( p->pList ){
|
|
sqlite3VdbeKeylistFree(p->pList);
|
|
p->pList = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ContextPush * * *
|
|
**
|
|
** Save the current Vdbe context such that it can be restored by a ContextPop
|
|
** opcode. The context stores the last insert row id, the last statement change
|
|
** count, and the current statement change count.
|
|
*/
|
|
case OP_ContextPush: {
|
|
int i = p->contextStackTop++;
|
|
Context *pContext;
|
|
|
|
assert( i>=0 );
|
|
/* FIX ME: This should be allocated as part of the vdbe at compile-time */
|
|
if( i>=p->contextStackDepth ){
|
|
p->contextStackDepth = i+1;
|
|
p->contextStack = sqliteRealloc(p->contextStack, sizeof(Context)*(i+1));
|
|
if( p->contextStack==0 ) goto no_mem;
|
|
}
|
|
pContext = &p->contextStack[i];
|
|
pContext->lastRowid = db->lastRowid;
|
|
pContext->nChange = p->nChange;
|
|
pContext->pList = p->pList;
|
|
p->pList = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ContextPop * * *
|
|
**
|
|
** Restore the Vdbe context to the state it was in when contextPush was last
|
|
** executed. The context stores the last insert row id, the last statement
|
|
** change count, and the current statement change count.
|
|
*/
|
|
case OP_ContextPop: {
|
|
Context *pContext = &p->contextStack[--p->contextStackTop];
|
|
assert( p->contextStackTop>=0 );
|
|
db->lastRowid = pContext->lastRowid;
|
|
p->nChange = pContext->nChange;
|
|
sqlite3VdbeKeylistFree(p->pList);
|
|
p->pList = pContext->pList;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SortPut * * *
|
|
**
|
|
** The TOS is the key and the NOS is the data. Pop both from the stack
|
|
** and put them on the sorter. The key and data should have been
|
|
** made using SortMakeKey and SortMakeRec, respectively.
|
|
*/
|
|
case OP_SortPut: {
|
|
Mem *pNos = &pTos[-1];
|
|
Sorter *pSorter;
|
|
assert( pNos>=p->aStack );
|
|
if( Dynamicify(pTos, db->enc) ) goto no_mem;
|
|
pSorter = sqliteMallocRaw( sizeof(Sorter) );
|
|
if( pSorter==0 ) goto no_mem;
|
|
pSorter->pNext = p->pSort;
|
|
p->pSort = pSorter;
|
|
assert( pTos->flags & MEM_Dyn );
|
|
pSorter->nKey = pTos->n;
|
|
pSorter->zKey = pTos->z;
|
|
pSorter->data.flags = MEM_Null;
|
|
rc = sqlite3VdbeMemMove(&pSorter->data, pNos);
|
|
pTos -= 2;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Sort * * P3
|
|
**
|
|
** Sort all elements on the sorter. The algorithm is a
|
|
** mergesort. The P3 argument is a pointer to a KeyInfo structure
|
|
** that describes the keys to be sorted.
|
|
*/
|
|
case OP_Sort: {
|
|
int i;
|
|
KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
|
|
Sorter *pElem;
|
|
Sorter *apSorter[NSORT];
|
|
pKeyInfo->enc = p->db->enc;
|
|
for(i=0; i<NSORT; i++){
|
|
apSorter[i] = 0;
|
|
}
|
|
while( p->pSort ){
|
|
pElem = p->pSort;
|
|
p->pSort = pElem->pNext;
|
|
pElem->pNext = 0;
|
|
for(i=0; i<NSORT-1; i++){
|
|
if( apSorter[i]==0 ){
|
|
apSorter[i] = pElem;
|
|
break;
|
|
}else{
|
|
pElem = Merge(apSorter[i], pElem, pKeyInfo);
|
|
apSorter[i] = 0;
|
|
}
|
|
}
|
|
if( i>=NSORT-1 ){
|
|
apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem, pKeyInfo);
|
|
}
|
|
}
|
|
pElem = 0;
|
|
for(i=0; i<NSORT; i++){
|
|
pElem = Merge(apSorter[i], pElem, pKeyInfo);
|
|
}
|
|
p->pSort = pElem;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SortNext * P2 *
|
|
**
|
|
** Push the data for the topmost element in the sorter onto the
|
|
** stack, then remove the element from the sorter. If the sorter
|
|
** is empty, push nothing on the stack and instead jump immediately
|
|
** to instruction P2.
|
|
*/
|
|
case OP_SortNext: {
|
|
Sorter *pSorter = p->pSort;
|
|
CHECK_FOR_INTERRUPT;
|
|
if( pSorter!=0 ){
|
|
p->pSort = pSorter->pNext;
|
|
pTos++;
|
|
pTos->flags = MEM_Null;
|
|
rc = sqlite3VdbeMemMove(pTos, &pSorter->data);
|
|
sqliteFree(pSorter->zKey);
|
|
sqliteFree(pSorter);
|
|
}else{
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SortReset * * *
|
|
**
|
|
** Remove any elements that remain on the sorter.
|
|
*/
|
|
case OP_SortReset: {
|
|
sqlite3VdbeSorterReset(p);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MemStore P1 P2 *
|
|
**
|
|
** Write the top of the stack into memory location P1.
|
|
** P1 should be a small integer since space is allocated
|
|
** for all memory locations between 0 and P1 inclusive.
|
|
**
|
|
** After the data is stored in the memory location, the
|
|
** stack is popped once if P2 is 1. If P2 is zero, then
|
|
** the original data remains on the stack.
|
|
*/
|
|
case OP_MemStore: {
|
|
assert( pTos>=p->aStack );
|
|
assert( pOp->p1>=0 && pOp->p1<p->nMem );
|
|
rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
|
|
pTos--;
|
|
|
|
/* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
|
|
** restore the top of the stack to its original value.
|
|
*/
|
|
if( pOp->p2 ){
|
|
break;
|
|
}
|
|
}
|
|
/* Opcode: MemLoad P1 * *
|
|
**
|
|
** Push a copy of the value in memory location P1 onto the stack.
|
|
**
|
|
** If the value is a string, then the value pushed is a pointer to
|
|
** the string that is stored in the memory location. If the memory
|
|
** location is subsequently changed (using OP_MemStore) then the
|
|
** value pushed onto the stack will change too.
|
|
*/
|
|
case OP_MemLoad: {
|
|
int i = pOp->p1;
|
|
assert( i>=0 && i<p->nMem );
|
|
pTos++;
|
|
sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MemIncr P1 P2 *
|
|
**
|
|
** Increment the integer valued memory cell P1 by 1. If P2 is not zero
|
|
** and the result after the increment is greater than zero, then jump
|
|
** to P2.
|
|
**
|
|
** This instruction throws an error if the memory cell is not initially
|
|
** an integer.
|
|
*/
|
|
case OP_MemIncr: {
|
|
int i = pOp->p1;
|
|
Mem *pMem;
|
|
assert( i>=0 && i<p->nMem );
|
|
pMem = &p->aMem[i];
|
|
assert( pMem->flags==MEM_Int );
|
|
pMem->i++;
|
|
if( pOp->p2>0 && pMem->i>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggReset P1 P2 P3
|
|
**
|
|
** Reset the aggregator so that it no longer contains any data.
|
|
** Future aggregator elements will contain P2 values each and be sorted
|
|
** using the KeyInfo structure pointed to by P3.
|
|
**
|
|
** If P1 is non-zero, then only a single aggregator row is available (i.e.
|
|
** there is no GROUP BY expression). In this case it is illegal to invoke
|
|
** OP_AggFocus.
|
|
*/
|
|
case OP_AggReset: {
|
|
assert( !pOp->p3 || pOp->p3type==P3_KEYINFO );
|
|
if( pOp->p1 ){
|
|
rc = sqlite3VdbeAggReset(0, &p->agg, (KeyInfo *)pOp->p3);
|
|
p->agg.nMem = pOp->p2; /* Agg.nMem is used by AggInsert() */
|
|
rc = AggInsert(&p->agg, 0, 0);
|
|
}else{
|
|
rc = sqlite3VdbeAggReset(db, &p->agg, (KeyInfo *)pOp->p3);
|
|
p->agg.nMem = pOp->p2;
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
|
|
if( p->agg.apFunc==0 ) goto no_mem;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggInit * P2 P3
|
|
**
|
|
** Initialize the function parameters for an aggregate function.
|
|
** The aggregate will operate out of aggregate column P2.
|
|
** P3 is a pointer to the FuncDef structure for the function.
|
|
*/
|
|
case OP_AggInit: {
|
|
int i = pOp->p2;
|
|
assert( i>=0 && i<p->agg.nMem );
|
|
p->agg.apFunc[i] = (FuncDef*)pOp->p3;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggFunc * P2 P3
|
|
**
|
|
** Execute the step function for an aggregate. The
|
|
** function has P2 arguments. P3 is a pointer to the FuncDef
|
|
** structure that specifies the function.
|
|
**
|
|
** The top of the stack must be an integer which is the index of
|
|
** the aggregate column that corresponds to this aggregate function.
|
|
** Ideally, this index would be another parameter, but there are
|
|
** no free parameters left. The integer is popped from the stack.
|
|
*/
|
|
case OP_AggFunc: {
|
|
int n = pOp->p2;
|
|
int i;
|
|
Mem *pMem, *pRec;
|
|
sqlite3_context ctx;
|
|
sqlite3_value **apVal;
|
|
|
|
assert( n>=0 );
|
|
assert( pTos->flags==MEM_Int );
|
|
pRec = &pTos[-n];
|
|
assert( pRec>=p->aStack );
|
|
|
|
apVal = p->apArg;
|
|
assert( apVal || n==0 );
|
|
|
|
for(i=0; i<n; i++, pRec++){
|
|
apVal[i] = pRec;
|
|
storeTypeInfo(pRec, db->enc);
|
|
}
|
|
i = pTos->i;
|
|
assert( i>=0 && i<p->agg.nMem );
|
|
ctx.pFunc = (FuncDef*)pOp->p3;
|
|
pMem = &p->agg.pCurrent->aMem[i];
|
|
ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */
|
|
ctx.pAgg = pMem->z;
|
|
ctx.cnt = ++pMem->i;
|
|
ctx.isError = 0;
|
|
ctx.isStep = 1;
|
|
ctx.pColl = 0;
|
|
if( ctx.pFunc->needCollSeq ){
|
|
assert( pOp>p->aOp );
|
|
assert( pOp[-1].p3type==P3_COLLSEQ );
|
|
assert( pOp[-1].opcode==OP_CollSeq );
|
|
ctx.pColl = (CollSeq *)pOp[-1].p3;
|
|
}
|
|
(ctx.pFunc->xStep)(&ctx, n, apVal);
|
|
pMem->z = ctx.pAgg;
|
|
pMem->flags = MEM_AggCtx;
|
|
popStack(&pTos, n+1);
|
|
if( ctx.isError ){
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggFocus * P2 *
|
|
**
|
|
** Pop the top of the stack and use that as an aggregator key. If
|
|
** an aggregator with that same key already exists, then make the
|
|
** aggregator the current aggregator and jump to P2. If no aggregator
|
|
** with the given key exists, create one and make it current but
|
|
** do not jump.
|
|
**
|
|
** The order of aggregator opcodes is important. The order is:
|
|
** AggReset AggFocus AggNext. In other words, you must execute
|
|
** AggReset first, then zero or more AggFocus operations, then
|
|
** zero or more AggNext operations. You must not execute an AggFocus
|
|
** in between an AggNext and an AggReset.
|
|
*/
|
|
case OP_AggFocus: {
|
|
char *zKey;
|
|
int nKey;
|
|
int res;
|
|
assert( pTos>=p->aStack );
|
|
Stringify(pTos, db->enc);
|
|
zKey = pTos->z;
|
|
nKey = pTos->n;
|
|
assert( p->agg.pBtree );
|
|
assert( p->agg.pCsr );
|
|
rc = sqlite3BtreeMoveto(p->agg.pCsr, zKey, nKey, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
if( res==0 ){
|
|
rc = sqlite3BtreeData(p->agg.pCsr, 0, sizeof(AggElem*),
|
|
(char *)&p->agg.pCurrent);
|
|
pc = pOp->p2 - 1;
|
|
}else{
|
|
rc = AggInsert(&p->agg, zKey, nKey);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
Release(pTos);
|
|
pTos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggSet * P2 *
|
|
**
|
|
** Move the top of the stack into the P2-th field of the current
|
|
** aggregate. String values are duplicated into new memory.
|
|
*/
|
|
case OP_AggSet: {
|
|
AggElem *pFocus;
|
|
int i = pOp->p2;
|
|
pFocus = p->agg.pCurrent;
|
|
assert( pTos>=p->aStack );
|
|
if( pFocus==0 ) goto no_mem;
|
|
assert( i>=0 && i<p->agg.nMem );
|
|
rc = sqlite3VdbeMemMove(&pFocus->aMem[i], pTos);
|
|
pTos--;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggGet * P2 *
|
|
**
|
|
** Push a new entry onto the stack which is a copy of the P2-th field
|
|
** of the current aggregate. Strings are not duplicated so
|
|
** string values will be ephemeral.
|
|
*/
|
|
case OP_AggGet: {
|
|
AggElem *pFocus;
|
|
int i = pOp->p2;
|
|
pFocus = p->agg.pCurrent;
|
|
if( pFocus==0 ) goto no_mem;
|
|
assert( i>=0 && i<p->agg.nMem );
|
|
pTos++;
|
|
sqlite3VdbeMemShallowCopy(pTos, &pFocus->aMem[i], MEM_Ephem);
|
|
if( pTos->flags&MEM_Str ){
|
|
sqlite3VdbeChangeEncoding(pTos, db->enc);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggNext * P2 *
|
|
**
|
|
** Make the next aggregate value the current aggregate. The prior
|
|
** aggregate is deleted. If all aggregate values have been consumed,
|
|
** jump to P2.
|
|
**
|
|
** The order of aggregator opcodes is important. The order is:
|
|
** AggReset AggFocus AggNext. In other words, you must execute
|
|
** AggReset first, then zero or more AggFocus operations, then
|
|
** zero or more AggNext operations. You must not execute an AggFocus
|
|
** in between an AggNext and an AggReset.
|
|
*/
|
|
case OP_AggNext: {
|
|
int res;
|
|
assert( rc==SQLITE_OK );
|
|
CHECK_FOR_INTERRUPT;
|
|
if( p->agg.searching==0 ){
|
|
p->agg.searching = 1;
|
|
if( p->agg.pCsr ){
|
|
rc = sqlite3BtreeFirst(p->agg.pCsr, &res);
|
|
}else{
|
|
res = 0;
|
|
}
|
|
}else{
|
|
if( p->agg.pCsr ){
|
|
rc = sqlite3BtreeNext(p->agg.pCsr, &res);
|
|
}else{
|
|
res = 1;
|
|
}
|
|
}
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
if( res!=0 ){
|
|
pc = pOp->p2 - 1;
|
|
}else{
|
|
int i;
|
|
sqlite3_context ctx;
|
|
Mem *aMem;
|
|
|
|
if( p->agg.pCsr ){
|
|
rc = sqlite3BtreeData(p->agg.pCsr, 0, sizeof(AggElem*),
|
|
(char *)&p->agg.pCurrent);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
}
|
|
aMem = p->agg.pCurrent->aMem;
|
|
for(i=0; i<p->agg.nMem; i++){
|
|
FuncDef *pFunc = p->agg.apFunc[i];
|
|
Mem *pMem = &aMem[i];
|
|
if( pFunc==0 || pFunc->xFinalize==0 ) continue;
|
|
ctx.s.flags = MEM_Null;
|
|
ctx.s.z = pMem->zShort;
|
|
ctx.pAgg = (void*)pMem->z;
|
|
ctx.cnt = pMem->i;
|
|
ctx.isStep = 0;
|
|
ctx.pFunc = pFunc;
|
|
pFunc->xFinalize(&ctx);
|
|
pMem->z = ctx.pAgg;
|
|
if( pMem->z && pMem->z!=pMem->zShort ){
|
|
sqliteFree( pMem->z );
|
|
}
|
|
*pMem = ctx.s;
|
|
if( pMem->flags & MEM_Short ){
|
|
pMem->z = pMem->zShort;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Vacuum * * *
|
|
**
|
|
** Vacuum the entire database. This opcode will cause other virtual
|
|
** machines to be created and run. It may not be called from within
|
|
** a transaction.
|
|
*/
|
|
case OP_Vacuum: {
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
rc = sqlite3RunVacuum(&p->zErrMsg, db);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
break;
|
|
}
|
|
|
|
/* An other opcode is illegal...
|
|
*/
|
|
default: {
|
|
sqlite3_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
|
|
sqlite3SetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
|
|
rc = SQLITE_INTERNAL;
|
|
break;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
** The cases of the switch statement above this line should all be indented
|
|
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
|
|
** readability. From this point on down, the normal indentation rules are
|
|
** restored.
|
|
*****************************************************************************/
|
|
}
|
|
|
|
#ifdef VDBE_PROFILE
|
|
{
|
|
long long elapse = hwtime() - start;
|
|
pOp->cycles += elapse;
|
|
pOp->cnt++;
|
|
#if 0
|
|
fprintf(stdout, "%10lld ", elapse);
|
|
sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* The following code adds nothing to the actual functionality
|
|
** of the program. It is only here for testing and debugging.
|
|
** On the other hand, it does burn CPU cycles every time through
|
|
** the evaluator loop. So we can leave it out when NDEBUG is defined.
|
|
*/
|
|
#ifndef NDEBUG
|
|
/* Sanity checking on the top element of the stack */
|
|
if( pTos>=p->aStack ){
|
|
sqlite3VdbeMemSanity(pTos, db->enc);
|
|
}
|
|
if( pc<-1 || pc>=p->nOp ){
|
|
sqlite3SetString(&p->zErrMsg, "jump destination out of range", (char*)0);
|
|
rc = SQLITE_INTERNAL;
|
|
}
|
|
if( p->trace && pTos>=p->aStack ){
|
|
int i;
|
|
fprintf(p->trace, "Stack:");
|
|
for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
|
|
if( pTos[i].flags & MEM_Null ){
|
|
fprintf(p->trace, " NULL");
|
|
}else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
|
|
fprintf(p->trace, " si:%lld", pTos[i].i);
|
|
}else if( pTos[i].flags & MEM_Int ){
|
|
fprintf(p->trace, " i:%lld", pTos[i].i);
|
|
}else if( pTos[i].flags & MEM_Real ){
|
|
fprintf(p->trace, " r:%g", pTos[i].r);
|
|
}else{
|
|
char zBuf[100];
|
|
sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf, 100);
|
|
fprintf(p->trace, " ");
|
|
fprintf(p->trace, "%s", zBuf);
|
|
}
|
|
}
|
|
if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
|
|
fprintf(p->trace,"\n");
|
|
}
|
|
#endif
|
|
} /* The end of the for(;;) loop the loops through opcodes */
|
|
|
|
/* If we reach this point, it means that execution is finished.
|
|
*/
|
|
vdbe_halt:
|
|
if( rc ){
|
|
p->rc = rc;
|
|
rc = SQLITE_ERROR;
|
|
}else{
|
|
rc = SQLITE_DONE;
|
|
}
|
|
sqlite3VdbeHalt(p);
|
|
p->pTos = pTos;
|
|
return rc;
|
|
|
|
/* Jump to here if a malloc() fails. It's hard to get a malloc()
|
|
** to fail on a modern VM computer, so this code is untested.
|
|
*/
|
|
no_mem:
|
|
sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
|
|
rc = SQLITE_NOMEM;
|
|
goto vdbe_halt;
|
|
|
|
/* Jump to here for an SQLITE_MISUSE error.
|
|
*/
|
|
abort_due_to_misuse:
|
|
rc = SQLITE_MISUSE;
|
|
/* Fall thru into abort_due_to_error */
|
|
|
|
/* Jump to here for any other kind of fatal error. The "rc" variable
|
|
** should hold the error number.
|
|
*/
|
|
abort_due_to_error:
|
|
if( p->zErrMsg==0 ){
|
|
if( sqlite3_malloc_failed ) rc = SQLITE_NOMEM;
|
|
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
|
|
}
|
|
goto vdbe_halt;
|
|
|
|
/* Jump to here if the sqlite3_interrupt() API sets the interrupt
|
|
** flag.
|
|
*/
|
|
abort_due_to_interrupt:
|
|
assert( db->flags & SQLITE_Interrupt );
|
|
db->flags &= ~SQLITE_Interrupt;
|
|
if( db->magic!=SQLITE_MAGIC_BUSY ){
|
|
rc = SQLITE_MISUSE;
|
|
}else{
|
|
rc = SQLITE_INTERRUPT;
|
|
}
|
|
p->rc = rc;
|
|
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
|
|
goto vdbe_halt;
|
|
}
|