You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdenetwork/kopete/protocols/yahoo/libkyahoo/libyahoo.c

533 lines
13 KiB

/*
* libyahoo2: libyahoo2.c
*
* Some code copyright (C) 2002, Philip S Tellis <philip . tellis AT gmx . net>
*
* Much of this code was taken and adapted from the yahoo module for
* gaim released under the GNU GPL. This code is also released under the
* GNU GPL.
*
* This code is derivitive of Gaim <http://gaim.sourceforge.net>
* copyright (C) 1998-1999, Mark Spencer <markster@marko.net>
* 1998-1999, Adam Fritzler <afritz@marko.net>
* 1998-2002, Rob Flynn <rob@marko.net>
* 2000-2002, Eric Warmenhoven <eric@warmenhoven.org>
* 2001-2002, Brian Macke <macke@strangelove.net>
* 2001, Anand Biligiri S <abiligiri@users.sf.net>
* 2001, Valdis Kletnieks
* 2002, Sean Egan <bj91704@binghamton.edu>
* 2002, Toby Gray <toby.gray@ntlworld.com>
*
* This library also uses code from other libraries, namely:
* Portions from libfaim copyright 1998, 1999 Adam Fritzler
* <afritz@auk.cx>
* Portions of Sylpheed copyright 2000-2002 Hiroyuki Yamamoto
* <hiro-y@kcn.ne.jp>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#if HAVE_CONFIG_H
# include <config.h>
#endif
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>
#include "libyahoo.h"
#include "yahoo_fn.h"
#include "md5.h"
#include "sha1.h"
extern char *yahoo_crypt(char *, char *);
void yahooBase64(unsigned char *out, const unsigned char *in, int inlen)
/* raw bytes in quasi-big-endian order to base 64 string (NUL-terminated) */
{
char base64digits[] = "ABCDEFGHIJKLMNOPTQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789._";
for (; inlen >= 3; inlen -= 3)
{
*out++ = base64digits[in[0] >> 2];
*out++ = base64digits[((in[0]<<4) & 0x30) | (in[1]>>4)];
*out++ = base64digits[((in[1]<<2) & 0x3c) | (in[2]>>6)];
*out++ = base64digits[in[2] & 0x3f];
in += 3;
}
if (inlen > 0)
{
unsigned char fragment;
*out++ = base64digits[in[0] >> 2];
fragment = (in[0] << 4) & 0x30;
if (inlen > 1)
fragment |= in[1] >> 4;
*out++ = base64digits[fragment];
*out++ = (inlen < 2) ? '-'
: base64digits[(in[1] << 2) & 0x3c];
*out++ = '-';
}
*out = '\0';
}
void authresp_0x0b(const char *seed, const char *sn, const char *password, char *resp_6, char *resp_96 )
{
md5_byte_t result[16];
md5_state_t ctx;
SHA1Context ctx1;
SHA1Context ctx2;
const char *alphabet1 = "FBZDWAGHrJTLMNOPpRSKUVEXYChImkwQ";
const char *alphabet2 = "F0E1D2C3B4A59687abcdefghijklmnop";
const char *challenge_lookup = "qzec2tb3um1olpar8whx4dfgijknsvy5";
const char *operand_lookup = "+|&%/*^-";
const char *delimit_lookup = ",;";
unsigned char *password_hash = malloc(25);
unsigned char *crypt_hash = malloc(25);
char *crypt_result = NULL;
unsigned char pass_hash_xor1[64];
unsigned char pass_hash_xor2[64];
unsigned char crypt_hash_xor1[64];
unsigned char crypt_hash_xor2[64];
char chal[7];
unsigned char digest1[20];
unsigned char digest2[20];
unsigned char magic_key_char[4];
const unsigned char *magic_ptr;
unsigned int magic[64];
unsigned int magic_work = 0;
/*unsigned int value = 0;*/
char comparison_src[20];
int x, i, j;
int depth = 0, table = 0;
int cnt = 0;
int magic_cnt = 0;
int magic_len;
/*int times = 0;*/
memset(pass_hash_xor1, 0, 64);
memset(pass_hash_xor2, 0, 64);
memset(crypt_hash_xor1, 0, 64);
memset(crypt_hash_xor2, 0, 64);
memset(digest1, 0, 20);
memset(digest2, 0, 20);
memset(magic, 0, 64);
memset(resp_6, 0, 100);
memset(resp_96, 0, 100);
memset(magic_key_char, 0, 4);
/*
* Magic: Phase 1. Generate what seems to be a 30
* byte value (could change if base64
* ends up differently? I don't remember and I'm
* tired, so use a 64 byte buffer.
*/
magic_ptr = (unsigned char *)seed;
while (*magic_ptr != (int)NULL) {
const char *loc;
/* Ignore tqparentheses. */
if (*magic_ptr == '(' || *magic_ptr == ')') {
magic_ptr++;
continue;
}
/* Characters and digits verify against
the challenge lookup.
*/
if (isalpha(*magic_ptr) || isdigit(*magic_ptr)) {
loc = strchr(challenge_lookup, *magic_ptr);
if (!loc) {
/* This isn't good */
continue;
}
/* Get offset into lookup table and lsh 3. */
magic_work = loc - challenge_lookup;
magic_work <<= 3;
magic_ptr++;
continue;
} else {
unsigned int local_store;
loc = strchr(operand_lookup, *magic_ptr);
if (!loc) {
/* Also not good. */
continue;
}
local_store = loc - operand_lookup;
/* Oops; how did this happen? */
if (magic_cnt >= 64)
break;
magic[magic_cnt++] = magic_work | local_store;
magic_ptr++;
continue;
}
}
magic_len = magic_cnt;
magic_cnt = 0;
/* Magic: Phase 2. Take generated magic value and
* sprinkle fairy dust on the values. */
for (magic_cnt = magic_len-2; magic_cnt >= 0; magic_cnt--) {
unsigned char byte1;
unsigned char byte2;
/* Bad. Abort.
*/
if (magic_cnt >= magic_len)
break;
byte1 = magic[magic_cnt];
byte2 = magic[magic_cnt+1];
byte1 *= 0xcd;
byte1 ^= byte2;
magic[magic_cnt+1] = byte1;
}
/* Magic: Phase 3. This computes 20 bytes. The first 4 bytes are used as our magic
* key (and may be changed later); the next 16 bytes are an MD5 sum of the magic key
* plus 3 bytes. The 3 bytes are found by looping, and they represent the offsets
* into particular functions we'll later call to potentially alter the magic key.
*
* %-)
*/
magic_cnt = 1;
x = 0;
do {
unsigned int bl = 0;
unsigned int cl = magic[magic_cnt++];
if (magic_cnt >= magic_len)
break;
if (cl > 0x7F) {
if (cl < 0xe0)
bl = cl = (cl & 0x1f) << 6;
else {
bl = magic[magic_cnt++];
cl = (cl & 0x0f) << 6;
bl = ((bl & 0x3f) + cl) << 6;
}
cl = magic[magic_cnt++];
bl = (cl & 0x3f) + bl;
} else
bl = cl;
comparison_src[x++] = (bl & 0xff00) >> 8;
comparison_src[x++] = bl & 0xff;
} while (x < 20);
/* Dump magic key into a char for SHA1 action. */
for(x = 0; x < 4; x++)
magic_key_char[x] = comparison_src[x];
/* Compute values for recursive function table! */
memcpy( chal, magic_key_char, 4 );
x = 1;
for( i = 0; i < 0xFFFF && x; i++ )
{
for( j = 0; j < 5 && x; j++ )
{
chal[4] = i;
chal[5] = i >> 8;
chal[6] = j;
md5_init( &ctx );
md5_append( &ctx, chal, 7 );
md5_finish( &ctx, result );
if( memcmp( comparison_src + 4, result, 16 ) == 0 )
{
depth = i;
table = j;
x = 0;
}
}
}
/* Transform magic_key_char using transform table */
x = magic_key_char[3] << 24 | magic_key_char[2] << 16
| magic_key_char[1] << 8 | magic_key_char[0];
x = yahoo_xfrm( table, depth, x );
x = yahoo_xfrm( table, depth, x );
magic_key_char[0] = x & 0xFF;
magic_key_char[1] = x >> 8 & 0xFF;
magic_key_char[2] = x >> 16 & 0xFF;
magic_key_char[3] = x >> 24 & 0xFF;
/* Get password and crypt hashes as per usual. */
md5_init(&ctx);
md5_append(&ctx, (md5_byte_t *)password, strlen(password));
md5_finish(&ctx, result);
yahooBase64(password_hash, result, 16);
md5_init(&ctx);
crypt_result = yahoo_crypt(password, "$1$_2S43d5f$");
md5_append(&ctx, (md5_byte_t *)crypt_result, strlen(crypt_result));
md5_finish(&ctx, result);
yahooBase64(crypt_hash, result, 16);
/* Our first authentication response is based off
* of the password hash. */
for (x = 0; x < (int)strlen((char *)password_hash); x++)
pass_hash_xor1[cnt++] = password_hash[x] ^ 0x36;
if (cnt < 64)
memset(&(pass_hash_xor1[cnt]), 0x36, 64-cnt);
cnt = 0;
for (x = 0; x < (int)strlen((char *)password_hash); x++)
pass_hash_xor2[cnt++] = password_hash[x] ^ 0x5c;
if (cnt < 64)
memset(&(pass_hash_xor2[cnt]), 0x5c, 64-cnt);
SHA1Init(&ctx1);
SHA1Init(&ctx2);
/* The first context gets the password hash XORed
* with 0x36 plus a magic value
* which we previously extrapolated from our
* challenge. */
SHA1Update(&ctx1, pass_hash_xor1, 64);
if (j >= 3 )
ctx1.totalLength = 0x1ff;
SHA1Update(&ctx1, magic_key_char, 4);
SHA1Final(&ctx1, digest1);
/* The second context gets the password hash XORed
* with 0x5c plus the SHA-1 digest
* of the first context. */
SHA1Update(&ctx2, pass_hash_xor2, 64);
SHA1Update(&ctx2, digest1, 20);
SHA1Final(&ctx2, digest2);
/* Now that we have digest2, use it to fetch
* characters from an alphabet to construct
* our first authentication response. */
for (x = 0; x < 20; x += 2) {
unsigned int val = 0;
unsigned int lookup = 0;
char byte[6];
memset(&byte, 0, 6);
/* First two bytes of digest stuffed
* together.
*/
val = digest2[x];
val <<= 8;
val += digest2[x+1];
lookup = (val >> 0x0b);
lookup &= 0x1f;
if (lookup >= strlen(alphabet1))
break;
sprintf(byte, "%c", alphabet1[lookup]);
strcat(resp_6, byte);
strcat(resp_6, "=");
lookup = (val >> 0x06);
lookup &= 0x1f;
if (lookup >= strlen(alphabet2))
break;
sprintf(byte, "%c", alphabet2[lookup]);
strcat(resp_6, byte);
lookup = (val >> 0x01);
lookup &= 0x1f;
if (lookup >= strlen(alphabet2))
break;
sprintf(byte, "%c", alphabet2[lookup]);
strcat(resp_6, byte);
lookup = (val & 0x01);
if (lookup >= strlen(delimit_lookup))
break;
sprintf(byte, "%c", delimit_lookup[lookup]);
strcat(resp_6, byte);
}
/* Our second authentication response is based off
* of the crypto hash. */
cnt = 0;
memset(&digest1, 0, 20);
memset(&digest2, 0, 20);
for (x = 0; x < (int)strlen((char *)crypt_hash); x++)
crypt_hash_xor1[cnt++] = crypt_hash[x] ^ 0x36;
if (cnt < 64)
memset(&(crypt_hash_xor1[cnt]), 0x36, 64-cnt);
cnt = 0;
for (x = 0; x < (int)strlen((char *)crypt_hash); x++)
crypt_hash_xor2[cnt++] = crypt_hash[x] ^ 0x5c;
if (cnt < 64)
memset(&(crypt_hash_xor2[cnt]), 0x5c, 64-cnt);
SHA1Init(&ctx1);
SHA1Init(&ctx2);
/* The first context gets the password hash XORed
* with 0x36 plus a magic value
* which we previously extrapolated from our
* challenge. */
SHA1Update(&ctx1, crypt_hash_xor1, 64);
if (j >= 3 )
ctx1.totalLength = 0x1ff;
SHA1Update(&ctx1, magic_key_char, 4);
SHA1Final(&ctx1, digest1);
/* The second context gets the password hash XORed
* with 0x5c plus the SHA-1 digest
* of the first context. */
SHA1Update(&ctx2, crypt_hash_xor2, 64);
SHA1Update(&ctx2, digest1, 20);
SHA1Final(&ctx2, digest2);
/* Now that we have digest2, use it to fetch
* characters from an alphabet to construct
* our first authentication response. */
for (x = 0; x < 20; x += 2) {
unsigned int val = 0;
unsigned int lookup = 0;
char byte[6];
memset(&byte, 0, 6);
/* First two bytes of digest stuffed
* together. */
val = digest2[x];
val <<= 8;
val += digest2[x+1];
lookup = (val >> 0x0b);
lookup &= 0x1f;
if (lookup >= strlen(alphabet1))
break;
sprintf(byte, "%c", alphabet1[lookup]);
strcat(resp_96, byte);
strcat(resp_96, "=");
lookup = (val >> 0x06);
lookup &= 0x1f;
if (lookup >= strlen(alphabet2))
break;
sprintf(byte, "%c", alphabet2[lookup]);
strcat(resp_96, byte);
lookup = (val >> 0x01);
lookup &= 0x1f;
if (lookup >= strlen(alphabet2))
break;
sprintf(byte, "%c", alphabet2[lookup]);
strcat(resp_96, byte);
lookup = (val & 0x01);
if (lookup >= strlen(delimit_lookup))
break;
sprintf(byte, "%c", delimit_lookup[lookup]);
strcat(resp_96, byte);
}
free(password_hash);
free(crypt_hash);
}
char * getcookie(const char *rawcookie)
{
char * cookie=NULL;
char * tmpcookie;
char * cookieend;
if (strlen(rawcookie) < 2)
return NULL;
tmpcookie = strdup(rawcookie+2);
cookieend = strchr(tmpcookie, ';');
if(cookieend)
*cookieend = '\0';
cookie = strdup(tmpcookie);
FREE(tmpcookie);
/* cookieend=NULL; not sure why this was there since the value is not preserved in the stack -dd */
return cookie;
}
char * getlcookie(const char *cookie)
{
char *tmp;
char *tmpend;
char *login_cookie = NULL;
tmpend = strstr(cookie, "n=");
if(tmpend) {
tmp = strdup(tmpend+2);
tmpend = strchr(tmp, '&');
if(tmpend)
*tmpend='\0';
login_cookie = strdup(tmp);
FREE(tmp);
}
return login_cookie;
}