You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdelibs/kjs/ustring.cpp

984 lines
19 KiB

// -*- c-basic-offset: 2 -*-
/*
* This file is part of the KDE libraries
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2003 Apple Computer, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#include "ustring.h"
#include "operations.h"
#include "identifier.h"
#include <math.h>
#include "dtoa.h"
namespace KJS {
extern const double NaN;
extern const double Inf;
}
using namespace KJS;
CString::CString(const char *c)
{
length = strlen(c);
data = new char[length+1];
memcpy(data, c, length + 1);
}
CString::CString(const char *c, int len)
{
length = len;
data = new char[len+1];
memcpy(data, c, len);
data[len] = 0;
}
CString::CString(const CString &b)
{
length = b.length;
data = new char[length+1];
memcpy(data, b.data, length + 1);
}
CString::~CString()
{
delete [] data;
}
CString &CString::append(const CString &t)
{
char *n = new char[length + t.length + 1];
if (length)
memcpy(n, data, length);
if (t.length)
memcpy(n+length, t.data, t.length);
length += t.length;
n[length] = 0;
delete [] data;
data = n;
return *this;
}
CString &CString::operator=(const char *c)
{
delete [] data;
length = strlen(c);
data = new char[length+1];
memcpy(data, c, length + 1);
return *this;
}
CString &CString::operator=(const CString &str)
{
if (this == &str)
return *this;
delete [] data;
length = str.length;
if (str.data) {
data = new char[length + 1];
memcpy(data, str.data, length + 1);
}
else
data = 0;
return *this;
}
bool KJS::operator==(const KJS::CString& c1, const KJS::CString& c2)
{
int len = c1.size();
return len == c2.size() && (len == 0 || memcmp(c1.c_str(), c2.c_str(), len) == 0);
}
UChar UChar::null((char)0);
UString::Rep UString::Rep::null = { 0, 0, 0, 1, 1 };
UString::Rep UString::Rep::empty = { 0, 0, 0, 1, 1 };
UString UString::null;
static const int normalStatBufferSize = 4096;
static char *statBuffer = 0;
static int statBufferSize = 0;
UChar UChar::toLower() const
{
// ### properly support unicode tolower
if (uc >= 256)
return *this;
// tolower is locale-dependent, don't use it.
return static_cast<unsigned char>( ( ( uc >= 'A' ) && ( uc <= 'Z' ) ) ? ( (int)uc + 'a' - 'A' ) : uc );
}
UChar UChar::toUpper() const
{
if (uc >= 256)
return *this;
// toupper is locale-dependent, don't use it.
return static_cast<unsigned char>( ( ( uc >= 'a' ) && ( uc <= 'z' ) ) ? ( (int)uc + 'A' - 'a' ) : uc );
}
UCharReference& UCharReference::operator=(UChar c)
{
str->detach();
if (offset < str->rep->len)
*(str->rep->dat + offset) = c;
/* TODO: lengthen string ? */
return *this;
}
UChar& UCharReference::ref() const
{
if (offset < str->rep->len)
return *(str->rep->dat + offset);
else
return UChar::null;
}
// return an uninitialized UChar array of size s
static inline UChar* allocateChars(int s)
{
// work around default UChar constructor code
return reinterpret_cast<UChar*>(new short[s]);
}
UString::Rep *UString::Rep::create(UChar *d, int l)
{
Rep *r = new Rep;
r->dat = d;
r->len = l;
r->capacity = l;
r->rc = 1;
r->_hash = 0;
return r;
}
void UString::Rep::destroy()
{
if (capacity == capacityForIdentifier)
Identifier::remove(this);
delete [] dat;
delete this;
}
// Golden ratio - arbitrary start value to avoid mapping all 0's to all 0's
// or anything like that.
const unsigned PHI = 0x9e3779b9U;
// This hash algorithm comes from:
// http://burtleburtle.net/bob/hash/hashfaq.html
// http://burtleburtle.net/bob/hash/doobs.html
unsigned UString::Rep::computeHash(const UChar *s, int length)
{
int prefixLength = length < 8 ? length : 8;
int suffixPosition = length < 16 ? 8 : length - 8;
unsigned h = PHI;
h += length;
h += (h << 10);
h ^= (h << 6);
for (int i = 0; i < prefixLength; i++) {
h += s[i].uc;
h += (h << 10);
h ^= (h << 6);
}
for (int i = suffixPosition; i < length; i++){
h += s[i].uc;
h += (h << 10);
h ^= (h << 6);
}
h += (h << 3);
h ^= (h >> 11);
h += (h << 15);
if (h == 0)
h = 0x80000000;
return h;
}
// This hash algorithm comes from:
// http://burtleburtle.net/bob/hash/hashfaq.html
// http://burtleburtle.net/bob/hash/doobs.html
unsigned UString::Rep::computeHash(const char *s)
{
int length = strlen(s);
int prefixLength = length < 8 ? length : 8;
int suffixPosition = length < 16 ? 8 : length - 8;
unsigned h = PHI;
h += length;
h += (h << 10);
h ^= (h << 6);
for (int i = 0; i < prefixLength; i++) {
h += (unsigned char)s[i];
h += (h << 10);
h ^= (h << 6);
}
for (int i = suffixPosition; i < length; i++) {
h += (unsigned char)s[i];
h += (h << 10);
h ^= (h << 6);
}
h += (h << 3);
h ^= (h >> 11);
h += (h << 15);
if (h == 0)
h = 0x80000000;
return h;
}
UString::UString()
{
null.rep = &Rep::null;
attach(&Rep::null);
}
UString::UString(char c)
{
UChar *d = allocateChars(1);
d[0] = c;
rep = Rep::create(d, 1);
}
UString::UString(const char *c)
{
if (!c) {
attach(&Rep::null);
return;
}
int length = strlen(c);
if (length == 0) {
attach(&Rep::empty);
return;
}
UChar *d = new UChar[length];
for (int i = 0; i < length; i++)
d[i].uc = (unsigned char)c[i];
rep = Rep::create(d, length);
}
UString::UString(const UChar *c, int length)
{
if (length == 0) {
attach(&Rep::empty);
return;
}
UChar *d = allocateChars(length);
memcpy(d, c, length * sizeof(UChar));
rep = Rep::create(d, length);
}
UString::UString(UChar *c, int length, bool copy)
{
if (length == 0) {
attach(&Rep::empty);
return;
}
UChar *d;
if (copy) {
d = allocateChars(length);
memcpy(d, c, length * sizeof(UChar));
} else
d = c;
rep = Rep::create(d, length);
}
UString::UString(const UString &a, const UString &b)
{
int aSize = a.size();
int bSize = b.size();
int length = aSize + bSize;
if (length == 0) {
attach(&Rep::empty);
return;
}
UChar *d = allocateChars(length);
memcpy(d, a.data(), aSize * sizeof(UChar));
memcpy(d + aSize, b.data(), bSize * sizeof(UChar));
rep = Rep::create(d, length);
}
UString UString::from(int i)
{
return from((long)i);
}
UString UString::from(unsigned int u)
{
UChar buf[20];
UChar *end = buf + 20;
UChar *p = end;
if (u == 0) {
*--p = '0';
} else {
while (u) {
*--p = (unsigned short)((u % 10) + '0');
u /= 10;
}
}
return UString(p, end - p);
}
UString UString::from(long l)
{
UChar buf[20];
UChar *end = buf + 20;
UChar *p = end;
if (l == 0) {
*--p = '0';
} else {
bool negative = false;
if (l < 0) {
negative = true;
l = -l;
}
while (l) {
*--p = (unsigned short)((l % 10) + '0');
l /= 10;
}
if (negative) {
*--p = '-';
}
}
return UString(p, end - p);
}
UString UString::from(double d)
{
char buf[80];
int decimalPoint;
int sign;
char *result = kjs_dtoa(d, 0, 0, &decimalPoint, &sign, NULL);
int length = strlen(result);
int i = 0;
if (sign) {
buf[i++] = '-';
}
if (decimalPoint <= 0 && decimalPoint > -6) {
buf[i++] = '0';
buf[i++] = '.';
for (int j = decimalPoint; j < 0; j++) {
buf[i++] = '0';
}
strcpy(buf + i, result);
} else if (decimalPoint <= 21 && decimalPoint > 0) {
if (length <= decimalPoint) {
strcpy(buf + i, result);
i += length;
for (int j = 0; j < decimalPoint - length; j++) {
buf[i++] = '0';
}
buf[i] = '\0';
} else {
strncpy(buf + i, result, decimalPoint);
i += decimalPoint;
buf[i++] = '.';
strcpy(buf + i, result + decimalPoint);
}
} else if (result[0] < '0' || result[0] > '9') {
strcpy(buf + i, result);
} else {
buf[i++] = result[0];
if (length > 1) {
buf[i++] = '.';
strcpy(buf + i, result + 1);
i += length - 1;
}
buf[i++] = 'e';
buf[i++] = (decimalPoint >= 0) ? '+' : '-';
// decimalPoint can't be more than 3 digits decimal given the
// nature of float representation
int exponential = decimalPoint - 1;
if (exponential < 0) {
exponential = exponential * -1;
}
if (exponential >= 100) {
buf[i++] = '0' + exponential / 100;
}
if (exponential >= 10) {
buf[i++] = '0' + (exponential % 100) / 10;
}
buf[i++] = '0' + exponential % 10;
buf[i++] = '\0';
}
kjs_freedtoa(result);
return UString(buf);
}
UString &UString::append(const UString &t)
{
int l = size();
int tLen = t.size();
int newLen = l + tLen;
if (rep->rc == 1 && newLen <= rep->capacity) {
memcpy(rep->dat+l, t.data(), tLen * sizeof(UChar));
rep->len = newLen;
rep->_hash = 0;
return *this;
}
int newCapacity = (newLen * 3 + 1) / 2;
UChar *n = allocateChars(newCapacity);
memcpy(n, data(), l * sizeof(UChar));
memcpy(n+l, t.data(), tLen * sizeof(UChar));
release();
rep = Rep::create(n, newLen);
rep->capacity = newCapacity;
return *this;
}
CString UString::cstring() const
{
return ascii();
}
char *UString::ascii() const
{
// Never make the buffer smaller than normalStatBufferSize.
// Thus we almost never need to reallocate.
int length = size();
int neededSize = length + 1;
if (neededSize < normalStatBufferSize) {
neededSize = normalStatBufferSize;
}
if (neededSize != statBufferSize) {
delete [] statBuffer;
statBuffer = new char [neededSize];
statBufferSize = neededSize;
}
const UChar *p = data();
char *q = statBuffer;
const UChar *limit = p + length;
while (p != limit) {
*q = p->uc;
++p;
++q;
}
*q = '\0';
return statBuffer;
}
#ifdef KJS_DEBUG_MEM
void UString::globalClear()
{
delete [] statBuffer;
statBuffer = 0;
statBufferSize = 0;
}
#endif
UString &UString::operator=(const char *c)
{
int l = c ? strlen(c) : 0;
UChar *d;
if (rep->rc == 1 && l <= rep->capacity) {
d = rep->dat;
rep->_hash = 0;
} else {
release();
d = allocateChars(l);
rep = Rep::create(d, l);
}
for (int i = 0; i < l; i++)
d[i].uc = (unsigned char)c[i];
return *this;
}
UString &UString::operator=(const UString &str)
{
str.rep->ref();
release();
rep = str.rep;
return *this;
}
bool UString::is8Bit() const
{
const UChar *u = data();
const UChar *limit = u + size();
while (u < limit) {
if (u->uc > 0xFF)
return false;
++u;
}
return true;
}
UChar UString::operator[](int pos) const
{
if (pos >= size())
return UChar::null;
return ((UChar *)data())[pos];
}
UCharReference UString::operator[](int pos)
{
/* TODO: boundary check */
return UCharReference(this, pos);
}
static int skipInfString(const char *start)
{
const char *c = start;
if (*c == '+' || *c == '-')
c++;
if (!strncmp(c,"Infinity",8))
return c+8-start;
while (*c >= '0' && *c <= '9')
c++;
const char * const at_dot = c;
if (*c == '.')
c++;
while (*c >= '0' && *c <= '9')
c++;
// don't accept a single dot as a number
if (c - at_dot == 1 && *at_dot == '.')
return at_dot-start;
if (*c != 'e')
return c-start;
c++;
if (*c == '+' || *c == '-')
c++;
while (*c >= '0' && *c <= '9')
c++;
return c-start;
}
double UString::toDouble(bool tolerateTrailingJunk, bool tolerateEmptyString) const
{
double d;
double sign = 1;
// FIXME: If tolerateTrailingJunk is true, then we want to tolerate non-8-bit junk
// after the number, so is8Bit is too strict a check.
if (!is8Bit())
return NaN;
const char *c = ascii();
// skip leading white space
while (isspace(*c))
c++;
// empty string ?
if (*c == '\0')
return tolerateEmptyString ? 0.0 : NaN;
if (*c == '-') {
sign = -1;
c++;
}
else if (*c == '+') {
sign = 1;
c++;
}
// hex number ?
if (*c == '0' && (*(c+1) == 'x' || *(c+1) == 'X')) {
c++;
d = 0.0;
while (*(++c)) {
if (*c >= '0' && *c <= '9')
d = d * 16.0 + *c - '0';
else if ((*c >= 'A' && *c <= 'F') || (*c >= 'a' && *c <= 'f'))
d = d * 16.0 + (*c & 0xdf) - 'A' + 10.0;
else
break;
}
} else {
// regular number ?
char *end;
d = kjs_strtod(c, &end);
if ((d != 0.0 || end != c) && d != HUGE_VAL && d != -HUGE_VAL) {
c = end;
} else {
// infinity ?
int count = skipInfString(c);
if (count == 0)
return NaN;
d = Inf;
c += count;
}
}
// allow trailing white space
while (isspace(*c))
c++;
// don't allow anything after - unless tolerant=true
if (!tolerateTrailingJunk && *c != '\0')
return NaN;
return d*sign;
}
double UString::toDouble(bool tolerateTrailingJunk) const
{
return toDouble(tolerateTrailingJunk, true);
}
double UString::toDouble() const
{
return toDouble(false, true);
}
unsigned long UString::toULong(bool *ok, bool tolerateEmptyString) const
{
double d = toDouble(false, tolerateEmptyString);
bool b = true;
if (isNaN(d) || d != static_cast<unsigned long>(d)) {
b = false;
d = 0;
}
if (ok)
*ok = b;
return static_cast<unsigned long>(d);
}
unsigned long UString::toULong(bool *ok) const
{
return toULong(ok, true);
}
UString UString::toLower() const
{
UString u = *this;
for (int i = 0; i < size(); i++)
u[i] = u[i].toLower();
return u;
}
UString UString::toUpper() const
{
UString u = *this;
for (int i = 0; i < size(); i++)
u[i] = u[i].toUpper();
return u;
}
unsigned int UString::toUInt32(bool *ok) const
{
double d = toDouble();
bool b = true;
if (isNaN(d) || d != static_cast<unsigned>(d)) {
b = false;
d = 0;
}
if (ok)
*ok = b;
return static_cast<unsigned>(d);
}
unsigned int UString::toStrictUInt32(bool *ok) const
{
if (ok)
*ok = false;
// Empty string is not OK.
int len = rep->len;
if (len == 0)
return 0;
const UChar *p = rep->dat;
unsigned short c = p->unicode();
// If the first digit is 0, only 0 itself is OK.
if (c == '0') {
if (len == 1 && ok)
*ok = true;
return 0;
}
// Convert to UInt32, checking for overflow.
unsigned int i = 0;
while (1) {
// Process character, turning it into a digit.
if (c < '0' || c > '9')
return 0;
const unsigned d = c - '0';
// Multiply by 10, checking for overflow out of 32 bits.
if (i > 0xFFFFFFFFU / 10)
return 0;
i *= 10;
// Add in the digit, checking for overflow out of 32 bits.
const unsigned max = 0xFFFFFFFFU - d;
if (i > max)
return 0;
i += d;
// Handle end of string.
if (--len == 0) {
if (ok)
*ok = true;
return i;
}
// Get next character.
c = (++p)->unicode();
}
}
// Rule from ECMA 15.2 about what an array index is.
// Must exactly match string form of an unsigned integer, and be less than 2^32 - 1.
unsigned UString::toArrayIndex(bool *ok) const
{
unsigned i = toStrictUInt32(ok);
if (i >= 0xFFFFFFFFU && ok)
*ok = false;
return i;
}
int UString::find(const UString &f, int pos) const
{
int sz = size();
int fsz = f.size();
if (sz < fsz)
return -1;
if (pos < 0)
pos = 0;
if (fsz == 0)
return pos;
const UChar *end = data() + sz - fsz;
long fsizeminusone = (fsz - 1) * sizeof(UChar);
const UChar *fdata = f.data();
unsigned short fchar = fdata->uc;
++fdata;
for (const UChar *c = data() + pos; c <= end; c++)
if (c->uc == fchar && !memcmp(c + 1, fdata, fsizeminusone))
return (c-data());
return -1;
}
int UString::find(UChar ch, int pos) const
{
if (pos < 0)
pos = 0;
const UChar *end = data() + size();
for (const UChar *c = data() + pos; c < end; c++)
if (*c == ch)
return (c-data());
return -1;
}
int UString::rfind(const UString &f, int pos) const
{
int sz = size();
int fsz = f.size();
if (sz < fsz)
return -1;
if (pos < 0)
pos = 0;
if (pos > sz - fsz)
pos = sz - fsz;
if (fsz == 0)
return pos;
long fsizeminusone = (fsz - 1) * sizeof(UChar);
const UChar *fdata = f.data();
for (const UChar *c = data() + pos; c >= data(); c--) {
if (*c == *fdata && !memcmp(c + 1, fdata + 1, fsizeminusone))
return (c-data());
}
return -1;
}
int UString::rfind(UChar ch, int pos) const
{
if (isEmpty())
return -1;
if (pos + 1 >= size())
pos = size() - 1;
for (const UChar *c = data() + pos; c >= data(); c--) {
if (*c == ch)
return (c-data());
}
return -1;
}
UString UString::substr(int pos, int len) const
{
if (pos < 0)
pos = 0;
else if (pos >= (int) size())
pos = size();
if (len < 0)
len = size();
if (pos + len >= (int) size())
len = size() - pos;
UChar *tmp = allocateChars(len);
memcpy(tmp, data()+pos, len * sizeof(UChar));
UString result(tmp, len);
delete [] tmp;
return result;
}
void UString::attach(Rep *r)
{
rep = r;
rep->ref();
}
void UString::detach()
{
if (rep->rc > 1) {
int l = size();
UChar *n = allocateChars(l);
memcpy(n, data(), l * sizeof(UChar));
release();
rep = Rep::create(n, l);
}
}
void UString::release()
{
rep->deref();
}
bool KJS::operator==(const UString& s1, const UString& s2)
{
if (s1.rep->len != s2.rep->len)
return false;
#ifndef NDEBUG
if ((s1.isNull() && s2.isEmpty() && !s2.isNull()) ||
(s2.isNull() && s1.isEmpty() && !s1.isNull()))
fprintf(stderr,
"KJS warning: comparison between empty and null string\n");
#endif
return (memcmp(s1.rep->dat, s2.rep->dat,
s1.rep->len * sizeof(UChar)) == 0);
}
bool KJS::operator==(const UString& s1, const char *s2)
{
if (s2 == 0) {
return s1.isEmpty();
}
const UChar *u = s1.data();
const UChar *uend = u + s1.size();
while (u != uend && *s2) {
if (u->uc != (unsigned char)*s2)
return false;
s2++;
u++;
}
return u == uend && *s2 == 0;
}
bool KJS::operator<(const UString& s1, const UString& s2)
{
const int l1 = s1.size();
const int l2 = s2.size();
const int lmin = l1 < l2 ? l1 : l2;
const UChar *c1 = s1.data();
const UChar *c2 = s2.data();
int l = 0;
while (l < lmin && *c1 == *c2) {
c1++;
c2++;
l++;
}
if (l < lmin)
return (c1->uc < c2->uc);
return (l1 < l2);
}
int KJS::compare(const UString& s1, const UString& s2)
{
const int l1 = s1.size();
const int l2 = s2.size();
const int lmin = l1 < l2 ? l1 : l2;
const UChar *c1 = s1.data();
const UChar *c2 = s2.data();
int l = 0;
while (l < lmin && *c1 == *c2) {
c1++;
c2++;
l++;
}
if (l < lmin)
return (c1->uc > c2->uc) ? 1 : -1;
if (l1 == l2) {
return 0;
}
return (l1 < l2) ? 1 : -1;
}