You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdelibs/tdeui/kpixmapio.cpp

909 lines
20 KiB

/* vi: ts=8 sts=4 sw=4
*
*
* This file is part of the KDE project, module tdeui.
* Copyright (C) 2000 Geert Jansen <jansen@kde.org>.
*
* You can Freely distribute this program under the GNU Library General
* Public License. See the file "COPYING.LIB" for the exact licensing terms.
*
* kpixmapio.cpp: Fast pixmap <-> image conversion.
*/
#include "kpixmapio.h"
#include "config.h"
#include <tqimage.h>
#include <tqpixmap.h>
#include <tqcolor.h>
#include <tqglobal.h>
#include <kglobal.h>
#include <kconfig.h>
#include <kdebug.h>
#include <sys/types.h>
#ifdef Q_OS_UNIX
#include <sys/ipc.h>
#include <sys/shm.h>
#endif
#ifdef Q_WS_X11
#include <X11/X.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#ifdef HAVE_MITSHM
#include <X11/extensions/XShm.h>
#endif
#ifdef __osf__
extern "C" int XShmQueryExtension(Display *display);
#endif
#else
#undef HAVE_MITSHM
#endif
// d pointer
struct KPixmapIOPrivate
{
int shmsize;
int shmpolicy;
int threshold;
int bpp;
int byteorder;
#ifdef Q_WS_X11
XImage *ximage;
#ifdef HAVE_MITSHM
XShmSegmentInfo *shminfo;
bool first_try;
#endif
#else
void *ximage;
#endif
};
// From Qt: Returns the position of the lowest set bit in val.
typedef unsigned char uchar;
typedef unsigned int uint;
#ifdef HAVE_MITSHM
static int lowest_bit(uint val)
{
int i;
uint test = 1;
for (i=0; (!(val & test)) && i<32; i++, test<<=1);
return (i == 32) ? -1 : i;
}
#endif
/*** KPixmapIO ***/
KPixmapIO::KPixmapIO()
{
m_bShm = false;
d = new KPixmapIOPrivate;
#ifdef HAVE_MITSHM
setShmPolicy(ShmDontKeep);
TDEConfig *config = TDEGlobal::config();
if (!config->readBoolEntry("UseMitShm", true))
return;
int ignore;
if (XQueryExtension(tqt_xdisplay(), "MIT-SHM", &ignore, &ignore, &ignore))
{
if (XShmQueryExtension(tqt_xdisplay()))
m_bShm = true;
}
if (!m_bShm)
{
kdDebug(290) << k_lineinfo << "MIT-SHM not available!\n";
d->ximage = 0;
d->shminfo = 0;
d->shmsize = 0;
return;
}
// Sort out bit format. Create a temporary XImage for this.
d->shminfo = new XShmSegmentInfo;
d->ximage = XShmCreateImage(tqt_xdisplay(), (Visual *) TQPaintDevice::x11AppVisual(),
TQPaintDevice::x11AppDepth(), ZPixmap, 0L, d->shminfo, 10, 10);
d->bpp = d->ximage->bits_per_pixel;
d->first_try = true;
int bpp = d->bpp;
if (d->ximage->byte_order == LSBFirst)
bpp++;
int red_shift = lowest_bit(d->ximage->red_mask);
int green_shift = lowest_bit(d->ximage->green_mask);
int blue_shift = lowest_bit(d->ximage->blue_mask);
XDestroyImage(d->ximage); d->ximage = 0L;
d->shmsize = 0;
// Offer discrete possibilities for the bitformat. Each will have its
// own routine. The general algorithm using bitshifts is much too slow;
// this has to be done for every pixel!
if ((bpp == 32) && (red_shift == 16) && (green_shift == 8) &&
(blue_shift == 0))
d->byteorder = bo32_ARGB;
else if ((bpp == 32) && (red_shift == 0) && (green_shift == 8) &&
(blue_shift == 16))
d->byteorder = bo32_BGRA;
else if ((bpp == 33) && (red_shift == 16) && (green_shift == 8) &&
(blue_shift == 0))
d->byteorder = bo32_BGRA;
else if ((bpp == 24) && (red_shift == 16) && (green_shift == 8) &&
(blue_shift == 0))
d->byteorder = bo24_RGB;
else if ((bpp == 24) && (red_shift == 0) && (green_shift == 8) &&
(blue_shift == 16))
d->byteorder = bo24_BGR;
else if ((bpp == 25) && (red_shift == 16) && (green_shift == 8) &&
(blue_shift == 0))
d->byteorder = bo24_BGR;
else if ((bpp == 16) && (red_shift == 11) && (green_shift == 5) &&
(blue_shift == 0))
d->byteorder = bo16_RGB_565;
else if ((bpp == 16) && (red_shift == 10) && (green_shift == 5) &&
(blue_shift == 0))
d->byteorder = bo16_RGB_555;
else if ((bpp == 17) && (red_shift == 11) && (green_shift == 5) &&
(blue_shift == 0))
d->byteorder = bo16_BGR_565;
else if ((bpp == 17) && (red_shift == 10) && (green_shift == 5) &&
(blue_shift == 0))
d->byteorder = bo16_BGR_555;
else if ((bpp == 8) || (bpp == 9))
d->byteorder = bo8;
else
{
m_bShm = false;
kdWarning(290) << "Byte order not supported!" << endl;
kdWarning(290) << "red = " << red_shift
<< ", green = " << green_shift
<< ", blue = " << blue_shift << endl;
kdWarning(290) << "Please report to <jansen@kde.org>\n";
}
#else
d->shmsize = 0;
d->ximage = 0;
#endif
}
KPixmapIO::~KPixmapIO()
{
destroyXImage();
destroyShmSegment();
#ifdef HAVE_MITSHM
delete d->shminfo;
#endif
delete d;
}
TQPixmap KPixmapIO::convertToPixmap(const TQImage &img)
{
int size = img.width() * img.height();
if (m_bShm && (img.depth() > 1) && (d->bpp > 8) && (size > d->threshold))
{
TQPixmap dst(img.width(), img.height());
putImage(&dst, 0, 0, &img);
return dst;
} else
{
TQPixmap dst;
dst.convertFromImage(img);
return dst;
}
}
TQImage KPixmapIO::convertToImage(const TQPixmap &pm)
{
TQImage image;
int size = pm.width() * pm.height();
if (m_bShm && (d->bpp >= 8) && (size > d->threshold))
image = getImage(&pm, 0, 0, pm.width(), pm.height());
else
image = pm.convertToImage();
return image;
}
void KPixmapIO::putImage(TQPixmap *dst, const TQPoint &offset,
const TQImage *src)
{
putImage(dst, offset.x(), offset.y(), src);
}
void KPixmapIO::putImage(TQPixmap *dst, int dx, int dy, const TQImage *src)
{
int size = src->width() * src->height();
bool fallback = true;
if (m_bShm && (src->depth() > 1) && (d->bpp > 8) && (size > d->threshold))
{
#ifdef HAVE_MITSHM
if( initXImage(src->width(), src->height()))
{
convertToXImage(*src);
XShmPutImage(tqt_xdisplay(), dst->handle(), tqt_xget_temp_gc(tqt_xscreen(), false), d->ximage,
dx, dy, 0, 0, src->width(), src->height(), false);
// coolo: do we really need this here? I see no good for it
XSync(tqt_xdisplay(), false);
doneXImage();
fallback = false;
}
#endif
}
if( fallback )
{
TQPixmap pix;
pix.convertFromImage(*src);
bitBlt(dst, dx, dy, &pix, 0, 0, pix.width(), pix.height());
}
}
TQImage KPixmapIO::getImage(const TQPixmap *src, const TQRect &rect)
{
return getImage(src, rect.x(), rect.y(), rect.width(), rect.height());
}
TQImage KPixmapIO::getImage(const TQPixmap *src, int sx, int sy, int sw, int sh)
{
TQImage image;
int size = src->width() * src->height();
bool fallback = true;
if ((m_bShm) && (d->bpp >= 8) && (size > d->threshold))
{
#ifdef HAVE_MITSHM
if( initXImage(sw, sh))
{
XShmGetImage(tqt_xdisplay(), src->handle(), d->ximage, sx, sy, AllPlanes);
image = convertFromXImage();
doneXImage();
fallback = false;
}
#endif
}
if( fallback )
{
TQPixmap pix(sw, sh);
bitBlt(&pix, 0, 0, src, sx, sy, sw, sh);
image = pix.convertToImage();
}
return image;
}
#ifdef HAVE_MITSHM
void KPixmapIO::preAllocShm(int size)
{
destroyXImage();
createShmSegment(size);
}
void KPixmapIO::setShmPolicy(int policy)
{
switch (policy)
{
case ShmDontKeep:
d->shmpolicy = ShmDontKeep;
d->threshold = 5000;
break;
case ShmKeepAndGrow:
d->shmpolicy = ShmKeepAndGrow;
d->threshold = 2000;
break;
default:
break;
}
}
bool KPixmapIO::initXImage(int w, int h)
{
if (d->ximage && (w == d->ximage->width) && (h == d->ximage->height))
return true;
if( !createXImage(w, h))
return false;
int size = d->ximage->bytes_per_line * d->ximage->height;
if (size > d->shmsize)
{
if( !createShmSegment(size))
{
destroyXImage();
return false;
}
}
d->ximage->data = d->shminfo->shmaddr;
return true;
}
void KPixmapIO::doneXImage()
{
if (d->shmpolicy == ShmDontKeep)
{
destroyXImage();
destroyShmSegment();
}
}
void KPixmapIO::destroyXImage()
{
if (d->ximage)
{
XDestroyImage(d->ximage);
d->ximage = 0L;
}
}
bool KPixmapIO::createXImage(int w, int h)
{
destroyXImage();
d->ximage = XShmCreateImage(tqt_xdisplay(), (Visual *) TQPaintDevice::x11AppVisual(),
TQPaintDevice::x11AppDepth(), ZPixmap, 0L, d->shminfo, w, h);
return d->ximage != None;
}
void KPixmapIO::destroyShmSegment()
{
if (d->shmsize)
{
XShmDetach(tqt_xdisplay(), d->shminfo);
shmdt(d->shminfo->shmaddr);
shmctl(d->shminfo->shmid, IPC_RMID, 0);
d->shmsize = 0;
}
}
static bool use_xshm = true;
static unsigned long kpixmapio_serial;
static int (*old_errhandler)(Display *dpy, XErrorEvent *ev) = 0;
static int kpixmapio_errorhandler(Display *dpy, XErrorEvent *ev)
{
if(ev->serial == kpixmapio_serial) {
/* assuming that xshm errors mean it can't be used at all
(e.g. remote display) */
use_xshm = false;
kdDebug(290) << "Disabling Xshm" << endl;
return 0;
} else {
// another error
return old_errhandler(dpy, ev);
}
}
bool KPixmapIO::createShmSegment(int size)
{
destroyShmSegment();
d->shminfo->shmid = shmget(IPC_PRIVATE, size, IPC_CREAT|0600);
if ( d->shminfo->shmid < 0)
{
kdWarning(290) << "Could not get shared memory segment.\n";
m_bShm = false;
return false;
}
d->shminfo->shmaddr = (char *) shmat(d->shminfo->shmid, 0, 0);
if (d->shminfo->shmaddr == (char *)-1)
{
kdWarning(290) << "Could not attach shared memory segment.\n";
m_bShm = false;
shmctl(d->shminfo->shmid, IPC_RMID, 0);
return false;
}
d->shminfo->readOnly = false;
if (d->first_try) {
// make sure that we don't get errors of old stuff
XSync(tqt_xdisplay(), False);
old_errhandler = XSetErrorHandler(kpixmapio_errorhandler);
kpixmapio_serial = NextRequest(tqt_xdisplay());
}
if ( !XShmAttach(tqt_xdisplay(), d->shminfo))
{
kdWarning() << "X-Server could not attach shared memory segment.\n";
m_bShm = false;
shmdt(d->shminfo->shmaddr);
shmctl(d->shminfo->shmid, IPC_RMID, 0);
}
if (d->first_try) {
XSync(tqt_xdisplay(), false);
if (!use_xshm)
m_bShm = false;
XSetErrorHandler(old_errhandler);
d->first_try = false;
}
d->shmsize = size;
return m_bShm;
}
/*
* The following functions convertToXImage/convertFromXImage are a little
* long. This is because of speed, I want to get as much out of the inner
* loop as possible.
*/
TQImage KPixmapIO::convertFromXImage()
{
int x, y;
int width = d->ximage->width, height = d->ximage->height;
int bpl = d->ximage->bytes_per_line;
char *data = d->ximage->data;
TQImage image;
if (d->bpp == 8)
{
image.create(width, height, 8);
// Query color map. Don't remove unused entries as a speed
// optmization.
int i, ncells = 256;
XColor *cmap = new XColor[ncells];
for (i=0; i<ncells; i++)
cmap[i].pixel = i;
XQueryColors(tqt_xdisplay(), TQPaintDevice::x11AppColormap(),
cmap, ncells);
image.setNumColors(ncells);
for (i=0; i<ncells; i++)
image.setColor(i, tqRgb(cmap[i].red, cmap[i].green, cmap[i].blue >> 8));
} else
image.create(width, height, 32);
switch (d->byteorder)
{
case bo8:
{
for (y=0; y<height; y++)
memcpy(image.scanLine(y), data + y*bpl, width);
break;
}
case bo16_RGB_565:
case bo16_BGR_565:
{
TQ_INT32 pixel, *src;
TQRgb *dst, val;
for (y=0; y<height; y++)
{
src = (TQ_INT32 *) (data + y*bpl);
dst = (TQRgb *) image.scanLine(y);
for (x=0; x<width/2; x++)
{
pixel = *src++;
val = ((pixel & 0xf800) << 8) | ((pixel & 0x7e0) << 5) |
((pixel & 0x1f) << 3);
*dst++ = val;
pixel >>= 16;
val = ((pixel & 0xf800) << 8) | ((pixel & 0x7e0) << 5) |
((pixel & 0x1f) << 3);
*dst++ = val;
}
if (width%2)
{
pixel = *src++;
val = ((pixel & 0xf800) << 8) | ((pixel & 0x7e0) << 5) |
((pixel & 0x1f) << 3);
*dst++ = val;
}
}
break;
}
case bo16_RGB_555:
case bo16_BGR_555:
{
TQ_INT32 pixel, *src;
TQRgb *dst, val;
for (y=0; y<height; y++)
{
src = (TQ_INT32 *) (data + y*bpl);
dst = (TQRgb *) image.scanLine(y);
for (x=0; x<width/2; x++)
{
pixel = *src++;
val = ((pixel & 0x7c00) << 9) | ((pixel & 0x3e0) << 6) |
((pixel & 0x1f) << 3);
*dst++ = val;
pixel >>= 16;
val = ((pixel & 0x7c00) << 9) | ((pixel & 0x3e0) << 6) |
((pixel & 0x1f) << 3);
*dst++ = val;
}
if (width%2)
{
pixel = *src++;
val = ((pixel & 0x7c00) << 9) | ((pixel & 0x3e0) << 6) |
((pixel & 0x1f) << 3);
*dst++ = val;
}
}
break;
}
case bo24_RGB:
{
char *src;
TQRgb *dst;
int w1 = width/4;
TQ_INT32 d1, d2, d3;
for (y=0; y<height; y++)
{
src = data + y*bpl;
dst = (TQRgb *) image.scanLine(y);
for (x=0; x<w1; x++)
{
d1 = *((TQ_INT32 *)src);
d2 = *((TQ_INT32 *)src + 1);
d3 = *((TQ_INT32 *)src + 2);
src += 12;
*dst++ = d1;
*dst++ = (d1 >> 24) | (d2 << 8);
*dst++ = (d3 << 16) | (d2 >> 16);
*dst++ = d3 >> 8;
}
for (x=w1*4; x<width; x++)
{
d1 = *src++ << 16;
d1 += *src++ << 8;
d1 += *src++;
*dst++ = d1;
}
}
break;
}
case bo24_BGR:
{
char *src;
TQRgb *dst;
int w1 = width/4;
TQ_INT32 d1, d2, d3;
for (y=0; y<height; y++)
{
src = data + y*bpl;
dst = (TQRgb *) image.scanLine(y);
for (x=0; x<w1; x++)
{
d1 = *((TQ_INT32 *)src);
d2 = *((TQ_INT32 *)src + 1);
d3 = *((TQ_INT32 *)src + 2);
src += 12;
*dst++ = d1;
*dst++ = (d1 >> 24) | (d2 << 8);
*dst++ = (d3 << 16) | (d2 >> 16);
*dst++ = d3 >> 8;
}
for (x=w1*4; x<width; x++)
{
d1 = *src++;
d1 += *src++ << 8;
d1 += *src++ << 16;
*dst++ = d1;
}
}
break;
}
case bo32_ARGB:
case bo32_BGRA:
{
for (y=0; y<height; y++)
memcpy(image.scanLine(y), data + y*bpl, width*4);
break;
}
}
return image;
}
void KPixmapIO::convertToXImage(const TQImage &img)
{
int x, y;
int width = d->ximage->width, height = d->ximage->height;
int bpl = d->ximage->bytes_per_line;
char *data = d->ximage->data;
switch (d->byteorder)
{
case bo16_RGB_555:
case bo16_BGR_555:
if (img.depth() == 32)
{
TQRgb *src, pixel;
TQ_INT32 *dst, val;
for (y=0; y<height; y++)
{
src = (TQRgb *) img.scanLine(y);
dst = (TQ_INT32 *) (data + y*bpl);
for (x=0; x<width/2; x++)
{
pixel = *src++;
val = ((pixel & 0xf80000) >> 9) | ((pixel & 0xf800) >> 6) |
((pixel & 0xff) >> 3);
pixel = *src++;
val |= (((pixel & 0xf80000) >> 9) | ((pixel & 0xf800) >> 6) |
((pixel & 0xff) >> 3)) << 16;
*dst++ = val;
}
if (width%2)
{
pixel = *src++;
*((TQ_INT16 *)dst) = ((pixel & 0xf80000) >> 9) |
((pixel & 0xf800) >> 6) | ((pixel & 0xff) >> 3);
}
}
} else
{
uchar *src;
TQ_INT32 val, *dst;
TQRgb pixel, *clut = img.tqcolorTable();
for (y=0; y<height; y++)
{
src = const_cast<TQImage&>(img).scanLine(y);
dst = (TQ_INT32 *) (data + y*bpl);
for (x=0; x<width/2; x++)
{
pixel = clut[*src++];
val = ((pixel & 0xf80000) >> 9) | ((pixel & 0xf800) >> 6) |
((pixel & 0xff) >> 3);
pixel = clut[*src++];
val |= (((pixel & 0xf80000) >> 9) | ((pixel & 0xf800) >> 6) |
((pixel & 0xff) >> 3)) << 16;
*dst++ = val;
}
if (width%2)
{
pixel = clut[*src++];
*((TQ_INT16 *)dst) = ((pixel & 0xf80000) >> 9) |
((pixel & 0xf800) >> 6) | ((pixel & 0xff) >> 3);
}
}
}
break;
case bo16_RGB_565:
case bo16_BGR_565:
if (img.depth() == 32)
{
TQRgb *src, pixel;
TQ_INT32 *dst, val;
for (y=0; y<height; y++)
{
src = (TQRgb *) img.scanLine(y);
dst = (TQ_INT32 *) (data + y*bpl);
for (x=0; x<width/2; x++)
{
pixel = *src++;
val = ((pixel & 0xf80000) >> 8) | ((pixel & 0xfc00) >> 5) |
((pixel & 0xff) >> 3);
pixel = *src++;
val |= (((pixel & 0xf80000) >> 8) | ((pixel & 0xfc00) >> 5) |
((pixel & 0xff) >> 3)) << 16;
*dst++ = val;
}
if (width%2)
{
pixel = *src++;
*((TQ_INT16 *)dst) = ((pixel & 0xf80000) >> 8) |
((pixel & 0xfc00) >> 5) | ((pixel & 0xff) >> 3);
}
}
} else
{
uchar *src;
TQ_INT32 val, *dst;
TQRgb pixel, *clut = img.tqcolorTable();
for (y=0; y<height; y++)
{
src = const_cast<TQImage&>(img).scanLine(y);
dst = (TQ_INT32 *) (data + y*bpl);
for (x=0; x<width/2; x++)
{
pixel = clut[*src++];
val = ((pixel & 0xf80000) >> 8) | ((pixel & 0xfc00) >> 5) |
((pixel & 0xff) >> 3);
pixel = clut[*src++];
val |= (((pixel & 0xf80000) >> 8) | ((pixel & 0xfc00) >> 5) |
((pixel & 0xff) >> 3)) << 16;
*dst++ = val;
}
if (width%2)
{
pixel = clut[*src++];
*((TQ_INT16 *)dst) = ((pixel & 0xf80000) >> 8) |
((pixel & 0xfc00) >> 5) | ((pixel & 0xff) >> 3);
}
}
}
break;
case bo24_RGB:
if (img.depth() == 32)
{
char *dst;
int w1 = width/4;
TQRgb *src, d1, d2, d3, d4;
for (y=0; y<height; y++)
{
src = (TQRgb *) img.scanLine(y);
dst = data + y*bpl;
for (x=0; x<w1; x++)
{
d1 = (*src++ & 0xffffff);
d2 = (*src++ & 0xffffff);
d3 = (*src++ & 0xffffff);
d4 = (*src++ & 0xffffff);
*((TQ_INT32 *)dst) = d1 | (d2 << 24);
*((TQ_INT32 *)dst+1) = (d2 >> 8) | (d3 << 16);
*((TQ_INT32 *)dst+2) = (d4 << 8) | (d3 >> 16);
dst += 12;
}
for (x=w1*4; x<width; x++)
{
d1 = *src++;
*dst++ = tqRed(d1);
*dst++ = tqGreen(d1);
*dst++ = tqBlue(d1);
}
}
} else
{
uchar *src, *dst;
int w1 = width/4;
TQRgb *clut = img.tqcolorTable(), d1, d2, d3, d4;
for (y=0; y<height; y++)
{
src = const_cast<TQImage&>(img).scanLine(y);
dst = (uchar *) data + y*bpl;
for (x=0; x<w1; x++)
{
d1 = (clut[*src++] & 0xffffff);
d2 = (clut[*src++] & 0xffffff);
d3 = (clut[*src++] & 0xffffff);
d4 = (clut[*src++] & 0xffffff);
*((TQ_INT32 *)dst) = d1 | (d2 << 24);
*((TQ_INT32 *)dst+1) = (d2 >> 8) | (d3 << 16);
*((TQ_INT32 *)dst+2) = (d4 << 8) | (d3 >> 16);
dst += 12;
}
for (x=w1*4; x<width; x++)
{
d1 = clut[*src++];
*dst++ = tqRed(d1);
*dst++ = tqGreen(d1);
*dst++ = tqBlue(d1);
}
}
}
break;
case bo24_BGR:
if (img.depth() == 32)
{
char *dst;
TQRgb *src, d1, d2, d3, d4;
int w1 = width/4;
for (y=0; y<height; y++)
{
src = (TQRgb *) img.scanLine(y);
dst = data + y*bpl;
for (x=0; x<w1; x++)
{
d1 = (*src++ & 0xffffff);
d2 = (*src++ & 0xffffff);
d3 = (*src++ & 0xffffff);
d4 = (*src++ & 0xffffff);
*((TQ_INT32 *)dst) = d1 | (d2 << 24);
*((TQ_INT32 *)dst+1) = (d2 >> 8) | (d3 << 16);
*((TQ_INT32 *)dst+2) = (d4 << 8) | (d3 >> 16);
dst += 12;
}
for (x=w1*4; x<width; x++)
{
d1 = *src++;
*dst++ = tqBlue(d1);
*dst++ = tqGreen(d1);
*dst++ = tqRed(d1);
}
}
} else
{
uchar *src, *dst;
int w1 = width/4;
TQRgb *clut = img.tqcolorTable(), d1, d2, d3, d4;
for (y=0; y<height; y++)
{
src = const_cast<TQImage&>(img).scanLine(y);
dst = (uchar *) data + y*bpl;
for (x=0; x<w1; x++)
{
d1 = (clut[*src++] & 0xffffff);
d2 = (clut[*src++] & 0xffffff);
d3 = (clut[*src++] & 0xffffff);
d4 = (clut[*src++] & 0xffffff);
*((TQ_INT32 *)dst) = d1 | (d2 << 24);
*((TQ_INT32 *)dst+1) = (d2 >> 8) | (d3 << 16);
*((TQ_INT32 *)dst+2) = (d4 << 8) | (d3 >> 16);
dst += 12;
}
for (x=w1*4; x<width; x++)
{
d1 = clut[*src++];
*dst++ = tqBlue(d1);
*dst++ = tqGreen(d1);
*dst++ = tqRed(d1);
}
}
}
break;
case bo32_ARGB:
case bo32_BGRA:
if (img.depth() == 32)
{
for (y=0; y<height; y++)
memcpy(data + y*bpl, img.scanLine(y), width*4);
} else
{
uchar *src;
TQRgb *dst, *clut = img.tqcolorTable();
for (y=0; y<height; y++)
{
src = const_cast<TQImage&>(img).scanLine(y);
dst = (TQRgb *) (data + y*bpl);
for (x=0; x<width; x++)
*dst++ = clut[*src++];
}
}
break;
}
}
#else
void KPixmapIO::preAllocShm(int) {}
void KPixmapIO::setShmPolicy(int) {}
bool KPixmapIO::initXImage(int, int) { return false; }
void KPixmapIO::doneXImage() {}
bool KPixmapIO::createXImage(int, int) { return false; }
void KPixmapIO::destroyXImage() {}
bool KPixmapIO::createShmSegment(int) { return false; }
void KPixmapIO::destroyShmSegment() {}
TQImage KPixmapIO::convertFromXImage() { return TQImage(); }
void KPixmapIO::convertToXImage(const TQImage &) {}
#endif // HAVE_MITSHM