You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
3.5 KiB
161 lines
3.5 KiB
/*
|
|
Copyright (C) 2003 Nikolas Zimmermann <wildfox@kde.org>
|
|
This file is part of the KDE project
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public License
|
|
aint with this library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "Point.h"
|
|
#include "BezierPathLibart.h"
|
|
|
|
#include <kdebug.h>
|
|
|
|
#include <libart_lgpl/art_bpath.h>
|
|
#include <libart_lgpl/art_vpath.h>
|
|
#include <libart_lgpl/art_vpath_bpath.h>
|
|
|
|
using namespace T2P;
|
|
|
|
BezierPathLibart::BezierPathLibart() : BezierPath()
|
|
{
|
|
m_array.resize(0);
|
|
m_length = -1;
|
|
}
|
|
|
|
BezierPathLibart::BezierPathLibart(ArtBpath *other) : BezierPath()
|
|
{
|
|
int i = 0;
|
|
for(;other[i].code != ART_END; i++)
|
|
{
|
|
ensureSpace(m_array, i)
|
|
m_array[i] = other[i];
|
|
}
|
|
ensureSpace(m_array, i)
|
|
m_array[i].code = ART_END;
|
|
}
|
|
|
|
BezierPathLibart::~BezierPathLibart()
|
|
{
|
|
}
|
|
|
|
double BezierPathLibart::length(double t)
|
|
{
|
|
if(m_length < 0.0)
|
|
{
|
|
double total = 0.0;
|
|
// We cheat a bit...
|
|
ArtVpath *vpath = art_bez_path_to_vec(m_array.data(), 0.25);
|
|
double x = 0.0, y = 0.0;
|
|
for(int i = 0; vpath[i].code != ART_END; i++)
|
|
{
|
|
if(vpath[i].code == ART_MOVETO)
|
|
{
|
|
x = vpath[i].x;
|
|
y = vpath[i].y;
|
|
}
|
|
else if(vpath[i].code == ART_LINETO)
|
|
{
|
|
double dx = x, dy = y;
|
|
x = vpath[i].x;
|
|
y = vpath[i].y;
|
|
dx = x - dx;
|
|
dy = y - dy;
|
|
total += sqrt(pow(dx, 2) + pow(dy, 2));
|
|
}
|
|
}
|
|
art_free(vpath);
|
|
return total * t;
|
|
}
|
|
else
|
|
return m_length * t;
|
|
}
|
|
|
|
void BezierPathLibart::pointTangentNormalAt(double t, Point *p, Point *tn, Point *n)
|
|
{
|
|
double totallen = length(t);
|
|
// We cheat a bit...
|
|
ArtVpath *vpath = art_bez_path_to_vec(m_array.data(), 0.25);
|
|
double total = 0.0;
|
|
double x = 0.0, y = 0.0;
|
|
for(int i = 0; vpath[i].code != ART_END; i++)
|
|
{
|
|
if(vpath[i].code == ART_MOVETO)
|
|
{
|
|
x = vpath[i].x;
|
|
y = vpath[i].y;
|
|
}
|
|
else if(vpath[i].code == ART_LINETO)
|
|
{
|
|
double dx = x, dy = y;
|
|
x = vpath[i].x;
|
|
y = vpath[i].y;
|
|
dx = x - dx;
|
|
dy = y - dy;
|
|
double seg_len = sqrt(pow(dx, 2) + pow(dy, 2));
|
|
total += seg_len;
|
|
if(total >= totallen)
|
|
{
|
|
double fract = 1 - (totallen - (total - seg_len)) / seg_len;
|
|
if(p)
|
|
{
|
|
p->setX(x - dx * fract);
|
|
p->setY(y - dy * fract);
|
|
}
|
|
// Calculate tangent
|
|
if(tn)
|
|
{
|
|
tn->setX(dx);
|
|
tn->setY(dy);
|
|
}
|
|
// Calculate normal vector.
|
|
if(n)
|
|
{
|
|
// Calculate vector product of "binormal" x tangent
|
|
// (0,0,1) x (dx,dy,0), which is simply (dy,-dx,0).
|
|
n->setX(dy);
|
|
n->setY(-dx);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
art_free(vpath);
|
|
}
|
|
|
|
void BezierPathLibart::boundingBox(Point *topLeft, Point *bottomRight)
|
|
{
|
|
if(m_array.count() > 0)
|
|
{
|
|
// We cheat a bit...
|
|
ArtVpath *vpath = art_bez_path_to_vec(m_array.data(), 0.25);
|
|
|
|
ArtDRect rect;
|
|
art_vpath_bbox_drect(vpath, &rect);
|
|
art_free(vpath);
|
|
|
|
*topLeft = Point(rect.x0, rect.y0);
|
|
*bottomRight = Point(rect.x1, rect.y1);
|
|
}
|
|
else
|
|
{
|
|
*topLeft = Point(0, 0);
|
|
*bottomRight = Point(0, 0);
|
|
}
|
|
}
|
|
|
|
// vim:ts=4:noet
|