You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdeedu/kig/objects/conic_imp.h

158 lines
4.8 KiB

// Copyright (C) 2003 Dominique Devriese <devriese@kde.org>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
// 02110-1301, USA.
#ifndef KIG_OBJECTS_CONIC_IMP_H
#define KIG_OBJECTS_CONIC_IMP_H
#include "curve_imp.h"
#include "../misc/conic-common.h"
/**
* An ObjectImp representing a conic.
*
* A conic is a general second degree curve, and some beautiful theory
* has been developed about it.. See a math book for more
* information. This class is in fact an abstract base class hiding
* the fact that a ConicImp can be constructed in two ways. If only
* its Cartesian equation is known, then you should use ConicImpCart,
* otherwise, you should use ConicImpPolar. If the other
* representation is needed, it will be calculated, but a cartesian
* representation is rarely needed, and not calculating saves some CPU
* cycles.
*/
class ConicImp
: public CurveImp
{
protected:
ConicImp();
~ConicImp();
public:
typedef CurveImp Parent;
/**
* Returns the ObjectImpType representing the ConicImp type.
*/
static const ObjectImpType* stype();
ObjectImp* transform( const Transformation& ) const;
void draw( KigPainter& p ) const;
bool tqcontains( const Coordinate& p, int width, const KigWidget& ) const;
bool inRect( const Rect& r, int width, const KigWidget& ) const;
bool valid() const;
Rect surroundingRect() const;
const uint numberOfProperties() const;
const ObjectImpType* impRequirementForProperty( uint which ) const;
bool isPropertyDefinedOnOrThroughThisImp( uint which ) const;
const QCStringList properties() const;
const QCStringList propertiesInternalNames() const;
const char* iconForProperty( uint which ) const;
ObjectImp* property( uint which, const KigDocument& w ) const;
double getParam( const Coordinate& point, const KigDocument& ) const;
const Coordinate getPoint( double param, const KigDocument& ) const;
// information about ourselves.. These are all virtual, because a
// trivial subclass like CircleImp can override these with trivial
// versions..
/**
* Type of conic.
* Return what type of conic this is:
* -1 for a hyperbola
* 0 for a parabola
* 1 for an ellipse
*/
virtual int conicType() const;
/**
* A string containing "Hyperbola", "Parabola" or "Ellipse".
*/
virtual TQString conicTypeString() const;
/**
* A string containing the cartesian equation of the conic. This
* will be of the form "a x^2 + b y^2 + c xy + d x + e y + f = 0".
*/
virtual TQString cartesianEquationString( const KigDocument& w ) const;
/**
* A string containing the polar equation of the conic. This will
* be of the form "rho = pdimen/(1 + ect cos( theta ) + est sin(
* theta ) )\n [centered at p]"
*/
virtual TQString polarEquationString( const KigDocument& w ) const;
/**
* Return the cartesian representation of this conic.
*/
virtual const ConicCartesianData cartesianData() const;
/**
* Return the polar representation of this conic.
*/
virtual const ConicPolarData polarData() const = 0;
/**
* Return the first focus of this conic.
*/
virtual Coordinate focus1() const;
/**
* Return the second focus of this conic.
*/
virtual Coordinate focus2() const;
const ObjectImpType* type() const;
void visit( ObjectImpVisitor* vtor ) const;
bool equals( const ObjectImp& rhs ) const;
bool containsPoint( const Coordinate& p, const KigDocument& doc ) const;
bool internalContainsPoint( const Coordinate& p, double threshold ) const;
};
/**
* An implementation of ConicImp to be used when only the cartesian
* equation of the conic is known.
*/
class ConicImpCart
: public ConicImp
{
ConicCartesianData mcartdata;
ConicPolarData mpolardata;
public:
ConicImpCart( const ConicCartesianData& data );
~ConicImpCart();
ConicImpCart* copy() const;
const ConicCartesianData cartesianData() const;
const ConicPolarData polarData() const;
};
/**
* An implementation of ConicImp to be used when only the cartesian
* equation of the conic is known.
*/
class ConicImpPolar
: public ConicImp
{
ConicPolarData mdata;
public:
ConicImpPolar( const ConicPolarData& data );
~ConicImpPolar();
ConicImpPolar* copy() const;
const ConicPolarData polarData() const;
};
#endif