You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdeedu/kturtle/src/executer.cpp

1117 lines
29 KiB

/*
Copyright (C) 2003 by Walter Schreppers
Copyright (C) 2004 by Cies Breijs
This program is free software; you can redistribute it and/or
modify it under the terms of version 2 of the GNU General Public
License as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
// This file is originally written by Walter Scheppers, but almost
// every aspect of it is slightly changed by Cies Breijs.
#include <unistd.h> // for usleep();
#include <stdlib.h>
#include <tqtimer.h>
#include <kapplication.h>
#include <kdebug.h>
#include <klocale.h>
#include "executer.h"
// this function is used in executer and canvas:
#define ROUND2INT(x) ( (x) >= 0 ? (int)( (x) + .5 ) : (int)( (x) - .5 ) )
Executer::Executer(TreeNode* tree)
{
this->tree = tree;
functionTable.clear();
bBreak = false;
bReturn = false;
}
Executer::~Executer()
{
emit Finished();
}
bool Executer::run()
{
bBreak = false;
bReturn = false;
bPause = false;
bAbort = false;
symtable main;
symbolTables.push(main); // new symbol table for main block
TreeNode::const_iterator i;
for (i = tree->begin(); i != tree->end(); ++i)
{
if (bAbort) return false;
kapp->processEvents();
execute(*i);
symbolTables.pop(); //free up stack
}
return true;
}
void Executer::slowDown(TreeNode* node)
{
switch (runSpeed)
{
case 1: // slow
startWaiting(0);
break;
case 2: // slower
startWaiting(250);
break;
case 3: // slowest
startWaiting(900);
break;
default:
kdDebug(0)<<"Executer: Wrong execution speed given"<<endl;
break;
}
Token tok = node->getToken();
emit setSelection(tok.start.row, tok.start.col, tok.end.row, tok.end.col);
}
void Executer::slotChangeSpeed(int speed)
{
runSpeed = speed;
}
void Executer::pause()
{
// The next line is within all loops of the Executer
// if (bAbort) return;
// mostly before
// kapp->processEvents();
// this to keep the GUI of KTurtle accessible while executing the logo code
// so the Abort button can be clicked, and will function
bPause = true;
}
void Executer::abort()
{
// The next line is within all loops of the Executer
// if(bAbort) return;
// mostly before
// kapp->processEvents();
// this to keep the GUI of KTurtle accessible while executing the logo code
// so the Abort button can be clicked, and will function
bAbort = true;
}
void Executer::execute(TreeNode* node)
{
switch ( node->getType() )
{
case blockNode : execBlock(node); break;
case forNode : execFor(node); break;
case forEachNode : execForEach(node); break;
case whileNode : execWhile(node); break;
case ifNode : execIf(node); break;
case assignNode : execAssign(node); break;
case expressionNode : execExpression(/*node*/); break;
case idNode : execId(node); break;
case constantNode : execConstant(/*node*/); break; // does nothing value allready set
case addNode : execAdd(node); break;
case mulNode : execMul(node); break;
case divNode : execDiv(node); break;
case subNode : execSub(node); break;
case minusNode : execMinus(node); break;
case nodeGE : execGE(node); break;
case nodeGT : execGT(node); break;
case nodeLE : execLE(node); break;
case nodeLT : execLT(node); break;
case nodeNE : execNE(node); break;
case nodeEQ : execEQ(node); break;
case andNode : execAnd(node); break;
case orNode : execOr(node); break;
case notNode : execNot(node); break;
case functionNode : createFunction(node); break;
case functionCallNode : execFunction(node); break;
case funcReturnNode : execRetFunction(node); break;
case returnNode : execReturn(node); break;
case breakNode : execBreak(/*node*/); break;
case runNode : execRun(node); break;
case ClearNode : execClear(node); break;
case GoNode : execGo(node); break;
case GoXNode : execGoX(node); break;
case GoYNode : execGoY(node); break;
case ForwardNode : execForward(node); break;
case BackwardNode : execBackward(node); break;
case DirectionNode : execDirection(node); break;
case TurnLeftNode : execTurnLeft(node); break;
case TurnRightNode : execTurnRight(node); break;
case CenterNode : execCenter(node); break;
case SetPenWidthNode : execSetPenWidth(node); break;
case PenUpNode : execPenUp(node); break;
case PenDownNode : execPenDown(node); break;
case SetFgColorNode : execSetFgColor(node); break;
case SetBgColorNode : execSetBgColor(node); break;
case ResizeCanvasNode : execResizeCanvas(node); break;
case SpriteShowNode : execSpriteShow(node); break;
case SpriteHideNode : execSpriteHide(node); break;
case SpritePressNode : execSpritePress(node); break;
case SpriteChangeNode : execSpriteChange(node); break;
case MessageNode : execMessage(node); break;
case InputWindowNode : execInputWindow(node); break;
case printNode : execPrint(node); break;
case FontTypeNode : execFontType(node); break;
case FontSizeNode : execFontSize(node); break;
case RepeatNode : execRepeat(node); break;
case RandomNode : execRandom(node); break;
case WaitNode : execWait(node); break;
case WrapOnNode : execWrapOn(node); break;
case WrapOffNode : execWrapOff(node); break;
case ResetNode : execReset(node); break;
case EndOfFileNode : break; // just do nothing is enough
case Unknown : // dont break but fallthrough to default
default:
kdDebug(0)<<"Found unsupported node named '"<<node->getLook()<<"' in the tree @ ("<<node->getRow()<<", "<<node->getCol()<<")"<<endl;
break;
}
}
void Executer::createFunction(TreeNode* node)
{
TQString funcname = node->getLook();
functionTable[funcname] = node; //store for later use
}
//execute a function
void Executer::execFunction(TreeNode* node)
{
TQString funcname = node->getLook();
// locate function node
functable::iterator p = functionTable.find(funcname);
if ( p == functionTable.end() )
{
emit ErrorMsg(node->getToken(), i18n("Call to undefined function: %1.").tqarg(funcname), 5010);
return;
}
TreeNode* funcnode = p->second;
TreeNode* funcIds = funcnode->firstChild();
TreeNode* callparams = node->firstChild();
// check if number of parameters match
if ( callparams->size() != funcIds->size() )
{
emit ErrorMsg(node->getToken(), i18n("Call to function '%1' with wrong number of parameters.").tqarg(funcname), 5020);
return;
}
// pass parameters to function
// by adding them to it's symboltable and setting the values
TreeNode::iterator pfrom, pto = funcIds->begin();
symtable funcSymTable;
for (pfrom = callparams->begin(); pfrom != callparams->end(); ++pfrom )
{
if (bAbort) return;
if (bPause) startPausing();
kapp->processEvents();
// execute the parameters which can be expressions
execute(*pfrom);
TQString idname = (*pto)->getLook();
funcSymTable[idname] = (*pfrom)->getValue();
++pto;
}
symbolTables.push(funcSymTable); // use new symboltable for current function
// execute function statement block
bReturn = false; // set to true when return is called
execute( funcnode->secondChild() );
bReturn = false; // function execution done
symbolTables.pop(); // release function symboltable
}
// execute a function and expect and get return
// value from stack
// first child = function name
// second child = parameters
void Executer::execRetFunction(TreeNode* node)
{
execFunction(node);
if (runStack.size() == 0)
{
emit ErrorMsg(node->getToken(), i18n("Function %1 did not return a value.").tqarg( node->getLook() ), 5030);
return;
}
node->setValue( runStack.top() ); // set return val
runStack.pop(); // remove from stack
}
void Executer::execReturn(TreeNode* node)
{
execute( node->firstChild() ); // execute return expression
runStack.push( node->firstChild()->getValue() );
bReturn = true; // notify blocks of return
}
void Executer::execBreak(/*TreeNode* node*/)
{
bBreak = true; // stops loop block execution
}
void Executer::execBlock(TreeNode* node)
{
// execute all statements in block
TreeNode::iterator i;
for (i = node->begin(); i != node->end(); ++i)
{
if (runSpeed != 0) slowDown(*i);
if (bAbort) return;
if (bPause) startPausing();
kapp->processEvents();
execute(*i);
if (bReturn || bBreak) break; //jump out of block
}
}
void Executer::execForEach(TreeNode* node)
{
// sorry, not fully implemented/tested yet
TreeNode* expr1 = node->firstChild();
TreeNode* expr2 = node->secondChild();
TreeNode* statements = node->thirdChild();
execute(expr1);
execute(expr2);
TQString expStr1 = expr1->getValue().String();
TQString expStr2 = expr2->getValue().String();
bBreak = false;
int i = expStr2.tqcontains(expStr1, false);
for ( ; i > 0; i-- )
{
if (bAbort) return;
if (bPause) startPausing();
kapp->processEvents();
execute(statements);
if (bBreak || bReturn) break; //jump out loop
}
bBreak = false;
}
void Executer::execFor(TreeNode* node)
{
TreeNode* id = node->firstChild();
TreeNode* startNode = node->secondChild();
TreeNode* stopNode = node->thirdChild();
TreeNode* statements = node->fourthChild();
TQString name = id->getLook();
execute(startNode);
//assign startval to id
Value startVal = startNode->getValue();
( symbolTables.top() )[ name ] = startVal;
execute(stopNode);
Value stopVal = stopNode->getValue();
if(node->size() == 4 ) //for loop without step part
{
bBreak = false;
for (double d = startVal.Number(); d <= stopVal.Number(); d = d + 1)
{
if (bAbort) return;
if (bPause) startPausing();
kapp->processEvents();
( symbolTables.top() )[name] = d;
execute( statements );
if (bBreak || bReturn) break; //jump out loop
}
bBreak = false;
}
else //for loop with step part
{
TreeNode* step = node->fourthChild();
statements = node->fifthChild();
execute(step);
Value stepVal = step->getValue();
bBreak = false;
if ( (stepVal.Number() >= 0.0) && (startVal.Number() <= stopVal.Number() ) )
{
for ( double d = startVal.Number(); d <= stopVal.Number(); d = d + stepVal.Number() )
{
if (bAbort) return;
if (bPause) startPausing();
kapp->processEvents();
(symbolTables.top() )[name] = d;
execute( statements );
if (bBreak || bReturn) break; //jump out loop
}
}
else if ( (stepVal.Number() < 0.0) && (startVal.Number() >= stopVal.Number() ) )
{
for (double d = startVal.Number(); d >= stopVal.Number(); d = d + stepVal.Number() )
{
if (bAbort) return;
if (bPause) startPausing();
kapp->processEvents();
( symbolTables.top() )[name] = d;
execute(statements);
if (bBreak || bReturn) break; //jump out loop
}
}
bBreak = false;
}
}
void Executer::execRepeat(TreeNode* node)
{
TreeNode* value = node->firstChild();
TreeNode* statements = node->secondChild();
bBreak = false;
execute(value);
for ( int i = ROUND2INT( value->getValue().Number() ); i > 0; i-- )
{
if (bAbort) return;
if (bPause) startPausing();
kapp->processEvents();
execute(statements);
if (bBreak || bReturn) break; //jump out loop
}
bBreak = false;
}
void Executer::execWhile(TreeNode* node)
{
TreeNode* condition = node->firstChild();
TreeNode* statements = node->secondChild();
bBreak = false;
execute(condition);
while (condition->getValue().Number() != 0)
{
if (bAbort) return;
if (bPause) startPausing();
kapp->processEvents();
execute(statements);
if (bBreak || bReturn) break; //jump out loop
execute(condition);
}
bBreak = false;
}
void Executer::execIf(TreeNode* node)
{
TreeNode* condition = node->firstChild();
TreeNode* ifblok = node->secondChild();
//determine if there is an else part
if (node->size() == 2) // no else
{
execute( condition );
if( condition->getValue().Number() != 0 ) execute(ifblok);
}
else // else part given
{
TreeNode* elseblok = node->thirdChild();
execute( condition );
if( condition->getValue().Number() != 0 ) execute(ifblok);
else execute( elseblok );
}
}
void Executer::execAssign(TreeNode* node)
{
TreeNode* expr = node->firstChild();
execute(expr);
( symbolTables.top() )[ node->getLook() ] = expr->getValue();
}
void Executer::execExpression(/*TreeNode* node*/)
{
// execExpression is not implemented, because it should not be needed!
}
void Executer::execId(TreeNode* node)
{
node->setValue( ( symbolTables.top() )[ node->getLook() ] );
}
void Executer::execConstant(/*TreeNode* node*/)
{
// do nothing, value is already set
}
Value Executer::exec2getValue(TreeNode* node)
{
execute(node);
return node->getValue();
}
void Executer::execAdd(TreeNode* node)
{
Value left( exec2getValue( node->firstChild() ) );
Value right( exec2getValue( node->secondChild() ) );
if (left.Type() == numberValue && right.Type() == numberValue) node->setValue( left + right );
else node->setValue( left.String().append( right.String() ) );
}
void Executer::execMul(TreeNode* node)
{
Value left( exec2getValue( node->firstChild() ) );
Value right( exec2getValue( node->secondChild() ) );
if (left.Type() == numberValue && right.Type() == numberValue) node->setValue( left * right );
else emit ErrorMsg(node->getToken(), i18n("Can only multiply numbers."), 9000);
}
void Executer::execDiv(TreeNode* node)
{
Value left( exec2getValue( node->firstChild() ) );
Value right( exec2getValue( node->secondChild() ) );
if (left.Type() == numberValue && right.Type() == numberValue)
{
if (right.Number() == 0) emit ErrorMsg(node->getToken(), i18n("Cannot divide by zero."), 9000);
else node->setValue( left / right );
}
else emit ErrorMsg(node->getToken(), i18n("Can only divide numbers."), 9000);
}
void Executer::execSub(TreeNode* node)
{
Value left( exec2getValue( node->firstChild() ) );
Value right( exec2getValue( node->secondChild() ) );
if (left.Type() == numberValue && right.Type() == numberValue)
node->setValue( left - right );
else emit ErrorMsg(node->getToken(), i18n("Can only subtract numbers."), 9000);
}
void Executer::execLT(TreeNode* node)
{
Value left( exec2getValue( node->firstChild() ) );
Value right( exec2getValue( node->secondChild() ) );
node->setValue( left < right );
}
void Executer::execLE(TreeNode* node)
{
Value left( exec2getValue( node->firstChild() ) );
Value right( exec2getValue( node->secondChild() ) );
node->setValue( left <= right );
}
void Executer::execGT(TreeNode* node)
{
Value left( exec2getValue( node->firstChild() ) );
Value right( exec2getValue( node->secondChild() ) );
node->setValue( left > right );
}
void Executer::execGE(TreeNode* node)
{
Value left( exec2getValue( node->firstChild() ) );
Value right( exec2getValue( node->secondChild() ) );
node->setValue( left >= right );
}
void Executer::execEQ(TreeNode* node)
{
Value left( exec2getValue( node->firstChild() ) );
Value right( exec2getValue( node->secondChild() ) );
node->setValue( left == right );
}
void Executer::execNE(TreeNode* node)
{
Value left( exec2getValue( node->firstChild() ) );
Value right( exec2getValue( node->secondChild() ) );
node->setValue( left != right );
}
void Executer::execAnd(TreeNode* node)
{
bool nl = exec2getValue( node->firstChild() ).Number() != 0;
bool nr = exec2getValue( node->secondChild() ).Number() != 0;
node->setValue( (double) (nl && nr) );
}
void Executer::execOr(TreeNode* node)
{
bool nl = exec2getValue( node->firstChild() ).Number() != 0;
bool nr = exec2getValue( node->secondChild() ).Number() != 0;
node->setValue(nl || nr);
}
void Executer::execNot(TreeNode* node)
{
node->setValue( exec2getValue( node->firstChild() ).Number() == 0 );
}
void Executer::execMinus(TreeNode* node)
{
node->setValue( -exec2getValue( node->firstChild() ).Number() );
}
TQString Executer::runCommand(const TQString& command)
{
FILE *pstream;
if ( ( pstream = popen( command.ascii(), "r" ) ) == NULL ) return ("");
TQString Line;
char buf[100];
while( fgets(buf, sizeof(buf), pstream) !=NULL) {
if (bAbort) return ("");
kapp->processEvents();
Line += buf;
}
pclose(pstream);
return Line;
}
void Executer::execRun(TreeNode* node)
{
TQString cmd = exec2getValue( node->firstChild() ).String();
node->setValue( runCommand(cmd) );
}
void Executer::execClear(TreeNode* node)
{
if ( checkParameterQuantity(node, 0, 5060) ) emit Clear();
}
void Executer::execCenter(TreeNode* node)
{
if ( checkParameterQuantity(node, 0, 5060) ) emit Center();
}
void Executer::execPenUp(TreeNode* node)
{
if ( checkParameterQuantity(node, 0, 5060) ) emit PenUp();
}
void Executer::execPenDown(TreeNode* node)
{
if ( checkParameterQuantity(node, 0, 5060) ) emit PenDown();
}
void Executer::execSpriteShow(TreeNode* node)
{
if ( checkParameterQuantity(node, 0, 5060) ) emit SpriteShow();
}
void Executer::execSpriteHide(TreeNode* node)
{
if ( checkParameterQuantity(node, 0, 5060) ) emit SpriteHide();
}
void Executer::execSpritePress(TreeNode* node)
{
if ( checkParameterQuantity(node, 0, 5060) ) emit SpritePress();
}
void Executer::execWrapOn(TreeNode* node)
{
if ( checkParameterQuantity(node, 0, 5060) ) emit WrapOn();
}
void Executer::execWrapOff(TreeNode* node)
{
if ( checkParameterQuantity(node, 0, 5060) ) emit WrapOff();
}
void Executer::execReset(TreeNode* node)
{
if ( checkParameterQuantity(node, 0, 5060) ) emit Reset();
}
void Executer::execMessage(TreeNode* node)
{
if ( checkParameterQuantity(node, 1, 5060) && checkParameterType(node, stringValue, 5060) )
emit MessageDialog( node->firstChild()->getValue().String() );
}
void Executer::execGoX(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TreeNode* param1 = node->firstChild();
execute(param1);
if ( checkParameterType(node, numberValue, 5060) )
{
emit GoX( param1->getValue().Number() );
}
}
void Executer::execGoY(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TreeNode* param1 = node->firstChild();
execute(param1);
if ( checkParameterType(node, numberValue, 5060) )
{
emit GoY( param1->getValue().Number() );
}
}
void Executer::execForward(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TreeNode* param1 = node->firstChild();
execute(param1);
if ( checkParameterType(node, numberValue, 5060) )
{
emit Forward( param1->getValue().Number() );
}
}
void Executer::execBackward(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TreeNode* param1 = node->firstChild();
execute(param1);
if ( checkParameterType(node, numberValue, 5060) )
{
emit Backward( param1->getValue().Number() );
}
}
void Executer::execDirection(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TreeNode* param1 = node->firstChild();
execute(param1);
if ( checkParameterType(node, numberValue, 5060) )
{
emit Direction( param1->getValue().Number() );
}
}
void Executer::execTurnLeft(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TreeNode* param1 = node->firstChild();
execute(param1);
if ( checkParameterType(node, numberValue, 5060) )
{
emit TurnLeft( param1->getValue().Number() );
}
}
void Executer::execTurnRight(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TreeNode* param1 = node->firstChild();
execute(param1);
if ( checkParameterType(node, numberValue, 5060) )
{
emit TurnRight( param1->getValue().Number() );
}
}
void Executer::execSetPenWidth(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TreeNode* param1 = node->firstChild();
execute(param1);
if ( checkParameterType(node, numberValue, 5060) )
{
int x = ROUND2INT( param1->getValue().Number() ); // pull the number value & round it to int
if (x < 1 || x > 10000)
emit ErrorMsg(node->getToken(), i18n("The penwidth cannot be set to something smaller than 1, or bigger than 10000."), 6050);
else
emit SetPenWidth(x);
}
}
void Executer::execSpriteChange(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TreeNode* param1 = node->firstChild();
execute(param1);
if ( checkParameterType(node, numberValue, 5060) )
{
int x = ROUND2INT( param1->getValue().Number() ); // pull the number value & round it to int
emit SpriteChange(x);
}
}
void Executer::execFontSize(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TreeNode* param1 = node->firstChild();
execute(param1);
if ( checkParameterType(node, numberValue, 5060) )
{
int x = ROUND2INT( param1->getValue().Number() ); // pull the number value & round it to int
if ( x < 0 || x > 350 )
emit ErrorMsg(node->getToken(), i18n("The parameters of function %1 must be within range: 0 to 350.").tqarg( node->getLook() ), 5065);
else
emit FontSize(x);
}
}
void Executer::execGo(TreeNode* node)
{
if ( !checkParameterQuantity(node, 2, 5060) ) return;
TreeNode* nodeX = node->firstChild(); // getting
TreeNode* nodeY = node->secondChild();
execute(nodeX); // executing
execute(nodeY);
if ( checkParameterType(node, numberValue, 5060) )
{
emit Go( nodeX->getValue().Number(), nodeY->getValue().Number() );
}
}
void Executer::execResizeCanvas(TreeNode* node)
{
if ( !checkParameterQuantity(node, 2, 5060) ) return;
TreeNode* nodeX = node->firstChild(); // getting
TreeNode* nodeY = node->secondChild();
execute(nodeX); // executing
execute(nodeY);
if ( checkParameterType(node, numberValue, 5060) )
{
int x = ROUND2INT( nodeX->getValue().Number() ); // converting & rounding to int
int y = ROUND2INT( nodeY->getValue().Number() );
if ( ( x < 1 || y < 1 ) || ( x > 10000 || y > 10000 ) )
emit ErrorMsg(node->getToken(), i18n("The parameters of the %1 command must be numbers in the range: 1 to 10000.").tqarg( node->getLook() ), 7030);
else
emit ResizeCanvas(x, y);
}
}
void Executer::execRandom(TreeNode* node)
{
if ( !checkParameterQuantity(node, 2, 5060) ) return;
TreeNode* nodeX = node->firstChild(); // getting
TreeNode* nodeY = node->secondChild();
execute(nodeX); // executing
execute(nodeY);
if ( !checkParameterType(node, numberValue, 5060) ) return;
double x = nodeX->getValue().Number();
double y = nodeY->getValue().Number();
double r = (double)( KApplication::random() ) / RAND_MAX;
node->setValue( r * ( y - x ) + x );
}
void Executer::execSetFgColor(TreeNode* node)
{
if ( !checkParameterQuantity(node, 3, 5060) ) return;
TreeNode* nodeR = node->firstChild(); // getting
TreeNode* nodeG = node->secondChild();
TreeNode* nodeB = node->thirdChild();
execute(nodeR); // executing
execute(nodeG);
execute(nodeB);
if ( checkParameterType(node, numberValue, 5060) )
{
int r = ROUND2INT( nodeR->getValue().Number() ); // converting & rounding to int
int g = ROUND2INT( nodeG->getValue().Number() );
int b = ROUND2INT( nodeB->getValue().Number() );
if ( ( r < 0 || g < 0 || b < 0 ) || ( r > 255 || g > 255 || b > 255 ) )
emit ErrorMsg(node->getToken(), i18n("The parameters of the %1 command must be numbers in the range: 0 to 255.").tqarg( node->getLook() ), 6090);
else
emit SetFgColor(r, g, b);
}
}
void Executer::execSetBgColor(TreeNode* node)
{
if ( !checkParameterQuantity(node, 3, 5060) ) return;
TreeNode* nodeR = node->firstChild(); // getting
TreeNode* nodeG = node->secondChild();
TreeNode* nodeB = node->thirdChild();
execute(nodeR); // executing
execute(nodeG);
execute(nodeB);
if ( checkParameterType(node, numberValue, 5060) )
{
int r = ROUND2INT( nodeR->getValue().Number() ); // converting & rounding to int
int g = ROUND2INT( nodeG->getValue().Number() );
int b = ROUND2INT( nodeB->getValue().Number() );
if ( ( r < 0 || g < 0 || b < 0 ) || ( r > 255 || g > 255 || b > 255 ) )
emit ErrorMsg(node->getToken(), i18n("The parameters of the %1 command must be numbers in the range: 0 to 255.").tqarg( node->getLook() ), 6090);
else
emit SetBgColor(r, g, b);
}
}
void Executer::execInputWindow(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TQString value = node->firstChild()->getValue().String();
emit InputDialog(value);
node->setType(constantNode);
if ( value.isEmpty() ) node->getValue().resetValue(); // set value back to empty
else
{
bool ok = true;
double num = value.toDouble(&ok); // to see if the value from the InpDialog is a float
if (ok) node->setValue(num);
else node->setValue(value);
}
}
void Executer::execPrint(TreeNode* node)
{
if (node->size() == 0)
{
emit ErrorMsg(node->getToken(), i18n("The print command needs input"), 5050);
return;
}
TreeNode::iterator i;
TQString str = "";
for (i = node->begin(); i != node->end(); ++i)
{
execute(*i); // execute expression
str = str + (*i)->getValue().String();
}
emit Print(str);
}
void Executer::execFontType(TreeNode* node)
{
// if not 2 params go staight to the checkParam, diplay the error, and return to prevent a crash
if ( !checkParameterQuantity(node, 2, 5060) && !checkParameterType(node, stringValue, 5060) ) return;
TQString extra;
if (node->size() == 2) TQString extra = node->secondChild()->getValue().String();
TQString family = node->firstChild()->getValue().String();
emit FontType(family, extra);
}
void Executer::execWait(TreeNode* node)
{
if ( !checkParameterQuantity(node, 1, 5060) ) return;
TreeNode* param1 = node->firstChild();
execute(param1);
if ( !checkParameterType(node, numberValue, 5060) ) return;
int msec = (int)( 1000 * param1->getValue().Number() );
startWaiting(msec);
}
void Executer::startWaiting(int msec)
{
bStopWaiting = false;
// call a timer that sets stopWaiting to true when it runs
TQTimer::singleShot( msec, this, TQT_SLOT( slotStopWaiting() ) );
while (bStopWaiting == false)
{
if (bAbort) return; // waits need to be interrupted by the stop action
if (bPause) startPausing();
kapp->processEvents();
// only 10 times per second is enough... else the CPU gets 100% loaded ( not nice :)
usleep(100000);
}
}
void Executer::slotStopWaiting()
{
bStopWaiting = true;
}
void Executer::startPausing()
{
while (bPause == true)
{
if (bAbort) return; // waits need to be interrupted by the stop action
kapp->processEvents();
// only 10 times per second is enough... else the CPU gets 100% loaded ( not nice :)
usleep(100000);
}
}
void Executer::slotStopPausing()
{
bPause = false;
}
bool Executer::checkParameterQuantity(TreeNode* node, uint quantity, int errorCode)
{
if (quantity == 0)
{
if (node->size() == 0) return true; // thats easy!
emit ErrorMsg(node->getToken(), i18n("The %1 command accepts no parameters.").tqarg( node->getLook() ), errorCode);
return false;
}
uint nodeSize = node->size();
if (nodeSize != 0) // when all parameters are forgotten the parser puts a Unknown/tokEOL param, catch this:
if (node->firstChild()->getToken().type == tokEOL) nodeSize = 0;
if (nodeSize != quantity)
{
if (nodeSize < quantity)
{
emit ErrorMsg(node->getToken(), i18n("The %1 command was called with %2 but needs 1 parameter.", "The %1 command was called with %2 but needs %n parameters.", quantity).tqarg( node->getLook() ).tqarg(nodeSize), errorCode);
}
else
{
emit ErrorMsg(node->getToken(), i18n("The %1 command was called with %2 but only accepts 1 parameter.", "The %1 command was called with %2 but only accepts %n parameters.", quantity).tqarg( node->getLook() ).tqarg(nodeSize), errorCode);
}
return false;
}
return true; // if all tests passed
}
bool Executer::checkParameterType(TreeNode* node, int valueType, int errorCode)
{
uint quantity = node->size();
uint ii = 1;
TreeNode::iterator i = node->begin();
while ( i != node->end() && ii <= quantity )
{
if ( (*i)->getValue().Type() != valueType )
{
switch (valueType)
{
case stringValue:
if (quantity == 1)
emit ErrorMsg(node->getToken(), i18n("The %1 command only accepts a string as its parameter.").tqarg( node->getLook() ), errorCode);
else
emit ErrorMsg(node->getToken(), i18n("The %1 command only accepts strings as its parameters.").tqarg( node->getLook() ), errorCode);
break;
case numberValue:
if (quantity == 1)
emit ErrorMsg(node->getToken(), i18n("The %1 command only accepts a number as its parameter.").tqarg( node->getLook() ), errorCode);
else
emit ErrorMsg(node->getToken(), i18n("The %1 command only accepts numbers as its parameters.").tqarg( node->getLook() ), errorCode);
break;
}
return false;
}
++i;
ii++;
}
return true; // if all tests passed
}
#include "executer.moc"