You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdeartwork/tdescreensaver/kdesavers/Flux.cpp

968 lines
24 KiB

//============================================================================
//
// Terence Welsh Screensaver - Flux
// http://www.reallyslick.com/
//
// Ported to KDE by Karl Robillard
//
/*
* Copyright (C) 2002 Terence M. Welsh
*
* Flux is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Flux is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
//============================================================================
/*
TODO
[ ] Regular and others are messed up after Sparkler.
Insane seems to reset them.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <tqtimer.h>
#include "Flux.h"
#include "Flux.moc"
#define NUMCONSTS 8
#define PIx2 6.28318530718f
#define DEG2RAD 0.0174532925f
void hsl2rgb(float h, float s, float l, float &r, float &g, float &b)
{
// hue influence
if(h < 0.166667){ // full red, some green
r = 1.0;
g = h * 6.0f;
b = 0.0;
}
else {
if(h < 0.5){ // full green
g = 1.0;
if(h < 0.333333){ // some red
r = 1.0f - ((h - 0.166667f) * 6.0f);
b = 0.0;
}
else{ // some blue
b = (h - 0.333333f) * 6.0f;
r = 0.0;
}
}
else{
if(h < 0.833333){ // full blue
b = 1.0;
if(h < 0.666667){ // some green
g = 1.0f - ((h - 0.5f) * 6.0f);
r = 0.0;
}
else{ // some red
r = (h - 0.666667f) * 6.0f;
g = 0.0;
}
}
else{ // full red, some blue
r = 1.0;
b = 1.0f - ((h - 0.833333f) * 6.0f);
g = 0.0;
}
}
}
// saturation influence
r = 1.0f - (s * (1.0f - r));
g = 1.0f - (s * (1.0f - g));
b = 1.0f - (s * (1.0f - b));
// luminosity influence
r *= l;
g *= l;
b *= l;
}
// Useful random number macros
// Don't forget to initialize with srand()
inline int myRandi(int x){
return((rand() * x) / RAND_MAX);
}
inline float myRandf(float x){
return(float(rand() * x) / float(RAND_MAX));
}
//----------------------------------------------------------------------------
// Flux context to allow many instances.
static FluxWidget* _fc = 0;
static int whichparticle;
// This class is poorly named. It's actually a whole trail of particles.
class particle
{
public:
particle();
~particle();
float update(float *c);
private:
float** vertices;
short trails;
short counter;
float offset[3];
};
particle::particle()
{
// Offsets are somewhat like default positions for the head of each
// particle trail. Offsets spread out the particle trails and keep
// them from all overlapping.
offset[0] = cos(PIx2 * float(whichparticle) / float(_fc->dParticles));
offset[1] = float(whichparticle) / float(_fc->dParticles) - 0.5f;
offset[2] = sin(PIx2 * float(whichparticle) / float(_fc->dParticles));
whichparticle++;
// Initialize memory and set initial positions out of view of the camera
trails = _fc->dTrail;
vertices = new float*[ trails ];
int i;
for(i=0; i<trails; i++)
{
vertices[i] = new float[5]; // 0,1,2 = position, 3 = hue, 4 = saturation
vertices[i][0] = 0.0f;
vertices[i][1] = 3.0f;
vertices[i][2] = 0.0f;
vertices[i][3] = 0.0f;
vertices[i][4] = 0.0f;
}
counter = 0;
}
particle::~particle()
{
for(int i=0; i<trails; i++)
delete[] vertices[i];
delete[] vertices;
}
float particle::update(float *c)
{
int i, p, growth;
float rgb[3];
float cx, cy, cz; // Containment variables
float luminosity;
static float expander = 1.0f + 0.0005f * float(_fc->dExpansion);
static float blower = 0.001f * float(_fc->dWind);
//static float otherxyz[3];
float depth = 0;
// Record old position
int oldc = counter;
float oldpos[3];
oldpos[0] = vertices[oldc][0];
oldpos[1] = vertices[oldc][1];
oldpos[2] = vertices[oldc][2];
counter ++;
if(counter >= _fc->dTrail)
counter = 0;
// Here's the iterative math for calculating new vertex positions
// first calculate limiting terms which keep vertices from constantly
// flying off to infinity
cx = vertices[oldc][0] * (1.0f - 1.0f / (vertices[oldc][0] * vertices[oldc][0] + 1.0f));
cy = vertices[oldc][1] * (1.0f - 1.0f / (vertices[oldc][1] * vertices[oldc][1] + 1.0f));
cz = vertices[oldc][2] * (1.0f - 1.0f / (vertices[oldc][2] * vertices[oldc][2] + 1.0f));
// then calculate new positions
vertices[counter][0] = vertices[oldc][0] + c[6] * offset[0] - cx
+ c[2] * vertices[oldc][1]
+ c[5] * vertices[oldc][2];
vertices[counter][1] = vertices[oldc][1] + c[6] * offset[1] - cy
+ c[1] * vertices[oldc][2]
+ c[4] * vertices[oldc][0];
vertices[counter][2] = vertices[oldc][2] + c[6] * offset[2] - cz
+ c[0] * vertices[oldc][0]
+ c[3] * vertices[oldc][1];
// Pick a hue
vertices[counter][3] = cx * cx + cy * cy + cz * cz;
if(vertices[counter][3] > 1.0f)
vertices[counter][3] = 1.0f;
vertices[counter][3] += c[7];
// Limit the hue (0 - 1)
if(vertices[counter][3] > 1.0f)
vertices[counter][3] -= 1.0f;
if(vertices[counter][3] < 0.0f)
vertices[counter][3] += 1.0f;
// Pick a saturation
vertices[counter][4] = c[0] + vertices[counter][3];
// Limit the saturation (0 - 1)
if(vertices[counter][4] < 0.0f)
vertices[counter][4] = -vertices[counter][4];
vertices[counter][4] -= float(int(vertices[counter][4]));
vertices[counter][4] = 1.0f - (vertices[counter][4] * vertices[counter][4]);
// Bring particles back if they escape
if(!counter){
if((vertices[0][0] > 1000000000.0f) || (vertices[0][0] < -1000000000.0f)
|| (vertices[0][1] > 1000000000.0f) || (vertices[0][1] < -1000000000.0f)
|| (vertices[2][2] > 1000000000.0f) || (vertices[0][2] < -1000000000.0f)){
vertices[0][0] = myRandf(2.0f) - 1.0f;
vertices[0][1] = myRandf(2.0f) - 1.0f;
vertices[0][2] = myRandf(2.0f) - 1.0f;
}
}
// Draw every vertex in particle trail
p = counter;
growth = 0;
luminosity = _fc->lumdiff;
for(i=0; i<_fc->dTrail; i++){
p ++;
if(p >= _fc->dTrail)
p = 0;
growth++;
// assign color to particle
hsl2rgb(vertices[p][3], vertices[p][4], luminosity, rgb[0], rgb[1], rgb[2]);
glColor3fv(rgb);
glPushMatrix();
if(_fc->dGeometry == 1) // Spheres
glTranslatef(vertices[p][0], vertices[p][1], vertices[p][2]);
else{ // Points or lights
depth = _fc->cosCameraAngle * vertices[p][2] - _fc->sinCameraAngle * vertices[p][0];
glTranslatef(_fc->cosCameraAngle * vertices[p][0] + _fc->sinCameraAngle
* vertices[p][2], vertices[p][1], depth);
}
if(_fc->dGeometry){ // Spheres or lights
switch(_fc->dTrail - growth){
case 0:
glScalef(0.259f, 0.259f, 0.259f);
break;
case 1:
glScalef(0.5f, 0.5f, 0.5f);
break;
case 2:
glScalef(0.707f, 0.707f, 0.707f);
break;
case 3:
glScalef(0.866f, 0.866f, 0.866f);
break;
case 4:
glScalef(0.966f, 0.966f, 0.966f);
}
}
switch(_fc->dGeometry){
case 0: // Points
switch(_fc->dTrail - growth){
case 0:
glPointSize(float(_fc->dSize * (depth + 200.0f) * 0.001036f));
break;
case 1:
glPointSize(float(_fc->dSize * (depth + 200.0f) * 0.002f));
break;
case 2:
glPointSize(float(_fc->dSize * (depth + 200.0f) * 0.002828f));
break;
case 3:
glPointSize(float(_fc->dSize * (depth + 200.0f) * 0.003464f));
break;
case 4:
glPointSize(float(_fc->dSize * (depth + 200.0f) * 0.003864f));
break;
default:
glPointSize(float(_fc->dSize * (depth + 200.0f) * 0.004f));
}
glBegin(GL_POINTS);
glVertex3f(0.0f,0.0f,0.0f);
glEnd();
break;
case 1: // Spheres
case 2: // Lights
glCallList(1);
}
glPopMatrix();
vertices[p][0] *= expander;
vertices[p][1] *= expander;
vertices[p][2] *= expander;
vertices[p][2] += blower;
luminosity += _fc->lumdiff;
}
// Find distance between new position and old position and return it
oldpos[0] -= vertices[counter][0];
oldpos[1] -= vertices[counter][1];
oldpos[2] -= vertices[counter][2];
return(float(sqrt(oldpos[0] * oldpos[0] + oldpos[1] * oldpos[1] + oldpos[2] * oldpos[2])));
}
// This class is a set of particle trails and constants that enter
// into their equations of motion.
class flux
{
public:
flux();
~flux();
void update();
particle *particles;
int randomize;
float c[NUMCONSTS]; // constants
float cv[NUMCONSTS]; // constants' change velocities
int currentSmartConstant;
float oldDistance;
};
flux::flux()
{
whichparticle = 0;
particles = new particle[_fc->dParticles];
randomize = 1;
float instability = _fc->dInstability;
int i;
for(i=0; i<NUMCONSTS; i++)
{
c[i] = myRandf(2.0f) - 1.0f;
cv[i] = myRandf(0.000005f * instability * instability)
+ 0.000001f * instability * instability;
}
currentSmartConstant = 0;
oldDistance = 0.0f;
}
flux::~flux()
{
delete[] particles;
}
void flux::update()
{
int i;
// randomize constants
if(_fc->dRandomize){
randomize --;
if(randomize <= 0){
for(i=0; i<NUMCONSTS; i++)
c[i] = myRandf(2.0f) - 1.0f;
int temp = 101 - _fc->dRandomize;
temp = temp * temp;
randomize = temp + myRandi(temp);
}
}
// update constants
for(i=0; i<NUMCONSTS; i++){
c[i] += cv[i];
if(c[i] >= 1.0f){
c[i] = 1.0f;
cv[i] = -cv[i];
}
if(c[i] <= -1.0f){
c[i] = -1.0f;
cv[i] = -cv[i];
}
}
// update all particles in this flux field
float dist;
for(i=0; i<_fc->dParticles; i++)
dist = particles[i].update(c);
// use dist from last particle to activate smart constants
_fc->dSmart = 0;
if(_fc->dSmart){
const float upper = 0.4f;
const float lower = 0.2f;
int beSmart = 0;
if(dist > upper && dist > oldDistance)
beSmart = 1;
if(dist < lower && dist < oldDistance)
beSmart = 1;
if(beSmart){
cv[currentSmartConstant] = -cv[currentSmartConstant];
currentSmartConstant ++;
if(currentSmartConstant >= _fc->dSmart)
currentSmartConstant = 0;
}
oldDistance = dist;
}
}
//----------------------------------------------------------------------------
FluxWidget::FluxWidget( TQWidget* parent, const char* name )
: TQGLWidget(parent, name), _fluxes(0)
{
setDefaults( Regular );
_frameTime = 1000 / 60;
_timer = new TQTimer( this );
connect( _timer, TQT_SIGNAL(timeout()), this, TQT_SLOT(nextFrame()) );
}
FluxWidget::~FluxWidget()
{
// Free memory
delete[] _fluxes;
}
void FluxWidget::paintGL()
{
// clear the screen
glLoadIdentity();
if(dBlur) // partially
{
int viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
float viewRatio = float(viewport[2]) / float(viewport[3]);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glColor4f(0.0f, 0.0f, 0.0f, 0.5f - (float(sqrt(sqrt(double(dBlur)))) * 0.15495f));
glBegin(GL_TRIANGLE_STRIP);
glVertex3f(-3.0f * viewRatio, -3.0f, 0.0f);
glVertex3f(3.0f * viewRatio, -3.0f, 0.0f);
glVertex3f(-3.0f * viewRatio, 3.0f, 0.0f);
glVertex3f(3.0f * viewRatio, 3.0f, 0.0f);
glEnd();
}
else // completely
{
glClear(GL_COLOR_BUFFER_BIT);
}
cameraAngle += 0.01f * float(dRotation);
if(cameraAngle >= 360.0f)
cameraAngle -= 360.0f;
if(dGeometry == 1) // Only rotate for spheres
glRotatef(cameraAngle, 0.0f, 1.0f, 0.0f);
else
{
cosCameraAngle = cos(cameraAngle * DEG2RAD);
sinCameraAngle = sin(cameraAngle * DEG2RAD);
}
// set up blend modes for rendering particles
switch(dGeometry)
{
case 0: // Blending for points
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glEnable(GL_BLEND);
glEnable(GL_POINT_SMOOTH);
glHint(GL_POINT_SMOOTH_HINT, GL_NICEST);
break;
case 1: // No blending for spheres, but we need z-buffering
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glClear(GL_DEPTH_BUFFER_BIT);
break;
case 2: // Blending for lights
glBlendFunc(GL_ONE, GL_ONE);
glEnable(GL_BLEND);
}
// Update particles
if( _fluxes )
{
_fc = this;
int i;
for(i=0; i<dFluxes; i++)
_fluxes[i].update();
}
glFlush();
}
void FluxWidget::resizeGL( int w, int h )
{
glViewport(0, 0, w, h );
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(100.0, (float) w / (float) h, 0.01, 200);
glTranslatef(0.0, 0.0, -2.5);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
// Window initialization
void FluxWidget::initializeGL()
{
//resizeGL( width(), height() );
updateParameters();
_timer->start( _frameTime, true );
}
#ifdef UNIT_TEST
void FluxWidget::keyPressEvent( TQKeyEvent* e )
{
if( e->key() == TQt::Key_0 ) { setDefaults( 0 ); updateParameters(); }
if( e->key() == TQt::Key_1 ) { setDefaults( 1 ); updateParameters(); }
if( e->key() == TQt::Key_2 ) { setDefaults( 2 ); updateParameters(); }
if( e->key() == TQt::Key_3 ) { setDefaults( 3 ); updateParameters(); }
if( e->key() == TQt::Key_4 ) { setDefaults( 4 ); updateParameters(); }
if( e->key() == TQt::Key_5 ) { setDefaults( 5 ); updateParameters(); }
}
#endif
void FluxWidget::nextFrame()
{
updateGL();
_timer->start( _frameTime, true );
}
/**
May be called at any time - makes no OpenGL calls.
*/
void FluxWidget::setDefaults( int which )
{
switch(which)
{
case Hypnotic:
dFluxes = 2;
dParticles = 10;
dTrail = 40;
dGeometry = 2;
dSize = 15;
dRandomize = 80;
dExpansion = 20;
dRotation = 0;
dWind = 40;
dInstability = 10;
dBlur = 30;
break;
case Insane:
dFluxes = 4;
dParticles = 30;
dTrail = 8;
dGeometry = 2;
dSize = 25;
dRandomize = 0;
dExpansion = 80;
dRotation = 60;
dWind = 40;
dInstability = 100;
dBlur = 10;
break;
case Sparklers:
dFluxes = 3;
dParticles = 20;
dTrail = 6;
dGeometry = 1;
dSize = 20;
dComplexity = 3;
dRandomize = 85;
dExpansion = 60;
dRotation = 30;
dWind = 20;
dInstability = 30;
dBlur = 0;
break;
case Paradigm:
dFluxes = 1;
dParticles = 40;
dTrail = 40;
dGeometry = 2;
dSize = 5;
dRandomize = 90;
dExpansion = 30;
dRotation = 20;
dWind = 10;
dInstability = 5;
dBlur = 10;
break;
case Galactic:
dFluxes = 1;
dParticles = 2;
dTrail = 1500;
dGeometry = 2;
dSize = 10;
dRandomize = 0;
dExpansion = 5;
dRotation = 25;
dWind = 0;
dInstability = 5;
dBlur = 0;
break;
case Regular:
default:
dFluxes = 1;
dParticles = 20;
dTrail = 40;
dGeometry = 2;
dSize = 15;
dRandomize = 0;
dExpansion = 40;
dRotation = 30;
dWind = 20;
dInstability = 20;
dBlur = 0;
break;
}
}
/**
Called after dGeometry, dTrail, or dFluxes is changed
(such as with setDefaults).
*/
void FluxWidget::updateParameters()
{
int i, j;
float x, y, temp;
srand((unsigned)time(NULL));
rand(); rand(); rand(); rand(); rand();
cameraAngle = 0.0f;
glFrontFace(GL_CCW);
glEnable(GL_CULL_FACE);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
if(dGeometry == 0)
{
glDisable(GL_LIGHTING);
glDisable(GL_COLOR_MATERIAL);
glDisable(GL_TEXTURE_2D);
glEnable(GL_POINT_SMOOTH);
//glHint(GL_POINT_SMOOTH_HINT, GL_NICEST);
}
else if(dGeometry == 1) // Spheres and their lighting
{
glNewList(1, GL_COMPILE);
GLUquadricObj* qobj = gluNewQuadric();
gluSphere(qobj, 0.005f * dSize, dComplexity + 2, dComplexity + 1);
gluDeleteQuadric(qobj);
glEndList();
glDisable(GL_TEXTURE_2D);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
float ambient[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float diffuse[4] = {1.0f, 1.0f, 1.0f, 0.0f};
float specular[4] = {1.0f, 1.0f, 1.0f, 0.0f};
float position[4] = {500.0f, 500.0f, 500.0f, 0.0f};
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
glLightfv(GL_LIGHT0, GL_POSITION, position);
glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);
}
else if(dGeometry == 2) // Init lights
{
for(i=0; i<LIGHTSIZE; i++)
{
for(j=0; j<LIGHTSIZE; j++)
{
x = float(i - LIGHTSIZE / 2) / float(LIGHTSIZE / 2);
y = float(j - LIGHTSIZE / 2) / float(LIGHTSIZE / 2);
temp = 1.0f - float(sqrt((x * x) + (y * y)));
if(temp > 1.0f)
temp = 1.0f;
if(temp < 0.0f)
temp = 0.0f;
lightTexture[i][j] = (unsigned char) (255.0f * temp * temp);
}
}
glDisable(GL_LIGHTING);
glDisable(GL_COLOR_MATERIAL);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 1);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, 1, LIGHTSIZE, LIGHTSIZE, 0,
GL_LUMINANCE, GL_UNSIGNED_BYTE, lightTexture);
temp = float(dSize) * 0.005f;
glNewList(1, GL_COMPILE);
glBindTexture(GL_TEXTURE_2D, 1);
glBegin(GL_TRIANGLES);
glTexCoord2f(0.0f, 0.0f);
glVertex3f(-temp, -temp, 0.0f);
glTexCoord2f(1.0f, 0.0f);
glVertex3f(temp, -temp, 0.0f);
glTexCoord2f(1.0f, 1.0f);
glVertex3f(temp, temp, 0.0f);
glTexCoord2f(0.0f, 0.0f);
glVertex3f(-temp, -temp, 0.0f);
glTexCoord2f(1.0f, 1.0f);
glVertex3f(temp, temp, 0.0f);
glTexCoord2f(0.0f, 1.0f);
glVertex3f(-temp, temp, 0.0f);
glEnd();
glEndList();
}
// Initialize luminosity difference
lumdiff = 1.0f / float(dTrail);
_fc = this;
delete[] _fluxes;
_fluxes = new flux[dFluxes];
}
//----------------------------------------------------------------------------
#ifndef UNIT_TEST
#include <klocale.h>
#include <kglobal.h>
#include <kconfig.h>
// libtdescreensaver interface
extern "C"
{
KDE_EXPORT const char* kss_applicationName = "kflux.kss";
KDE_EXPORT const char* kss_description = I18N_NOOP( "Flux" );
KDE_EXPORT const char* kss_version = "1.0";
KDE_EXPORT KScreenSaver* kss_create( WId id )
{
return new KFluxScreenSaver( id );
}
KDE_EXPORT TQDialog* kss_setup()
{
return new KFluxSetup;
}
}
//----------------------------------------------------------------------------
KFluxScreenSaver::KFluxScreenSaver( WId id ) : KScreenSaver( id )
{
_flux = new FluxWidget;
readSettings();
embed( _flux );
_flux->show();
}
KFluxScreenSaver::~KFluxScreenSaver()
{
}
static int filterRandom( int n )
{
if( (n < 0) || (n >= FluxWidget::DefaultModes) )
{
srand((unsigned)time(NULL));
n = rand() % FluxWidget::DefaultModes;
}
return n;
}
void KFluxScreenSaver::readSettings()
{
TDEConfig* config = TDEGlobal::config();
config->setGroup("Settings");
_mode = config->readNumEntry( "Mode", FluxWidget::Regular );
_flux->setDefaults( filterRandom(_mode) );
}
/**
Any invalid mode will select one at random.
*/
void KFluxScreenSaver::setMode( int id )
{
_mode = id;
_flux->setDefaults( filterRandom(id) );
_flux->updateParameters();
}
//----------------------------------------------------------------------------
#include <tqlayout.h>
#include <tqpushbutton.h>
#include <tqlabel.h>
#include <tqcombobox.h>
#include <kbuttonbox.h>
#include <kmessagebox.h>
static const char* defaultText[] =
{
I18N_NOOP( "Regular" ),
I18N_NOOP( "Hypnotic" ),
I18N_NOOP( "Insane" ),
I18N_NOOP( "Sparklers" ),
I18N_NOOP( "Paradigm" ),
I18N_NOOP( "Galactic" ),
I18N_NOOP( "(Random)" ),
0
};
KFluxSetup::KFluxSetup( TQWidget* parent, const char* name )
: KDialogBase( parent, name, true, i18n( "Setup Flux Screen Saver" ),
Ok|Cancel|Help, Ok, true )
{
setButtonText( Help, i18n( "A&bout" ) );
TQWidget *main = makeMainWidget();
TQHBoxLayout* top = new TQHBoxLayout( main, 0, spacingHint() );
TQVBoxLayout* leftCol = new TQVBoxLayout;
top->addLayout( leftCol );
// Parameters
TQLabel* label = new TQLabel( i18n("Mode:"), main );
leftCol->addWidget( label );
modeW = new TQComboBox( main );
int i = 0;
while (defaultText[i])
modeW->insertItem( i18n(defaultText[i++]) );
leftCol->addWidget( modeW );
leftCol->addStretch();
// Preview
TQWidget* preview;
preview = new TQWidget( main );
preview->setFixedSize( 220, 165 );
preview->setBackgroundColor( black );
preview->show(); // otherwise saver does not get correct size
_saver = new KFluxScreenSaver( preview->winId() );
top->addWidget(preview);
// Now that we have _saver...
modeW->setCurrentItem( _saver->mode() ); // set before we connect
connect( modeW, TQT_SIGNAL(activated(int)), _saver, TQT_SLOT(setMode(int)) );
}
KFluxSetup::~KFluxSetup()
{
delete _saver;
}
void KFluxSetup::slotHelp()
{
KMessageBox::about(this,
i18n("<h3>Flux 1.0</h3>\n<p>Copyright (c) 2002 Terence M. Welsh<br>\n<a href=\"http://www.reallyslick.com/\">http://www.reallyslick.com/</a></p>\n\n<p>Ported to KDE by Karl Robillard</p>"),
TQString(), KMessageBox::AllowLink);
}
/**
Ok pressed - save settings and exit
*/
void KFluxSetup::slotOk()
{
TDEConfig* config = TDEGlobal::config();
config->setGroup("Settings");
TQString val;
val.setNum( modeW->currentItem() );
config->writeEntry("Mode", val );
config->sync();
accept();
}
#endif
//----------------------------------------------------------------------------
#ifdef UNIT_TEST
// moc Flux.h -o Flux.moc
// g++ -g -DUNIT_TEST Flux.cpp -I/usr/lib/qt3/include -lqt -L/usr/lib/qt3/lib -lGLU -lGL
#include <tqapplication.h>
int main( int argc, char** argv )
{
TQApplication app( argc, argv );
FluxWidget w;
w.setDefaults( FluxWidget::Sparklers );
app.setMainWidget( &w );
w.show();
return app.exec();
}
#endif
//EOF