You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rosegarden/src/sound/RingBuffer.h

572 lines
15 KiB

/*
Rosegarden
A sequencer and musical notation editor.
This program is Copyright 2000-2008
Guillaume Laurent <glaurent@telegraph-road.org>,
Chris Cannam <cannam@all-day-breakfast.com>,
Richard Bown <bownie@bownie.com>
The moral right of the authors to claim authorship of this work
has been asserted.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#ifndef _RINGBUFFER_H_
#define _RINGBUFFER_H_
#include <sys/types.h>
#include <sys/mman.h>
#include <string.h>
#include "Scavenger.h"
//#define DEBUG_RINGBUFFER 1
//#define DEBUG_RINGBUFFER_CREATE_DESTROY 1
#ifdef DEBUG_RINGBUFFER
#define DEBUG_RINGBUFFER_CREATE_DESTROY 1
#endif
#ifdef DEBUG_RINGBUFFER_CREATE_DESTROY
#include <iostream>
static int __extant_ringbuffers = 0;
#endif
namespace Rosegarden {
/**
* RingBuffer implements a lock-free ring buffer for one writer and N
* readers, that is to be used to store a sample type T.
*
* For efficiency, RingBuffer frequently initialises samples by
* writing zeroes into their memory space, so T should normally be a
* simple type that can safely be set to zero using memset.
*/
template <typename T, int N = 1>
class RingBuffer
{
public:
/**
* Create a ring buffer with room to write n samples.
*
* Note that the internal storage size will actually be n+1
* samples, as one element is unavailable for administrative
* reasons. Since the ring buffer performs best if its size is a
* power of two, this means n should ideally be some power of two
* minus one.
*/
RingBuffer(size_t n);
virtual ~RingBuffer();
/**
* Return the total capacity of the ring buffer in samples.
* (This is the argument n passed to the constructor.)
*/
size_t getSize() const;
/**
* Resize the ring buffer. This also empties it. Actually swaps
* in a new, larger buffer; the old buffer is scavenged after a
* seemly delay. Should be called from the write thread.
*/
void resize(size_t newSize);
/**
* Lock the ring buffer into physical memory. Returns true
* for success.
*/
bool mlock();
/**
* Unlock the ring buffer from physical memory. Returns true for
* success.
*/
bool munlock();
/**
* Reset read and write pointers, thus emptying the buffer.
* Should be called from the write thread.
*/
void reset();
/**
* Return the amount of data available for reading by reader R, in
* samples.
*/
size_t getReadSpace(int R = 0) const;
/**
* Return the amount of space available for writing, in samples.
*/
size_t getWriteSpace() const;
/**
* Read n samples from the buffer, for reader R. If fewer than n
* are available, the remainder will be zeroed out. Returns the
* number of samples actually read.
*/
size_t read(T *destination, size_t n, int R = 0);
/**
* Read n samples from the buffer, for reader R, adding them to
* the destination. If fewer than n are available, the remainder
* will be left alone. Returns the number of samples actually
* read.
*/
size_t readAdding(T *destination, size_t n, int R = 0);
/**
* Read one sample from the buffer, for reader R. If no sample is
* available, this will silently return zero. Calling this
* repeatedly is obviously slower than calling read once, but it
* may be good enough if you don't want to allocate a buffer to
* read into.
*/
T readOne(int R = 0);
/**
* Read n samples from the buffer, if available, for reader R,
* without advancing the read pointer -- i.e. a subsequent read()
* or skip() will be necessary to empty the buffer. If fewer than
* n are available, the remainder will be zeroed out. Returns the
* number of samples actually read.
*/
size_t peek(T *destination, size_t n, int R = 0) const;
/**
* Read one sample from the buffer, if available, without
* advancing the read pointer -- i.e. a subsequent read() or
* skip() will be necessary to empty the buffer. Returns zero if
* no sample was available.
*/
T peek(int R = 0) const;
/**
* Pretend to read n samples from the buffer, for reader R,
* without actually returning them (i.e. discard the next n
* samples). Returns the number of samples actually available for
* discarding.
*/
size_t skip(size_t n, int R = 0);
/**
* Write n samples to the buffer. If insufficient space is
* available, not all samples may actually be written. Returns
* the number of samples actually written.
*/
size_t write(const T *source, size_t n);
/**
* Write n zero-value samples to the buffer. If insufficient
* space is available, not all zeros may actually be written.
* Returns the number of zeroes actually written.
*/
size_t zero(size_t n);
protected:
T *m_buffer;
volatile size_t m_writer;
volatile size_t m_readers[N];
size_t m_size;
bool m_mlocked;
static Scavenger<ScavengerArrayWrapper<T> > m_scavenger;
private:
RingBuffer(const RingBuffer &); // not provided
RingBuffer &operator=(const RingBuffer &); // not provided
};
template <typename T, int N>
Scavenger<ScavengerArrayWrapper<T> > RingBuffer<T, N>::m_scavenger;
template <typename T, int N>
RingBuffer<T, N>::RingBuffer(size_t n) :
m_buffer(new T[n + 1]),
m_writer(0),
m_size(n + 1),
m_mlocked(false)
{
#ifdef DEBUG_RINGBUFFER_CREATE_DESTROY
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::RingBuffer(" << n << ") [now have " << (++__extant_ringbuffers) << "]" << std::endl;
#endif
for (int i = 0; i < N; ++i) m_readers[i] = 0;
m_scavenger.scavenge();
}
template <typename T, int N>
RingBuffer<T, N>::~RingBuffer()
{
#ifdef DEBUG_RINGBUFFER_CREATE_DESTROY
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::~RingBuffer [now have " << (--__extant_ringbuffers) << "]" << std::endl;
#endif
if (m_mlocked) {
::munlock((void *)m_buffer, m_size * sizeof(T));
}
delete[] m_buffer;
m_scavenger.scavenge();
}
template <typename T, int N>
size_t
RingBuffer<T, N>::getSize() const
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::getSize(): " << m_size-1 << std::endl;
#endif
return m_size - 1;
}
template <typename T, int N>
void
RingBuffer<T, N>::resize(size_t newSize)
{
#ifdef DEBUG_RINGBUFFER_CREATE_DESTROY
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::resize(" << newSize << ")" << std::endl;
#endif
m_scavenger.scavenge();
if (m_mlocked) {
::munlock((void *)m_buffer, m_size * sizeof(T));
}
m_scavenger.claim(new ScavengerArrayWrapper<T>(m_buffer));
reset();
m_buffer = new T[newSize + 1];
m_size = newSize + 1;
if (m_mlocked) {
if (::mlock((void *)m_buffer, m_size * sizeof(T))) {
m_mlocked = false;
}
}
}
template <typename T, int N>
bool
RingBuffer<T, N>::mlock()
{
if (::mlock((void *)m_buffer, m_size * sizeof(T))) return false;
m_mlocked = true;
return true;
}
template <typename T, int N>
bool
RingBuffer<T, N>::munlock()
{
if (::munlock((void *)m_buffer, m_size * sizeof(T))) return false;
m_mlocked = false;
return true;
}
template <typename T, int N>
void
RingBuffer<T, N>::reset()
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::reset" << std::endl;
#endif
m_writer = 0;
for (int i = 0; i < N; ++i) m_readers[i] = 0;
}
template <typename T, int N>
size_t
RingBuffer<T, N>::getReadSpace(int R) const
{
size_t writer = m_writer;
size_t reader = m_readers[R];
size_t space = 0;
if (writer > reader) space = writer - reader;
else space = ((writer + m_size) - reader) % m_size;
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::getReadSpace(" << R << "): " << space << std::endl;
#endif
return space;
}
template <typename T, int N>
size_t
RingBuffer<T, N>::getWriteSpace() const
{
size_t space = 0;
for (int i = 0; i < N; ++i) {
size_t here = (m_readers[i] + m_size - m_writer - 1) % m_size;
if (i == 0 || here < space) space = here;
}
#ifdef DEBUG_RINGBUFFER
size_t rs(getReadSpace()), rp(m_readers[0]);
std::cerr << "RingBuffer: write space " << space << ", read space "
<< rs << ", total " << (space + rs) << ", m_size " << m_size << std::endl;
std::cerr << "RingBuffer: reader " << rp << ", writer " << m_writer << std::endl;
#endif
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::getWriteSpace(): " << space << std::endl;
#endif
return space;
}
template <typename T, int N>
size_t
RingBuffer<T, N>::read(T *destination, size_t n, int R)
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::read(dest, " << n << ", " << R << ")" << std::endl;
#endif
size_t available = getReadSpace(R);
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only " << available << " samples available"
<< std::endl;
#endif
memset(destination + available, 0, (n - available) * sizeof(T));
n = available;
}
if (n == 0) return n;
size_t here = m_size - m_readers[R];
if (here >= n) {
memcpy(destination, m_buffer + m_readers[R], n * sizeof(T));
} else {
memcpy(destination, m_buffer + m_readers[R], here * sizeof(T));
memcpy(destination + here, m_buffer, (n - here) * sizeof(T));
}
m_readers[R] = (m_readers[R] + n) % m_size;
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::read: read " << n << ", reader now " << m_readers[R] << std::endl;
#endif
return n;
}
template <typename T, int N>
size_t
RingBuffer<T, N>::readAdding(T *destination, size_t n, int R)
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::readAdding(dest, " << n << ", " << R << ")" << std::endl;
#endif
size_t available = getReadSpace(R);
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only " << available << " samples available"
<< std::endl;
#endif
n = available;
}
if (n == 0) return n;
size_t here = m_size - m_readers[R];
if (here >= n) {
for (size_t i = 0; i < n; ++i) {
destination[i] += (m_buffer + m_readers[R])[i];
}
} else {
for (size_t i = 0; i < here; ++i) {
destination[i] += (m_buffer + m_readers[R])[i];
}
for (size_t i = 0; i < (n - here); ++i) {
destination[i + here] += m_buffer[i];
}
}
m_readers[R] = (m_readers[R] + n) % m_size;
return n;
}
template <typename T, int N>
T
RingBuffer<T, N>::readOne(int R)
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::readOne(" << R << ")" << std::endl;
#endif
if (m_writer == m_readers[R]) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: No sample available"
<< std::endl;
#endif
T t;
memset(&t, 0, sizeof(T));
return t;
}
T value = m_buffer[m_readers[R]];
if (++m_readers[R] == m_size) m_readers[R] = 0;
return value;
}
template <typename T, int N>
size_t
RingBuffer<T, N>::peek(T *destination, size_t n, int R) const
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::peek(dest, " << n << ", " << R << ")" << std::endl;
#endif
size_t available = getReadSpace(R);
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only " << available << " samples available"
<< std::endl;
#endif
memset(destination + available, 0, (n - available) * sizeof(T));
n = available;
}
if (n == 0) return n;
size_t here = m_size - m_readers[R];
if (here >= n) {
memcpy(destination, m_buffer + m_readers[R], n * sizeof(T));
} else {
memcpy(destination, m_buffer + m_readers[R], here * sizeof(T));
memcpy(destination + here, m_buffer, (n - here) * sizeof(T));
}
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::peek: read " << n << std::endl;
#endif
return n;
}
template <typename T, int N>
T
RingBuffer<T, N>::peek(int R) const
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::peek(" << R << ")" << std::endl;
#endif
if (m_writer == m_readers[R]) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: No sample available"
<< std::endl;
#endif
T t;
memset(&t, 0, sizeof(T));
return t;
}
T value = m_buffer[m_readers[R]];
return value;
}
template <typename T, int N>
size_t
RingBuffer<T, N>::skip(size_t n, int R)
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::skip(" << n << ", " << R << ")" << std::endl;
#endif
size_t available = getReadSpace(R);
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only " << available << " samples available"
<< std::endl;
#endif
n = available;
}
if (n == 0) return n;
m_readers[R] = (m_readers[R] + n) % m_size;
return n;
}
template <typename T, int N>
size_t
RingBuffer<T, N>::write(const T *source, size_t n)
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::write(" << n << ")" << std::endl;
#endif
size_t available = getWriteSpace();
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only room for " << available << " samples"
<< std::endl;
#endif
n = available;
}
if (n == 0) return n;
size_t here = m_size - m_writer;
if (here >= n) {
memcpy(m_buffer + m_writer, source, n * sizeof(T));
} else {
memcpy(m_buffer + m_writer, source, here * sizeof(T));
memcpy(m_buffer, source + here, (n - here) * sizeof(T));
}
m_writer = (m_writer + n) % m_size;
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::write: wrote " << n << ", writer now " << m_writer << std::endl;
#endif
return n;
}
template <typename T, int N>
size_t
RingBuffer<T, N>::zero(size_t n)
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::zero(" << n << ")" << std::endl;
#endif
size_t available = getWriteSpace();
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only room for " << available << " samples"
<< std::endl;
#endif
n = available;
}
if (n == 0) return n;
size_t here = m_size - m_writer;
if (here >= n) {
memset(m_buffer + m_writer, 0, n * sizeof(T));
} else {
memset(m_buffer + m_writer, 0, here * sizeof(T));
memset(m_buffer, 0, (n - here) * sizeof(T));
}
m_writer = (m_writer + n) % m_size;
return n;
}
}
#endif // _RINGBUFFER_H_