You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rosegarden/src/sound/PlayableAudioFile.cpp

1085 lines
28 KiB

/*
Rosegarden
A sequencer and musical notation editor.
This program is Copyright 2000-2008
Guillaume Laurent <glaurent@telegraph-road.org>,
Chris Cannam <cannam@all-day-breakfast.com>,
Richard Bown <bownie@bownie.com>
The moral right of the authors to claim authorship of this work
has been asserted.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "PlayableAudioFile.h"
#include <cassert>
namespace Rosegarden
{
//#define DEBUG_RING_BUFFER_POOL 1
//#define DEBUG_PLAYABLE 1
//#define DEBUG_PLAYABLE_READ 1
class RingBufferPool
{
public:
typedef float sample_t;
RingBufferPool(size_t bufferSize);
virtual ~RingBufferPool();
/**
* Set the default size for buffers. Buffers currently allocated
* will not be resized until they are returned.
*/
void setBufferSize(size_t n);
size_t getBufferSize() const
{
return m_bufferSize;
}
/**
* Discard or create buffers as necessary so as to have n buffers
* in the pool. This will not discard any buffers that are
* currently allocated, so if more than n are allocated, more than
* n will remain.
*/
void setPoolSize(size_t n);
size_t getPoolSize() const
{
return m_buffers.size();
}
/**
* Return true if n buffers available, false otherwise.
*/
bool getBuffers(size_t n, RingBuffer<sample_t> **buffers);
/**
* Return a buffer to the pool.
*/
void returnBuffer(RingBuffer<sample_t> *buffer);
protected:
// Want to avoid memory allocation if possible when marking a buffer
// unallocated or allocated, so we use a single container for all
typedef std::pair<RingBuffer<sample_t> *, bool> AllocPair;
typedef std::vector<AllocPair> AllocList;
AllocList m_buffers;
size_t m_bufferSize;
size_t m_available;
pthread_mutex_t m_lock;
};
RingBufferPool::RingBufferPool(size_t bufferSize) :
m_bufferSize(bufferSize),
m_available(0)
{
pthread_mutex_t initialisingMutex = PTHREAD_MUTEX_INITIALIZER;
memcpy(&m_lock, &initialisingMutex, sizeof(pthread_mutex_t));
}
RingBufferPool::~RingBufferPool()
{
size_t allocatedCount = 0;
for (AllocList::iterator i = m_buffers.begin(); i != m_buffers.end(); ++i) {
if (i->second)
++allocatedCount;
}
if (allocatedCount > 0) {
std::cerr << "WARNING: RingBufferPool::~RingBufferPool: deleting pool with " << allocatedCount << " allocated buffers" << std::endl;
}
for (AllocList::iterator i = m_buffers.begin(); i != m_buffers.end(); ++i) {
delete i->first;
}
m_buffers.clear();
pthread_mutex_destroy(&m_lock);
}
void
RingBufferPool::setBufferSize(size_t n)
{
if (m_bufferSize == n)
return ;
pthread_mutex_lock(&m_lock);
#ifdef DEBUG_RING_BUFFER_POOL
std::cerr << "RingBufferPool::setBufferSize: from " << m_bufferSize
<< " to " << n << std::endl;
int c = 0;
#endif
for (AllocList::iterator i = m_buffers.begin(); i != m_buffers.end(); ++i) {
if (!i->second) {
delete i->first;
i->first = new RingBuffer<sample_t>(n);
#ifdef DEBUG_RING_BUFFER_POOL
std::cerr << "Resized buffer " << c++ << std::endl;
#endif
} else {
#ifdef DEBUG_RING_BUFFER_POOL
std::cerr << "Buffer " << c++ << " is already in use, resizing in place" << std::endl;
#endif
i->first->resize(n);
}
}
m_bufferSize = n;
pthread_mutex_unlock(&m_lock);
}
void
RingBufferPool::setPoolSize(size_t n)
{
pthread_mutex_lock(&m_lock);
#ifdef DEBUG_RING_BUFFER_POOL
std::cerr << "RingBufferPool::setPoolSize: from " << m_buffers.size()
<< " to " << n << std::endl;
#endif
size_t allocatedCount = 0, count = 0;
for (AllocList::iterator i = m_buffers.begin(); i != m_buffers.end(); ++i) {
if (i->second)
++allocatedCount;
++count;
}
if (count > n) {
for (AllocList::iterator i = m_buffers.begin(); i != m_buffers.end(); ) {
if (!i->second) {
delete i->first;
m_buffers.erase(i);
if (--count == n)
break;
} else {
++i;
}
}
}
while (count < n) {
m_buffers.push_back(AllocPair(new RingBuffer<sample_t>(m_bufferSize),
false));
++count;
}
m_available = std::max(allocatedCount, n) - allocatedCount;
#ifdef DEBUG_RING_BUFFER_POOL
std::cerr << "RingBufferPool::setPoolSize: have " << m_buffers.size()
<< " buffers (" << allocatedCount << " allocated, " << m_available << " available)" << std::endl;
#endif
pthread_mutex_unlock(&m_lock);
}
bool
RingBufferPool::getBuffers(size_t n, RingBuffer<sample_t> **buffers)
{
pthread_mutex_lock(&m_lock);
size_t count = 0;
for (AllocList::iterator i = m_buffers.begin(); i != m_buffers.end(); ++i) {
if (!i->second && ++count == n)
break;
}
if (count < n) {
#ifdef DEBUG_RING_BUFFER_POOL
std::cerr << "RingBufferPool::getBuffers(" << n << "): not available (in pool of " << m_buffers.size() << "), resizing" << std::endl;
#endif
AllocList newBuffers;
while (count < n) {
for (size_t i = 0; i < m_buffers.size(); ++i) {
newBuffers.push_back(m_buffers[i]);
}
for (size_t i = 0; i < m_buffers.size(); ++i) {
newBuffers.push_back(AllocPair(new RingBuffer<sample_t>(m_bufferSize),
false));
}
count += m_buffers.size();
m_available += m_buffers.size();
}
m_buffers = newBuffers;
}
count = 0;
#ifdef DEBUG_RING_BUFFER_POOL
std::cerr << "RingBufferPool::getBuffers(" << n << "): available" << std::endl;
#endif
for (AllocList::iterator i = m_buffers.begin(); i != m_buffers.end(); ++i) {
if (!i->second) {
i->second = true;
i->first->reset();
i->first->mlock();
buffers[count] = i->first;
--m_available;
if (++count == n)
break;
}
}
#ifdef DEBUG_RING_BUFFER_POOL
std::cerr << "RingBufferPool::getBuffers: " << m_available << " remain in pool of " << m_buffers.size() << std::endl;
#endif
pthread_mutex_unlock(&m_lock);
return true;
}
void
RingBufferPool::returnBuffer(RingBuffer<sample_t> *buffer)
{
pthread_mutex_lock(&m_lock);
#ifdef DEBUG_RING_BUFFER_POOL
std::cerr << "RingBufferPool::returnBuffer" << std::endl;
#endif
buffer->munlock();
for (AllocList::iterator i = m_buffers.begin(); i != m_buffers.end(); ++i) {
if (i->first == buffer) {
i->second = false;
++m_available;
if (buffer->getSize() != m_bufferSize) {
delete buffer;
i->first = new RingBuffer<sample_t>(m_bufferSize);
}
}
}
#ifdef DEBUG_RING_BUFFER_POOL
std::cerr << "RingBufferPool::returnBuffer: " << m_available << " remain in pool of " << m_buffers.size() << std::endl;
#endif
pthread_mutex_unlock(&m_lock);
}
AudioCache PlayableAudioFile::m_smallFileCache;
std::vector<PlayableAudioFile::sample_t *> PlayableAudioFile::m_workBuffers;
size_t PlayableAudioFile::m_workBufferSize = 0;
char *PlayableAudioFile::m_rawFileBuffer;
size_t PlayableAudioFile::m_rawFileBufferSize = 0;
RingBufferPool *PlayableAudioFile::m_ringBufferPool = 0;
size_t PlayableAudioFile::m_xfadeFrames = 30;
PlayableAudioFile::PlayableAudioFile(InstrumentId instrumentId,
AudioFile *audioFile,
const RealTime &startTime,
const RealTime &startIndex,
const RealTime &duration,
size_t bufferSize,
size_t smallFileSize,
int targetChannels,
int targetSampleRate) :
m_startTime(startTime),
m_startIndex(startIndex),
m_duration(duration),
m_file(0),
m_audioFile(audioFile),
m_instrumentId(instrumentId),
m_targetChannels(targetChannels),
m_targetSampleRate(targetSampleRate),
m_fileEnded(false),
m_firstRead(true),
m_runtimeSegmentId( -1),
m_isSmallFile(false),
m_currentScanPoint(RealTime::zeroTime),
m_smallFileScanFrame(0),
m_autoFade(false),
m_fadeInTime(RealTime::zeroTime),
m_fadeOutTime(RealTime::zeroTime)
{
#ifdef DEBUG_PLAYABLE
std::cerr << "PlayableAudioFile::PlayableAudioFile - creating " << this << " for instrument " << instrumentId << " with file " << (m_audioFile ? m_audioFile->getShortFilename() : "(none)") << std::endl;
#endif
if (!m_ringBufferPool) {
//!!! Problematic -- how do we deal with different playable audio
// files requiring different buffer sizes? That shouldn't be the
// usual case, but it's not unthinkable.
m_ringBufferPool = new RingBufferPool(bufferSize);
} else {
m_ringBufferPool->setBufferSize
(std::max(bufferSize, m_ringBufferPool->getBufferSize()));
}
initialise(bufferSize, smallFileSize);
}
void
PlayableAudioFile::setRingBufferPoolSizes(size_t n, size_t nframes)
{
if (!m_ringBufferPool) {
m_ringBufferPool = new RingBufferPool(nframes);
} else {
m_ringBufferPool->setBufferSize
(std::max(nframes, m_ringBufferPool->getBufferSize()));
}
m_ringBufferPool->setPoolSize(n);
}
void
PlayableAudioFile::initialise(size_t bufferSize, size_t smallFileSize)
{
#ifdef DEBUG_PLAYABLE
std::cerr << "PlayableAudioFile::initialise() " << this << std::endl;
#endif
checkSmallFileCache(smallFileSize);
if (!m_isSmallFile) {
m_file = new std::ifstream(m_audioFile->getFilename().c_str(),
std::ios::in | std::ios::binary);
if (!*m_file) {
std::cerr << "ERROR: PlayableAudioFile::initialise: Failed to open audio file " << m_audioFile->getFilename() << std::endl;
delete m_file;
m_file = 0;
}
}
// Scan to the beginning of the data chunk we need
//
#ifdef DEBUG_PLAYABLE
std::cerr << "PlayableAudioFile::initialise - scanning to " << m_startIndex << std::endl;
#endif
if (m_file) {
scanTo(m_startIndex);
} else {
m_fileEnded = false;
m_currentScanPoint = m_startIndex;
m_smallFileScanFrame = RealTime::realTime2Frame
(m_currentScanPoint, m_audioFile->getSampleRate());
}
#ifdef DEBUG_PLAYABLE
std::cerr << "PlayableAudioFile::initialise: buffer size is " << bufferSize << " frames, file size is " << m_audioFile->getSize() << std::endl;
#endif
if (m_targetChannels <= 0)
m_targetChannels = m_audioFile->getChannels();
if (m_targetSampleRate <= 0)
m_targetSampleRate = m_audioFile->getSampleRate();
m_ringBuffers = new RingBuffer<sample_t> *[m_targetChannels];
for (int ch = 0; ch < m_targetChannels; ++ch) {
m_ringBuffers[ch] = 0;
}
}
PlayableAudioFile::~PlayableAudioFile()
{
if (m_file) {
m_file->close();
delete m_file;
}
returnRingBuffers();
delete[] m_ringBuffers;
m_ringBuffers = 0;
if (m_isSmallFile) {
m_smallFileCache.decrementReference(m_audioFile);
}
#ifdef DEBUG_PLAYABLE
// std::cerr << "PlayableAudioFile::~PlayableAudioFile - destroying - " << this << std::endl;
#endif
}
void
PlayableAudioFile::returnRingBuffers()
{
for (int i = 0; i < m_targetChannels; ++i) {
if (m_ringBuffers[i]) {
m_ringBufferPool->returnBuffer(m_ringBuffers[i]);
m_ringBuffers[i] = 0;
}
}
}
bool
PlayableAudioFile::scanTo(const RealTime &time)
{
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "PlayableAudioFile::scanTo(" << time << ")" << std::endl;
#endif
m_fileEnded = false; // until we know otherwise -- this flag is an
// optimisation, not a reliable record
bool ok = false;
if (m_isSmallFile) {
m_currentScanPoint = time;
m_smallFileScanFrame = RealTime::realTime2Frame
(time, m_audioFile->getSampleRate());
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "... maps to frame " << m_smallFileScanFrame << std::endl;
#endif
ok = true;
} else {
ok = m_audioFile->scanTo(m_file, time);
if (ok) {
m_currentScanPoint = time;
}
}
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "PlayableAudioFile::scanTo(" << time << "): set m_currentScanPoint to " << m_currentScanPoint << std::endl;
#endif
m_firstRead = true; // so we know to xfade in
return ok;
}
size_t
PlayableAudioFile::getSampleFramesAvailable()
{
size_t actual = 0;
if (m_isSmallFile) {
size_t cchannels;
size_t cframes;
(void)m_smallFileCache.getData(m_audioFile, cchannels, cframes);
if (cframes > m_smallFileScanFrame)
return cframes - m_smallFileScanFrame;
else
return 0;
}
for (int ch = 0; ch < m_targetChannels; ++ch) {
if (!m_ringBuffers[ch])
return 0;
size_t thisChannel = m_ringBuffers[ch]->getReadSpace();
if (ch == 0 || thisChannel < actual)
actual = thisChannel;
}
#ifdef DEBUG_PLAYABLE
std::cerr << "PlayableAudioFile(" << (m_audioFile ? m_audioFile->getShortFilename() : "(none)") << " " << this << ")::getSampleFramesAvailable: have " << actual << std::endl;
#endif
return actual;
}
size_t
PlayableAudioFile::addSamples(std::vector<sample_t *> &destination,
size_t channels, size_t nframes, size_t offset)
{
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "PlayableAudioFile::addSamples(" << nframes << "): channels " << channels << ", my target channels " << m_targetChannels << std::endl;
#endif
if (!m_isSmallFile) {
size_t qty = 0;
bool done = m_fileEnded;
for (int ch = 0; ch < int(channels) && ch < m_targetChannels; ++ch) {
if (!m_ringBuffers[ch])
return 0; //!!! fatal
size_t here = m_ringBuffers[ch]->readAdding(destination[ch] + offset, nframes);
if (ch == 0 || here < qty)
qty = here;
if (done && (m_ringBuffers[ch]->getReadSpace() > 0))
done = false;
}
for (int ch = channels; ch < m_targetChannels; ++ch) {
m_ringBuffers[ch]->skip(nframes);
}
if (done) {
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "PlayableAudioFile::addSamples(" << nframes << "): reached end, returning buffers" << std::endl;
#endif
returnRingBuffers();
}
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "PlayableAudioFile::addSamples(" << nframes << "): returning " << qty << " frames (at least " << (m_ringBuffers[0] ? m_ringBuffers[0]->getReadSpace() : 0) << " remaining)" << std::endl;
#endif
return qty;
} else {
size_t cchannels;
size_t cframes;
float **cached = m_smallFileCache.getData(m_audioFile, cchannels, cframes);
if (!cached) {
std::cerr << "WARNING: PlayableAudioFile::addSamples: Failed to find small file in cache" << std::endl;
m_isSmallFile = false;
} else {
size_t scanFrame = m_smallFileScanFrame;
if (scanFrame >= cframes) {
m_fileEnded = true;
return 0;
}
size_t endFrame = scanFrame + nframes;
size_t n = nframes;
if (endFrame >= cframes) {
m_fileEnded = true;
n = cframes - scanFrame;
}
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "PlayableAudioFile::addSamples: it's a small file: want frames " << scanFrame << " to " << endFrame << " of " << cframes << std::endl;
#endif
size_t xfadeIn = (m_firstRead ? m_xfadeFrames : 0);
size_t xfadeOut = (m_fileEnded ? m_xfadeFrames : 0);
// all this could be neater!
if (channels == 1 && cchannels == 2) { // mix
for (size_t i = 0; i < n; ++i) {
sample_t v =
cached[0][scanFrame + i] +
cached[1][scanFrame + i];
// if ((i + 1) < xfadeIn)
// v = (v * (i + 1)) / xfadeIn;
//if ((n - i) < xfadeOut)
// v = (v * (n - i)) / xfadeOut;
destination[0][i + offset] += v;
}
} else {
for (size_t ch = 0; ch < channels; ++ch) {
int sch = ch;
if (ch >= cchannels) {
if (channels == 2 && cchannels == 1)
sch = 0;
else
break;
} else {
for (size_t i = 0; i < n; ++i) {
sample_t v = cached[sch][scanFrame + i];
// if ((i + 1) < xfadeIn)
// v = (v * (i + 1)) / xfadeIn;
//if ((n - i) < xfadeOut)
// v = (v * (n - i)) / xfadeOut;
destination[ch][i + offset] += v;
}
}
}
}
m_smallFileScanFrame += nframes;
m_currentScanPoint = m_currentScanPoint +
RealTime::frame2RealTime(nframes, m_targetSampleRate);
return nframes;
}
}
return 0;
}
void
PlayableAudioFile::checkSmallFileCache(size_t smallFileSize)
{
if (m_smallFileCache.has(m_audioFile)) {
#ifdef DEBUG_PLAYABLE
std::cerr << "PlayableAudioFile::checkSmallFileCache: Found file in small file cache" << std::endl;
#endif
m_smallFileCache.incrementReference(m_audioFile);
m_isSmallFile = true;
} else if (m_audioFile->getSize() <= smallFileSize) {
std::ifstream file(m_audioFile->getFilename().c_str(),
std::ios::in | std::ios::binary);
if (!file) {
std::cerr << "ERROR: PlayableAudioFile::checkSmallFileCache: Failed to open audio file " << m_audioFile->getFilename() << std::endl;
return ;
}
#ifdef DEBUG_PLAYABLE
std::cerr << "PlayableAudioFile::checkSmallFileCache: Adding file to small file cache" << std::endl;
#endif
// We always encache files with their original number of
// channels (because they might be called for in any channel
// configuration subsequently) but with the current sample
// rate, not their original one.
m_audioFile->scanTo(&file, RealTime::zeroTime);
size_t reqd = m_audioFile->getSize() / m_audioFile->getBytesPerFrame();
unsigned char *buffer = new unsigned char[m_audioFile->getSize()];
size_t obtained = m_audioFile->getSampleFrames(&file, (char *)buffer, reqd);
// std::cerr <<"obtained=" << obtained << std::endl;
size_t nch = getSourceChannels();
size_t nframes = obtained;
if (int(getSourceSampleRate()) != m_targetSampleRate) {
#ifdef DEBUG_PLAYABLE
std::cerr << "PlayableAudioFile::checkSmallFileCache: Resampling badly from " << getSourceSampleRate() << " to " << m_targetSampleRate << std::endl;
#endif
nframes = size_t(float(nframes) * float(m_targetSampleRate) /
float(getSourceSampleRate()));
}
std::vector<sample_t *> samples;
for (size_t ch = 0; ch < nch; ++ch) {
samples.push_back(new sample_t[nframes]);
}
if (!m_audioFile->decode(buffer,
obtained * m_audioFile->getBytesPerFrame(),
m_targetSampleRate,
nch,
nframes,
samples)) {
std::cerr << "PlayableAudioFile::checkSmallFileCache: failed to decode file" << std::endl;
} else {
sample_t **toCache = new sample_t * [nch];
for (size_t ch = 0; ch < nch; ++ch) {
toCache[ch] = samples[ch];
}
m_smallFileCache.addData(m_audioFile, nch, nframes, toCache);
m_isSmallFile = true;
}
delete[] buffer;
file.close();
}
if (m_isSmallFile) {
if (m_file) {
m_file->close();
delete m_file;
m_file = 0;
}
}
}
void
PlayableAudioFile::fillBuffers()
{
#ifdef DEBUG_PLAYABLE
if (m_audioFile) {
std::cerr << "PlayableAudioFile(" << m_audioFile->getShortFilename() << ")::fillBuffers() [async] -- scanning to " << m_startIndex << std::endl;
} else {
std::cerr << "PlayableAudioFile::fillBuffers() [async] -- scanning to " << m_startIndex << std::endl;
}
#endif
if (!m_isSmallFile && (!m_file || !*m_file)) {
m_file = new std::ifstream(m_audioFile->getFilename().c_str(),
std::ios::in | std::ios::binary);
if (!*m_file) {
std::cerr << "ERROR: PlayableAudioFile::fillBuffers: Failed to open audio file " << m_audioFile->getFilename() << std::endl;
delete m_file;
m_file = 0;
return ;
}
}
scanTo(m_startIndex);
updateBuffers();
}
void
PlayableAudioFile::clearBuffers()
{
returnRingBuffers();
}
bool
PlayableAudioFile::fillBuffers(const RealTime &currentTime)
{
#ifdef DEBUG_PLAYABLE
if (!m_isSmallFile) {
if (m_audioFile) {
std::cerr << "PlayableAudioFile(" << m_audioFile->getShortFilename() << " " << this << ")::fillBuffers(" << currentTime << "):\n my start time " << m_startTime << ", start index " << m_startIndex << ", duration " << m_duration << std::endl;
} else {
std::cerr << "PlayableAudioFile::fillBuffers(" << currentTime << "): my start time " << m_startTime << ", start index " << m_startIndex << ", duration " << m_duration << std::endl;
}
}
#endif
if (currentTime > m_startTime + m_duration) {
#ifdef DEBUG_PLAYABLE
std::cerr << "PlayableAudioFile::fillBuffers: seeking past end, returning buffers" << std::endl;
#endif
returnRingBuffers();
return true;
}
if (!m_isSmallFile && (!m_file || !*m_file)) {
m_file = new std::ifstream(m_audioFile->getFilename().c_str(),
std::ios::in | std::ios::binary);
if (!*m_file) {
std::cerr << "ERROR: PlayableAudioFile::fillBuffers: Failed to open audio file " << m_audioFile->getFilename() << std::endl;
delete m_file;
m_file = 0;
return false;
}
scanTo(m_startIndex);
}
RealTime scanTime = m_startIndex;
if (currentTime > m_startTime) {
scanTime = m_startIndex + currentTime - m_startTime;
}
// size_t scanFrames = RealTime::realTime2Frame
// (scanTime,
// m_isSmallFile ? m_targetSampleRate : m_audioFile->getSampleRate());
if (scanTime != m_currentScanPoint) {
scanTo(scanTime);
}
if (!m_isSmallFile) {
for (int i = 0; i < m_targetChannels; ++i) {
if (m_ringBuffers[i])
m_ringBuffers[i]->reset();
}
updateBuffers();
}
return true;
}
bool
PlayableAudioFile::updateBuffers()
{
if (m_isSmallFile)
return false;
if (!m_file)
return false;
if (m_fileEnded) {
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "PlayableAudioFile::updateBuffers: at end of file already" << std::endl;
#endif
return false;
}
if (!m_ringBuffers[0]) {
if (m_targetChannels < 0) {
std::cerr << "WARNING: PlayableAudioFile::updateBuffers: m_targetChannels < 0, can't allocate ring buffers" << std::endl;
return false;
}
// need a buffer: can we get one?
if (!m_ringBufferPool->getBuffers(m_targetChannels, m_ringBuffers)) {
std::cerr << "WARNING: PlayableAudioFile::updateBuffers: no ring buffers available" << std::endl;
return false;
}
}
size_t nframes = 0;
for (int ch = 0; ch < m_targetChannels; ++ch) {
if (!m_ringBuffers[ch])
continue;
size_t writeSpace = m_ringBuffers[ch]->getWriteSpace();
if (ch == 0 || writeSpace < nframes)
nframes = writeSpace;
}
if (nframes == 0) {
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "PlayableAudioFile::updateBuffers: frames == 0, ignoring" << std::endl;
#endif
return false;
}
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "PlayableAudioFile::updateBuffers: want " << nframes << " frames" << std::endl;
#endif
RealTime block = RealTime::frame2RealTime(nframes, m_targetSampleRate);
if (m_currentScanPoint + block >= m_startIndex + m_duration) {
block = m_startIndex + m_duration - m_currentScanPoint;
if (block <= RealTime::zeroTime)
nframes = 0;
else
nframes = RealTime::realTime2Frame(block, m_targetSampleRate);
m_fileEnded = true;
}
size_t fileFrames = nframes;
if (m_targetSampleRate != int(getSourceSampleRate())) {
fileFrames = size_t(float(fileFrames) * float(getSourceSampleRate()) /
float(m_targetSampleRate));
}
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "Want " << fileFrames << " (" << block << ") from file (" << (m_duration + m_startIndex - m_currentScanPoint - block) << " to go)" << std::endl;
#endif
//!!! need to be doing this in initialise, want to avoid allocations here
if ((getBytesPerFrame() * fileFrames) > m_rawFileBufferSize) {
delete[] m_rawFileBuffer;
m_rawFileBufferSize = getBytesPerFrame() * fileFrames;
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "Expanding raw file buffer to " << m_rawFileBufferSize << " chars" << std::endl;
#endif
m_rawFileBuffer = new char[m_rawFileBufferSize];
}
size_t obtained =
m_audioFile->getSampleFrames(m_file, m_rawFileBuffer, fileFrames);
if (obtained < fileFrames || m_file->eof()) {
m_fileEnded = true;
}
#ifdef DEBUG_PLAYABLE
std::cerr << "requested " << fileFrames << " frames from file for " << nframes << " frames, got " << obtained << " frames" << std::endl;
#endif
if (nframes > m_workBufferSize) {
for (size_t i = 0; i < m_workBuffers.size(); ++i) {
delete[] m_workBuffers[i];
}
m_workBuffers.clear();
m_workBufferSize = nframes;
#ifdef DEBUG_PLAYABLE_READ
std::cerr << "Expanding work buffer to " << m_workBufferSize << " frames" << std::endl;
#endif
for (int i = 0; i < m_targetChannels; ++i) {
m_workBuffers.push_back(new sample_t[m_workBufferSize]);
}
} else {
while (m_targetChannels > m_workBuffers.size()) {
m_workBuffers.push_back(new sample_t[m_workBufferSize]);
}
}
if (m_audioFile->decode((const unsigned char *)m_rawFileBuffer,
obtained * getBytesPerFrame(),
m_targetSampleRate,
m_targetChannels,
nframes,
m_workBuffers,
false)) {
/*!!! No -- GUI and notification side of things isn't up to this yet,
so comment it out just in case
if (m_autoFade) {
if (m_currentScanPoint < m_startIndex + m_fadeInTime) {
size_t fadeSamples =
RealTime::realTime2Frame(m_fadeInTime, getTargetSampleRate());
size_t originSamples =
RealTime::realTime2Frame(m_currentScanPoint - m_startIndex,
getTargetSampleRate());
for (size_t i = 0; i < nframes; ++i) {
if (i + originSamples > fadeSamples) {
break;
}
float gain = float(i + originSamples) / float(fadeSamples);
for (int ch = 0; ch < m_targetChannels; ++ch) {
m_workBuffers[ch][i] *= gain;
}
}
}
if (m_currentScanPoint + block >
m_startIndex + m_duration - m_fadeOutTime) {
size_t fadeSamples =
RealTime::realTime2Frame(m_fadeOutTime, getTargetSampleRate());
size_t originSamples = // counting from end
RealTime::realTime2Frame
(m_startIndex + m_duration - m_currentScanPoint,
getTargetSampleRate());
for (size_t i = 0; i < nframes; ++i) {
float gain = 1.0;
if (originSamples < i) gain = 0.0;
else {
size_t fromEnd = originSamples - i;
if (fromEnd < fadeSamples) {
gain = float(fromEnd) / float(fadeSamples);
}
}
for (int ch = 0; ch < m_targetChannels; ++ch) {
m_workBuffers[ch][i] *= gain;
}
}
}
}
*/
m_currentScanPoint = m_currentScanPoint + block;
for (int ch = 0; ch < m_targetChannels; ++ch) {
if (m_firstRead || m_fileEnded) {
float xfade = std::min(m_xfadeFrames, nframes);
if (m_firstRead) {
for (size_t i = 0; i < xfade; ++i) {
m_workBuffers[ch][i] *= float(i + 1) / xfade;
}
}
if (m_fileEnded) {
for (size_t i = 0; i < xfade; ++i) {
m_workBuffers[ch][nframes - i - 1] *=
float(i + 1) / xfade;
}
}
}
if (m_ringBuffers[ch]) {
m_ringBuffers[ch]->write(m_workBuffers[ch], nframes);
}
}
}
m_firstRead = false;
if (obtained < fileFrames) {
if (m_file) {
m_file->close();
delete m_file;
m_file = 0;
}
}
return true;
}
// How many channels in the base AudioFile?
//
unsigned int
PlayableAudioFile::getSourceChannels()
{
if (m_audioFile) {
return m_audioFile->getChannels();
}
return 0;
}
unsigned int
PlayableAudioFile::getTargetChannels()
{
return m_targetChannels;
}
unsigned int
PlayableAudioFile::getBytesPerFrame()
{
if (m_audioFile) {
return m_audioFile->getBytesPerFrame();
}
return 0;
}
unsigned int
PlayableAudioFile::getSourceSampleRate()
{
if (m_audioFile) {
return m_audioFile->getSampleRate();
}
return 0;
}
unsigned int
PlayableAudioFile::getTargetSampleRate()
{
return m_targetSampleRate;
}
// How many bits per sample in the base AudioFile?
//
unsigned int
PlayableAudioFile::getBitsPerSample()
{
if (m_audioFile) {
return m_audioFile->getBitsPerSample();
}
return 0;
}
}