You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
libtdevnc/zrleEncode.h

311 lines
7.4 KiB

//
// Copyright (C) 2002 RealVNC Ltd. All Rights Reserved.
//
// This is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This software is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this software; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
//
// zrleEncode.h - zrle encoding function.
//
// Before including this file, you must define a number of CPP macros.
//
// BPP should be 8, 16 or 32 depending on the bits per pixel.
// GET_IMAGE_INTO_BUF should be some code which gets a rectangle of pixel data
// into the given buffer. EXTRA_ARGS can be defined to pass any other
// arguments needed by GET_IMAGE_INTO_BUF.
//
// Note that the buf argument to ZRLE_ENCODE needs to be at least one pixel
// bigger than the largest tile of pixel data, since the ZRLE encoding
// algorithm writes to the position one past the end of the pixel data.
//
#include <rdr/OutStream.h>
#include <assert.h>
using namespace rdr;
/* __RFB_CONCAT2 concatenates its two arguments. __RFB_CONCAT2E does the same
but also expands its arguments if they are macros */
#ifndef __RFB_CONCAT2E
#define __RFB_CONCAT2(a,b) a##b
#define __RFB_CONCAT2E(a,b) __RFB_CONCAT2(a,b)
#endif
#ifdef CPIXEL
#define PIXEL_T __RFB_CONCAT2E(rdr::U,BPP)
#define WRITE_PIXEL __RFB_CONCAT2E(writeOpaque,CPIXEL)
#define ZRLE_ENCODE __RFB_CONCAT2E(zrleEncode,CPIXEL)
#define ZRLE_ENCODE_TILE __RFB_CONCAT2E(zrleEncodeTile,CPIXEL)
#define BPPOUT 24
#else
#define PIXEL_T __RFB_CONCAT2E(rdr::U,BPP)
#define WRITE_PIXEL __RFB_CONCAT2E(writeOpaque,BPP)
#define ZRLE_ENCODE __RFB_CONCAT2E(zrleEncode,BPP)
#define ZRLE_ENCODE_TILE __RFB_CONCAT2E(zrleEncodeTile,BPP)
#define BPPOUT BPP
#endif
#ifndef ZRLE_ONCE
#define ZRLE_ONCE
static const int bitsPerPackedPixel[] = {
0, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
};
// The PaletteHelper class helps us build up the palette from pixel data by
// storing a reverse index using a simple hash-table
class PaletteHelper {
public:
enum { MAX_SIZE = 127 };
PaletteHelper()
{
memset(index, 255, sizeof(index));
size = 0;
}
inline int hash(rdr::U32 pix)
{
return (pix ^ (pix >> 17)) & 4095;
}
inline void insert(rdr::U32 pix)
{
if (size < MAX_SIZE) {
int i = hash(pix);
while (index[i] != 255 && key[i] != pix)
i++;
if (index[i] != 255) return;
index[i] = size;
key[i] = pix;
palette[size] = pix;
}
size++;
}
inline int lookup(rdr::U32 pix)
{
assert(size <= MAX_SIZE);
int i = hash(pix);
while (index[i] != 255 && key[i] != pix)
i++;
if (index[i] != 255) return index[i];
return -1;
}
rdr::U32 palette[MAX_SIZE];
rdr::U8 index[4096+MAX_SIZE];
rdr::U32 key[4096+MAX_SIZE];
int size;
};
#endif
void ZRLE_ENCODE_TILE (PIXEL_T* data, int w, int h, rdr::OutStream* os);
void ZRLE_ENCODE (int x, int y, int w, int h, rdr::OutStream* os,
rdr::ZlibOutStream* zos, void* buf
EXTRA_ARGS
)
{
zos->setUnderlying(os);
for (int ty = y; ty < y+h; ty += rfbZRLETileHeight) {
int th = rfbZRLETileHeight;
if (th > y+h-ty) th = y+h-ty;
for (int tx = x; tx < x+w; tx += rfbZRLETileWidth) {
int tw = rfbZRLETileWidth;
if (tw > x+w-tx) tw = x+w-tx;
GET_IMAGE_INTO_BUF(tx,ty,tw,th,buf);
ZRLE_ENCODE_TILE((PIXEL_T*)buf, tw, th, zos);
}
}
zos->flush();
}
void ZRLE_ENCODE_TILE (PIXEL_T* data, int w, int h, rdr::OutStream* os)
{
// First find the palette and the number of runs
PaletteHelper ph;
int runs = 0;
int singlePixels = 0;
PIXEL_T* ptr = data;
PIXEL_T* end = ptr + h * w;
*end = ~*(end-1); // one past the end is different so the while loop ends
while (ptr < end) {
PIXEL_T pix = *ptr;
if (*++ptr != pix) {
singlePixels++;
} else {
while (*++ptr == pix) ;
runs++;
}
ph.insert(pix);
}
//fprintf(stderr,"runs %d, single pixels %d, paletteSize %d\n",
// runs, singlePixels, ph.size);
// Solid tile is a special case
if (ph.size == 1) {
os->writeU8(1);
os->WRITE_PIXEL(ph.palette[0]);
return;
}
// Try to work out whether to use RLE and/or a palette. We do this by
// estimating the number of bytes which will be generated and picking the
// method which results in the fewest bytes. Of course this may not result
// in the fewest bytes after compression...
bool useRle = false;
bool usePalette = false;
int estimatedBytes = w * h * (BPPOUT/8); // start assuming raw
int plainRleBytes = ((BPPOUT/8)+1) * (runs + singlePixels);
if (plainRleBytes < estimatedBytes) {
useRle = true;
estimatedBytes = plainRleBytes;
}
if (ph.size < 128) {
int paletteRleBytes = (BPPOUT/8) * ph.size + 2 * runs + singlePixels;
if (paletteRleBytes < estimatedBytes) {
useRle = true;
usePalette = true;
estimatedBytes = paletteRleBytes;
}
if (ph.size < 17) {
int packedBytes = ((BPPOUT/8) * ph.size +
w * h * bitsPerPackedPixel[ph.size-1] / 8);
if (packedBytes < estimatedBytes) {
useRle = false;
usePalette = true;
estimatedBytes = packedBytes;
}
}
}
if (!usePalette) ph.size = 0;
os->writeU8((useRle ? 128 : 0) | ph.size);
for (int i = 0; i < ph.size; i++) {
os->WRITE_PIXEL(ph.palette[i]);
}
if (useRle) {
PIXEL_T* ptr = data;
PIXEL_T* end = ptr + w * h;
PIXEL_T* runStart;
PIXEL_T pix;
while (ptr < end) {
runStart = ptr;
pix = *ptr++;
while (*ptr == pix && ptr < end)
ptr++;
int len = ptr - runStart;
if (len <= 2 && usePalette) {
int index = ph.lookup(pix);
if (len == 2)
os->writeU8(index);
os->writeU8(index);
continue;
}
if (usePalette) {
int index = ph.lookup(pix);
os->writeU8(index | 128);
} else {
os->WRITE_PIXEL(pix);
}
len -= 1;
while (len >= 255) {
os->writeU8(255);
len -= 255;
}
os->writeU8(len);
}
} else {
// no RLE
if (usePalette) {
// packed pixels
assert (ph.size < 17);
int bppp = bitsPerPackedPixel[ph.size-1];
PIXEL_T* ptr = data;
for (int i = 0; i < h; i++) {
U8 nbits = 0;
U8 byte = 0;
PIXEL_T* eol = ptr + w;
while (ptr < eol) {
PIXEL_T pix = *ptr++;
U8 index = ph.lookup(pix);
byte = (byte << bppp) | index;
nbits += bppp;
if (nbits >= 8) {
os->writeU8(byte);
nbits = 0;
}
}
if (nbits > 0) {
byte <<= 8 - nbits;
os->writeU8(byte);
}
}
} else {
// raw
#ifdef CPIXEL
for (PIXEL_T* ptr = data; ptr < data+w*h; ptr++) {
os->WRITE_PIXEL(*ptr);
}
#else
os->writeBytes(data, w*h*(BPP/8));
#endif
}
}
}
#undef PIXEL_T
#undef WRITE_PIXEL
#undef ZRLE_ENCODE
#undef ZRLE_ENCODE_TILE
#undef BPPOUT