You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ktechlab/src/nodegroup.cpp

573 lines
13 KiB

/***************************************************************************
* Copyright (C) 2004-2005 by David Saxton *
* david@bluehaze.org *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
***************************************************************************/
#include "icndocument.h"
#include "connector.h"
#include "conrouter.h"
#include "node.h"
#include "nodegroup.h"
#include <kdebug.h>
#include <assert.h>
#include <cmath>
NodeGroup::NodeGroup( ICNDocument *icnDocument, const char *name )
: TQObject( icnDocument, name )
{
p_icnDocument = icnDocument;
b_visible = true;
}
NodeGroup::~NodeGroup()
{
clearConList();
m_extNodeList.remove( (Node*)0l );
const NodeList::iterator xnEnd = m_extNodeList.end();
for ( NodeList::iterator it = m_extNodeList.begin(); it != xnEnd; ++it )
(*it)->setNodeGroup(0l);
m_extNodeList.clear();
m_nodeList.remove( (Node*)0l );
const NodeList::iterator nEnd = m_nodeList.end();
for ( NodeList::iterator it = m_nodeList.begin(); it != nEnd; ++it )
(*it)->setNodeGroup(0l);
m_nodeList.clear();
}
void NodeGroup::setVisible( bool visible )
{
if ( b_visible == visible )
return;
b_visible = visible;
m_nodeList.remove( (Node*)0l );
const NodeList::iterator nEnd = m_nodeList.end();
for ( NodeList::iterator it = m_nodeList.begin(); it != nEnd; ++it )
(*it)->setVisible(visible);
}
void NodeGroup::addNode( Node *node, bool checkSurrouding )
{
if ( !node || node->isChildNode() || m_nodeList.contains(node) ) {
return;
}
m_nodeList.append(node);
node->setNodeGroup(this);
node->setVisible(b_visible);
if (checkSurrouding)
{
ConnectorList con = node->inputConnectorList();
ConnectorList::iterator end = con.end();
for ( ConnectorList::iterator it = con.begin(); it != end; ++it )
{
if (*it) {
addNode( (*it)->startNode(), true );
}
}
con = node->outputConnectorList();
end = con.end();
for ( ConnectorList::iterator it = con.begin(); it != end; ++it )
{
if (*it) {
addNode( (*it)->endNode(), true );
}
}
}
}
void NodeGroup::translate( int dx, int dy )
{
if ( (dx == 0) && (dy == 0) )
return;
m_conList.remove((Connector*)0l);
m_nodeList.remove((Node*)0l);
const ConnectorList::iterator conEnd = m_conList.end();
for ( ConnectorList::iterator it = m_conList.begin(); it != conEnd; ++it )
{
(*it)->updateConnectorPoints(false);
(*it)->translateRoute( dx, dy );
}
const NodeList::iterator nodeEnd = m_nodeList.end();
for ( NodeList::iterator it = m_nodeList.begin(); it != nodeEnd; ++it )
(*it)->moveBy( dx, dy );
}
void NodeGroup::updateRoutes()
{
resetRoutedMap();
// Basic algorithm used here: starting with the external nodes, find the
// pair with the shortest distance between them. Route the connectors
// between the two nodes appropriately. Remove that pair of nodes from the
// list, and add the nodes along the connector route (which have been spaced
// equally along the route). Repeat until all the nodes are connected.
const ConnectorList::iterator conEnd = m_conList.end();
for ( ConnectorList::iterator it = m_conList.begin(); it != conEnd; ++it )
{
if (*it)
(*it)->updateConnectorPoints(false);
}
Node *n1, *n2;
NodeList currentList = m_extNodeList;
while ( !currentList.isEmpty() )
{
findBestPair( &currentList, &n1, &n2 );
if ( n1 == 0l || n2 == 0l ) {
return;
}
NodeList route = findRoute( n1, n2 );
currentList += route;
ConRouter cr(p_icnDocument);
cr.mapRoute( (int)n1->x(), (int)n1->y(), (int)n2->x(), (int)n2->y() );
TQPointListList pl = cr.dividePoints( route.size()+1 );
const NodeList::iterator routeEnd = route.end();
const TQPointListList::iterator plEnd = pl.end();
Node *prev = n1;
NodeList::iterator routeIt = route.begin();
for ( TQPointListList::iterator it = pl.begin(); it != plEnd; ++it )
{
Node *next = (routeIt == routeEnd) ? n2 : (Node*)*(routeIt++);
removeRoutedNodes( &currentList, prev, next );
TQPointList pointList = *it;
if ( prev != n1 )
{
TQPoint first = pointList.first();
prev->moveBy( first.x() - prev->x(), first.y() - prev->y() );
}
Connector *con = findCommonConnector( prev, next );
if (con)
{
con->updateConnectorPoints(false);
con->setRoutePoints( pointList, false, false );
con->updateConnectorPoints(true);
// con->conRouter()->setPoints( &pointList, con->startNode() != prev );
// con->conRouter()->setPoints( &pointList, con->pointsAreReverse( &pointList ) );
// con->calcBoundingPoints();
}
prev = next;
}
}
}
NodeList NodeGroup::findRoute( Node *startNode, Node *endNode )
{
NodeList nl;
if ( !startNode || !endNode || startNode == endNode ) {
return nl;
}
IntList temp;
IntList il = findRoute( temp, getNodePos(startNode), getNodePos(endNode) );
const IntList::iterator end = il.end();
for ( IntList::iterator it = il.begin(); it != end; ++it )
{
Node *node = getNodePtr(*it);
if (node) {
nl += node;
}
}
nl.remove(startNode);
nl.remove(endNode);
return nl;
}
IntList NodeGroup::findRoute( IntList used, int currentNode, int endNode, bool *success )
{
bool temp;
if (!success) {
success = &temp;
}
*success = false;
if ( !used.contains(currentNode) ) {
used.append(currentNode);
}
if ( currentNode == endNode ) {
*success = true;
return used;
}
const uint n = m_nodeList.size()+m_extNodeList.size();
for ( uint i=0; i<n; ++i )
{
if ( b_routedMap[i*n+currentNode] && !used.contains(i) )
{
IntList il = findRoute( used, i, endNode, success );
if (*success) {
return il;
}
}
}
IntList il;
return il;
}
Connector* NodeGroup::findCommonConnector( Node *n1, Node *n2 )
{
if ( !n1 || !n2 || n1==n2 ) {
return 0l;
}
ConnectorList n1Con = n1->inputConnectorList() + n1->outputConnectorList();
ConnectorList n2Con = n2->inputConnectorList() + n2->outputConnectorList();
const ConnectorList::iterator end = n1Con.end();
for ( ConnectorList::iterator it = n1Con.begin(); it != end; ++it )
{
if ( n2Con.contains(*it) ) {
return *it;
}
}
return 0l;
}
void NodeGroup::findBestPair( NodeList *list, Node **n1, Node **n2 )
{
*n1 = 0l;
*n2 = 0l;
if ( list->size() < 2 ) {
return;
}
const NodeList::iterator end = list->end();
int shortest = 1<<30;
// Try and find any that are aligned horizontally
for ( NodeList::iterator it1 = list->begin(); it1 != end; ++it1 )
{
NodeList::iterator it2 = it1;
for ( ++it2; it2 != end; ++it2 )
{
if ( *it1 != *it2 && (*it1)->y() == (*it2)->y() && canRoute( *it1, *it2 ) )
{
const int distance = std::abs((double)( (*it1)->x()-(*it2)->x() ));
if ( distance < shortest )
{
shortest = distance;
*n1 = *it1;
*n2 = *it2;
}
}
}
}
if (*n1) {
return;
}
// Try and find any that are aligned vertically
for ( NodeList::iterator it1 = list->begin(); it1 != end; ++it1 )
{
NodeList::iterator it2 = it1;
for ( ++it2; it2 != end; ++it2 )
{
if ( *it1 != *it2 && (*it1)->x() == (*it2)->x() && canRoute( *it1, *it2 ) )
{
const int distance = std::abs((double)( (*it1)->y()-(*it2)->y() ));
if ( distance < shortest )
{
shortest = distance;
*n1 = *it1;
*n2 = *it2;
}
}
}
}
if (*n1) {
return;
}
// Now, lets just find the two closest nodes
for ( NodeList::iterator it1 = list->begin(); it1 != end; ++it1 )
{
NodeList::iterator it2 = it1;
for ( ++it2; it2 != end; ++it2 )
{
if ( *it1 != *it2 && canRoute( *it1, *it2 ) )
{
const int dx = (int)((*it1)->x()-(*it2)->x());
const int dy = (int)((*it1)->y()-(*it2)->y());
const int distance = std::abs((double)dx) + std::abs((double)dy);
if ( distance < shortest )
{
shortest = distance;
*n1 = *it1;
*n2 = *it2;
}
}
}
}
if (!*n1) {
kdError() << "NodeGroup::findBestPair: Could not find a routable pair of nodes!"<<endl;
}
}
bool NodeGroup::canRoute( Node *n1, Node *n2 )
{
if ( !n1 || !n2 ) {
return false;
}
IntList reachable;
getReachable( &reachable, getNodePos(n1) );
return reachable.contains(getNodePos(n2));
}
void NodeGroup::getReachable( IntList *reachable, int node )
{
if ( !reachable || reachable->contains(node) ) {
return;
}
reachable->append(node);
const uint n = m_nodeList.size() + m_extNodeList.size();
assert( node < int(n) );
for ( uint i=0; i<n; ++i )
{
if ( b_routedMap[i*n + node] ) {
getReachable(reachable,i);
}
}
}
void NodeGroup::resetRoutedMap()
{
const uint n = m_nodeList.size() + m_extNodeList.size();
b_routedMap.resize(0);
b_routedMap.resize( n*n, false );
const ConnectorList::iterator end = m_conList.end();
for ( ConnectorList::iterator it = m_conList.begin(); it != end; ++it )
{
Connector *con = *it;
if (con)
{
int n1 = getNodePos(con->startNode());
int n2 = getNodePos(con->endNode());
if ( n1 != -1 && n2 != -1 )
{
b_routedMap[n1*n + n2] = b_routedMap[n2*n + n1] = true;
}
}
}
}
void NodeGroup::removeRoutedNodes( NodeList *nodes, Node *n1, Node *n2 )
{
if (!nodes) {
return;
}
// Lets get rid of any duplicate nodes in nodes (as a general cleaning operation)
const NodeList::iterator end = nodes->end();
for ( NodeList::iterator it = nodes->begin(); it != end; ++it )
{
if ( nodes->contains(*it) > 1 ) {
*it = 0l;
}
}
nodes->remove((Node*)0l);
const int n1pos = getNodePos(n1);
const int n2pos = getNodePos(n2);
if ( n1pos == -1 || n2pos == -1 ) {
return;
}
const uint n = m_nodeList.size() + m_extNodeList.size();
b_routedMap[n1pos*n + n2pos] = b_routedMap[n2pos*n + n1pos] = false;
bool n1HasCon = false;
bool n2HasCon = false;
for ( uint i=0; i<n; ++i )
{
n1HasCon |= b_routedMap[n1pos*n + i];
n2HasCon |= b_routedMap[n2pos*n + i];
}
if (!n1HasCon) {
nodes->remove(n1);
}
if (!n2HasCon) {
nodes->remove(n2);
}
}
int NodeGroup::getNodePos( Node *n )
{
if (!n) {
return -1;
}
int pos = m_nodeList.findIndex(n);
if ( pos != -1 ) {
return pos;
}
pos = m_extNodeList.findIndex(n);
if ( pos != -1 ) {
return pos+m_nodeList.size();
}
return -1;
}
Node* NodeGroup::getNodePtr( int n )
{
if ( n<0 ) {
return 0l;
}
const int a = m_nodeList.size();
if (n<a) {
return m_nodeList[n];
}
const int b = m_extNodeList.size();
if (n<a+b) {
return m_extNodeList[n-a];
}
return 0l;
}
void NodeGroup::clearConList()
{
const ConnectorList::iterator end = m_conList.end();
for ( ConnectorList::iterator it = m_conList.begin(); it != end; ++it )
{
Connector *con = *it;
if (con)
{
con->setNodeGroup(0l);
disconnect( con, TQ_SIGNAL(removed(Connector*)), this, TQ_SLOT(connectorRemoved(Connector*)) );
}
}
m_conList.clear();
}
void NodeGroup::init()
{
NodeList::iterator xnEnd = m_extNodeList.end();
for ( NodeList::iterator it = m_extNodeList.begin(); it != xnEnd; ++it )
{
(*it)->setNodeGroup(0l);
}
m_extNodeList.clear();
clearConList();
// First, lets get all of our external nodes and internal connectors
const NodeList::iterator nlEnd = m_nodeList.end();
for ( NodeList::iterator nodeIt = m_nodeList.begin(); nodeIt != nlEnd; ++nodeIt )
{
ConnectorList inCon = (*nodeIt)->inputConnectorList();
ConnectorList outCon = (*nodeIt)->outputConnectorList();
ConnectorList::iterator conEnd;
conEnd = inCon.end();
for ( ConnectorList::iterator conIt = inCon.begin(); conIt != conEnd; ++conIt )
{
Connector *con = *conIt;
addExtNode(con->startNode());
if ( !m_conList.contains(con) ) {
m_conList += con;
con->setNodeGroup(this);
}
connect( con, TQ_SIGNAL(removed(Connector*)), this, TQ_SLOT(connectorRemoved(Connector*)) );
}
conEnd = outCon.end();
for ( ConnectorList::iterator conIt = outCon.begin(); conIt != conEnd; ++conIt )
{
Connector *con = *conIt;
addExtNode(con->endNode());
if ( !m_conList.contains(con) ) {
m_conList += con;
con->setNodeGroup(this);
}
connect( con, TQ_SIGNAL(removed(Connector*)), this, TQ_SLOT(connectorRemoved(Connector*)) );
}
// Connect the node up to us
connect( *nodeIt, TQ_SIGNAL(removed(Node*)), this, TQ_SLOT(nodeRemoved(Node*)) );
}
// And connect up our external nodes
xnEnd = m_extNodeList.end();
for ( NodeList::iterator it = m_extNodeList.begin(); it != xnEnd; ++it )
{
// connect( *it, TQ_SIGNAL(moved(Node*)), this, TQ_SLOT(extNodeMoved()) );
connect( *it, TQ_SIGNAL(removed(Node*)), this, TQ_SLOT(nodeRemoved(Node*)) );
}
}
void NodeGroup::nodeRemoved( Node *node )
{
// We are probably about to get deleted by ICNDocument anyway...so no point in doing anything
m_nodeList.remove(node);
node->setNodeGroup(0l);
node->setVisible(true);
m_extNodeList.remove(node);
}
void NodeGroup::connectorRemoved( Connector *connector )
{
m_conList.remove(connector);
}
void NodeGroup::addExtNode( Node *node )
{
if ( !m_extNodeList.contains(node) && !m_nodeList.contains(node) )
{
m_extNodeList.append(node);
node->setNodeGroup(this);
}
}
#include "nodegroup.moc"