You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
321 lines
9.6 KiB
321 lines
9.6 KiB
// -*- Mode: c++; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4; -*-
|
|
/* This file is part of the KDE project
|
|
Copyright (C) 2001 Laurent MONTEL <lmontel@mandrakesoft.com>
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public License
|
|
along with this library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "KoPointArray.h"
|
|
#include <KoRect.h>
|
|
#include <stdarg.h>
|
|
#include <KoZoomHandler.h>
|
|
|
|
void KoPointArray::translate( double dx, double dy )
|
|
{
|
|
register KoPoint *p = data();
|
|
register int i = size();
|
|
KoPoint pt( dx, dy );
|
|
while ( i-- ) {
|
|
*p += pt;
|
|
p++;
|
|
}
|
|
}
|
|
|
|
void KoPointArray::point( uint index, double *x, double *y ) const
|
|
{
|
|
KoPoint p = TQMemArray<KoPoint>::at( index );
|
|
if ( x )
|
|
*x = (double)p.x();
|
|
if ( y )
|
|
*y = (double)p.y();
|
|
}
|
|
|
|
KoPoint KoPointArray::point( uint index ) const
|
|
{ // #### index out of bounds
|
|
return TQMemArray<KoPoint>::at( index );
|
|
}
|
|
|
|
void KoPointArray::setPoint( uint index, double x, double y )
|
|
{ // #### index out of bounds
|
|
TQMemArray<KoPoint>::at( index ) = KoPoint( x, y );
|
|
}
|
|
|
|
|
|
|
|
bool KoPointArray::putPoints( int index, int nPoints, double firstx, double firsty,
|
|
... )
|
|
{
|
|
va_list ap;
|
|
if ( index + nPoints > (int)size() ) { // extend array
|
|
if ( !resize(index + nPoints) )
|
|
return FALSE;
|
|
}
|
|
if ( nPoints <= 0 )
|
|
return TRUE;
|
|
setPoint( index, firstx, firsty ); // set first point
|
|
int i = index + 1;
|
|
double x, y;
|
|
nPoints--;
|
|
va_start( ap, firsty );
|
|
while ( nPoints-- ) {
|
|
x = va_arg( ap, double );
|
|
y = va_arg( ap, double );
|
|
setPoint( i++, x, y );
|
|
}
|
|
va_end( ap );
|
|
return TRUE;
|
|
}
|
|
|
|
void split(const double *p, double *l, double *r)
|
|
{
|
|
double tmpx;
|
|
double tmpy;
|
|
|
|
l[0] = p[0];
|
|
l[1] = p[1];
|
|
r[6] = p[6];
|
|
r[7] = p[7];
|
|
|
|
l[2] = (p[0]+ p[2])/2;
|
|
l[3] = (p[1]+ p[3])/2;
|
|
tmpx = (p[2]+ p[4])/2;
|
|
tmpy = (p[3]+ p[5])/2;
|
|
r[4] = (p[4]+ p[6])/2;
|
|
r[5] = (p[5]+ p[7])/2;
|
|
|
|
l[4] = (l[2]+ tmpx)/2;
|
|
l[5] = (l[3]+ tmpy)/2;
|
|
r[2] = (tmpx + r[4])/2;
|
|
r[3] = (tmpy + r[5])/2;
|
|
|
|
l[6] = (l[4]+ r[2])/2;
|
|
l[7] = (l[5]+ r[3])/2;
|
|
r[0] = l[6];
|
|
r[1] = l[7];
|
|
}
|
|
|
|
// Based on:
|
|
//
|
|
// A Fast 2D Point-On-Line Test
|
|
// by Alan Paeth
|
|
// from "Graphics Gems", Academic Press, 1990
|
|
static
|
|
int pnt_on_line( const int* p, const int* q, const int* t )
|
|
{
|
|
/*
|
|
* given a line through P:(px,py) Q:(qx,qy) and T:(tx,ty)
|
|
* return 0 if T is not on the line through <--P--Q-->
|
|
* 1 if T is on the open ray ending at P: <--P
|
|
* 2 if T is on the closed interior along: P--Q
|
|
* 3 if T is on the open ray beginning at Q: Q-->
|
|
*
|
|
* Example: consider the line P = (3,2), Q = (17,7). A plot
|
|
* of the test points T(x,y) (with 0 mapped onto '.') yields:
|
|
*
|
|
* 8| . . . . . . . . . . . . . . . . . 3 3
|
|
* Y 7| . . . . . . . . . . . . . . 2 2 Q 3 3 Q = 2
|
|
* 6| . . . . . . . . . . . 2 2 2 2 2 . . .
|
|
* a 5| . . . . . . . . 2 2 2 2 2 2 . . . . .
|
|
* x 4| . . . . . 2 2 2 2 2 2 . . . . . . . .
|
|
* i 3| . . . 2 2 2 2 2 . . . . . . . . . . .
|
|
* s 2| 1 1 P 2 2 . . . . . . . . . . . . . . P = 2
|
|
* 1| 1 1 . . . . . . . . . . . . . . . . .
|
|
* +--------------------------------------
|
|
* 1 2 3 4 5 X-axis 10 15 19
|
|
*
|
|
* Point-Line distance is normalized with the Infinity Norm
|
|
* avoiding square-root code and tightening the test vs the
|
|
* Manhattan Norm. All math is done on the field of integers.
|
|
* The latter replaces the initial ">= MAX(...)" test with
|
|
* "> (ABS(qx-px) + ABS(qy-py))" loosening both inequality
|
|
* and norm, yielding a broader target line for selection.
|
|
* The tightest test is employed here for best discrimination
|
|
* in merging collinear (to grid coordinates) vertex chains
|
|
* into a larger, spanning vectors within the Lemming editor.
|
|
*/
|
|
|
|
// if all points are coincident, return condition 2 (on line)
|
|
if(q[0]==p[0] && q[1]==p[1] && q[0]==t[0] && q[1]==t[1]) {
|
|
return 2;
|
|
}
|
|
|
|
if ( TQABS((q[1]-p[1])*(t[0]-p[0])-(t[1]-p[1])*(q[0]-p[0])) >=
|
|
(TQMAX(TQABS(q[0]-p[0]), TQABS(q[1]-p[1])))) return 0;
|
|
|
|
if (((q[0]<p[0])&&(p[0]<t[0])) || ((q[1]<p[1])&&(p[1]<t[1])))
|
|
return 1 ;
|
|
if (((t[0]<p[0])&&(p[0]<q[0])) || ((t[1]<p[1])&&(p[1]<q[1])))
|
|
return 1 ;
|
|
if (((p[0]<q[0])&&(q[0]<t[0])) || ((p[1]<q[1])&&(q[1]<t[1])))
|
|
return 3 ;
|
|
if (((t[0]<q[0])&&(q[0]<p[0])) || ((t[1]<q[1])&&(q[1]<p[1])))
|
|
return 3 ;
|
|
|
|
return 2 ;
|
|
}
|
|
|
|
static
|
|
void polygonizeTQBezier( double* acc, int& accsize, const double ctrl[],
|
|
int maxsize )
|
|
{
|
|
if ( accsize > maxsize / 2 )
|
|
{
|
|
// This never happens in practice.
|
|
|
|
if ( accsize >= maxsize-4 )
|
|
return;
|
|
// Running out of space - approximate by a line.
|
|
acc[accsize++] = ctrl[0];
|
|
acc[accsize++] = ctrl[1];
|
|
acc[accsize++] = ctrl[6];
|
|
acc[accsize++] = ctrl[7];
|
|
return;
|
|
}
|
|
|
|
//intersects:
|
|
double l[8];
|
|
double r[8];
|
|
split( ctrl, l, r);
|
|
|
|
// convert to integers for line condition check
|
|
int c0[2]; c0[0] = int(ctrl[0]); c0[1] = int(ctrl[1]);
|
|
int c1[2]; c1[0] = int(ctrl[2]); c1[1] = int(ctrl[3]);
|
|
int c2[2]; c2[0] = int(ctrl[4]); c2[1] = int(ctrl[5]);
|
|
int c3[2]; c3[0] = int(ctrl[6]); c3[1] = int(ctrl[7]);
|
|
|
|
// #### Duplication needed?
|
|
if ( TQABS(c1[0]-c0[0]) <= 1 && TQABS(c1[1]-c0[1]) <= 1
|
|
&& TQABS(c2[0]-c0[0]) <= 1 && TQABS(c2[1]-c0[1]) <= 1
|
|
&& TQABS(c3[0]-c1[0]) <= 1 && TQABS(c3[1]-c0[1]) <= 1 )
|
|
{
|
|
// Approximate by one line.
|
|
// Dont need to write last pt as it is the same as first pt
|
|
// on the next segment
|
|
acc[accsize++] = l[0];
|
|
acc[accsize++] = l[1];
|
|
return;
|
|
}
|
|
|
|
if ( ( pnt_on_line( c0, c3, c1 ) == 2 && pnt_on_line( c0, c3, c2 ) == 2 )
|
|
|| ( TQABS(c1[0]-c0[0]) <= 1 && TQABS(c1[1]-c0[1]) <= 1
|
|
&& TQABS(c2[0]-c0[0]) <= 1 && TQABS(c2[1]-c0[1]) <= 1
|
|
&& TQABS(c3[0]-c1[0]) <= 1 && TQABS(c3[1]-c0[1]) <= 1 ) )
|
|
{
|
|
// Approximate by one line.
|
|
// Dont need to write last pt as it is the same as first pt
|
|
// on the next segment
|
|
acc[accsize++] = l[0];
|
|
acc[accsize++] = l[1];
|
|
return;
|
|
}
|
|
|
|
// Too big and too curved - recusively subdivide.
|
|
polygonizeTQBezier( acc, accsize, l, maxsize );
|
|
polygonizeTQBezier( acc, accsize, r, maxsize );
|
|
}
|
|
|
|
|
|
KoRect KoPointArray::boundingRect() const
|
|
{
|
|
if ( isEmpty() )
|
|
return KoRect( 0, 0, 0, 0 ); // null rectangle
|
|
register KoPoint *pd = data();
|
|
double minx, maxx, miny, maxy;
|
|
minx = maxx = pd->x();
|
|
miny = maxy = pd->y();
|
|
pd++;
|
|
for ( int i=1; i<(int)size(); i++ ) { // find min+max x and y
|
|
if ( pd->x() < minx )
|
|
minx = pd->x();
|
|
else if ( pd->x() > maxx )
|
|
maxx = pd->x();
|
|
if ( pd->y() < miny )
|
|
miny = pd->y();
|
|
else if ( pd->y() > maxy )
|
|
maxy = pd->y();
|
|
pd++;
|
|
}
|
|
return KoRect( KoPoint(minx,miny), KoPoint(maxx,maxy) );
|
|
}
|
|
|
|
|
|
KoPointArray KoPointArray::cubicBezier() const
|
|
{
|
|
if ( size() != 4 ) {
|
|
#if defined(TQT_CHECK_RANGE)
|
|
tqWarning( "TQPointArray::bezier: The array must have 4 control points" );
|
|
#endif
|
|
KoPointArray pa;
|
|
return pa;
|
|
} else {
|
|
KoRect r = boundingRect();
|
|
int m = (int)(4+2*TQMAX(r.width(),r.height()));
|
|
double *p = new double[m];
|
|
double ctrl[8];
|
|
int i;
|
|
for (i=0; i<4; i++) {
|
|
ctrl[i*2] = at(i).x();
|
|
ctrl[i*2+1] = at(i).y();
|
|
}
|
|
int len=0;
|
|
polygonizeTQBezier( p, len, ctrl, m );
|
|
KoPointArray pa((len/2)+1); // one extra point for last point on line
|
|
int j=0;
|
|
for (i=0; j<len; i++) {
|
|
double x = tqRound(p[j++]);
|
|
double y = tqRound(p[j++]);
|
|
pa[i] = KoPoint(x,y);
|
|
}
|
|
// add last pt on the line, which will be at the last control pt
|
|
pa[(int)pa.size()-1] = at(3);
|
|
delete[] p;
|
|
|
|
return pa;
|
|
}
|
|
}
|
|
|
|
TQPointArray KoPointArray::zoomPointArray( const KoZoomHandler* zoomHandler ) const
|
|
{
|
|
TQPointArray tmpPoints(size());
|
|
for ( uint i= 0; i<size();i++ ) {
|
|
KoPoint p = at( i );
|
|
tmpPoints.putPoints( i, 1, zoomHandler->zoomItX(p.x()),zoomHandler->zoomItY(p.y()) );
|
|
}
|
|
return tmpPoints;
|
|
}
|
|
|
|
TQPointArray KoPointArray::zoomPointArray( const KoZoomHandler* zoomHandler, int penWidth ) const
|
|
{
|
|
double fx;
|
|
double fy;
|
|
KoSize ext = boundingRect().size();
|
|
int pw = zoomHandler->zoomItX( penWidth ) / 2;
|
|
|
|
fx = (double)( zoomHandler->zoomItX(ext.width()) - 2 * pw ) / ext.width();
|
|
fy = (double)( zoomHandler->zoomItY(ext.height()) - 2 * pw ) / ext.height();
|
|
|
|
unsigned int index = 0;
|
|
TQPointArray tmpPoints;
|
|
KoPointArray::ConstIterator it;
|
|
for ( it = begin(); it != end(); ++it, ++index ) {
|
|
int tmpX = tqRound((*it).x() * fx + pw);
|
|
int tmpY = tqRound((*it).y() * fy + pw);
|
|
|
|
tmpPoints.putPoints( index, 1, tmpX, tmpY );
|
|
}
|
|
return tmpPoints;
|
|
}
|