You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
349 lines
10 KiB
349 lines
10 KiB
/* This file is part of the KDE project
|
|
Copyright (C) 2001, 2002, 2003 The Karbon Developers
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public License
|
|
along with this library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <tqwmatrix.h>
|
|
#include <tqdom.h>
|
|
|
|
#include "vglobal.h"
|
|
#include "vstar.h"
|
|
#include "vtransformcmd.h"
|
|
#include <klocale.h>
|
|
#include <KoUnit.h>
|
|
#include <vdocument.h>
|
|
|
|
VStar::VStar( VObject* tqparent, VState state )
|
|
: VPath( tqparent, state )
|
|
{
|
|
}
|
|
|
|
VStar::VStar( VObject* tqparent,
|
|
const KoPoint& center, double outerRadius, double innerRadius,
|
|
uint edges, double angle, uint innerAngle, double roundness, VStarType type )
|
|
: VPath( tqparent ), m_center( center), m_outerRadius( outerRadius ), m_innerRadius( innerRadius), m_edges( edges ), m_angle( angle ), m_innerAngle( innerAngle ), m_roundness( roundness ), m_type( type )
|
|
{
|
|
init();
|
|
}
|
|
|
|
void
|
|
VStar::init()
|
|
{
|
|
double angle = m_angle;
|
|
|
|
// A star should have at least 3 edges:
|
|
if( m_edges < 3 )
|
|
m_edges = 3;
|
|
|
|
// Make sure, radii are positive:
|
|
if( m_outerRadius < 0.0 )
|
|
m_outerRadius = -m_outerRadius;
|
|
|
|
if( m_innerRadius < 0.0 )
|
|
m_innerRadius = -m_innerRadius;
|
|
|
|
// trick for spoke, wheel (libart bug?)
|
|
if( m_type == spoke || m_type == wheel && m_roundness == 0.0 )
|
|
m_roundness = 0.01;
|
|
|
|
// We start at angle + VGlobal::pi_2:
|
|
KoPoint p2, p3;
|
|
KoPoint p(
|
|
m_outerRadius * cos( angle + VGlobal::pi_2 ),
|
|
m_outerRadius * sin( angle + VGlobal::pi_2 ) );
|
|
moveTo( p );
|
|
|
|
double inAngle = VGlobal::twopi / 360 * m_innerAngle;
|
|
|
|
if( m_type == star )
|
|
{
|
|
int j = ( m_edges % 2 == 0 ) ? ( m_edges - 2 ) / 2 : ( m_edges - 1 ) / 2;
|
|
//innerRadius = getOptimalInnerRadius( outerRadius, edges, innerAngle );
|
|
int jumpto = 0;
|
|
bool discontinueous = ( m_edges % 4 == 2 );
|
|
|
|
double outerRoundness = ( VGlobal::twopi * m_outerRadius * m_roundness ) / m_edges;
|
|
double nextOuterAngle;
|
|
|
|
for ( uint i = 1; i < m_edges + 1; ++i )
|
|
{
|
|
double nextInnerAngle = angle + inAngle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( jumpto + 0.5 );
|
|
p.setX( m_innerRadius * cos( nextInnerAngle ) );
|
|
p.setY( m_innerRadius * sin( nextInnerAngle ) );
|
|
if( m_roundness == 0.0 )
|
|
lineTo( p );
|
|
else
|
|
{
|
|
nextOuterAngle = angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * jumpto;
|
|
p2.setX( m_outerRadius * cos( nextOuterAngle ) -
|
|
cos( angle + VGlobal::twopi / m_edges * jumpto ) * outerRoundness );
|
|
p2.setY( m_outerRadius * sin( nextOuterAngle ) -
|
|
sin( angle + VGlobal::twopi / m_edges * jumpto ) * outerRoundness );
|
|
|
|
curveTo( p2, p, p );
|
|
}
|
|
|
|
jumpto = ( i * j ) % m_edges;
|
|
nextInnerAngle = angle + inAngle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( jumpto - 0.5 );
|
|
p.setX( m_innerRadius * cos( nextInnerAngle ) );
|
|
p.setY( m_innerRadius * sin( nextInnerAngle ) );
|
|
lineTo( p );
|
|
|
|
nextOuterAngle = angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * jumpto;
|
|
p.setX( m_outerRadius * cos( nextOuterAngle ) );
|
|
p.setY( m_outerRadius * sin( nextOuterAngle ) );
|
|
|
|
if( m_roundness == 0.0 )
|
|
lineTo( p );
|
|
else
|
|
{
|
|
p2.setX( m_innerRadius * cos( nextInnerAngle ) );
|
|
p2.setY( m_innerRadius * sin( nextInnerAngle ) );
|
|
|
|
p3.setX( m_outerRadius * cos( nextOuterAngle ) +
|
|
cos( angle + VGlobal::twopi / m_edges * jumpto ) * outerRoundness );
|
|
p3.setY( m_outerRadius * sin( nextOuterAngle ) +
|
|
sin( angle + VGlobal::twopi / m_edges * jumpto ) * outerRoundness );
|
|
|
|
curveTo( p2, p3, p );
|
|
}
|
|
if( discontinueous && i == ( m_edges / 2 ) )
|
|
{
|
|
angle += VGlobal::pi;
|
|
nextOuterAngle = angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * jumpto;
|
|
p.setX( m_outerRadius * cos( nextOuterAngle ) );
|
|
p.setY( m_outerRadius * sin( nextOuterAngle ) );
|
|
moveTo( p );
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( m_type == wheel || m_type == spoke )
|
|
m_innerRadius = 0.0;
|
|
|
|
double innerRoundness = ( VGlobal::twopi * m_innerRadius * m_roundness ) / m_edges;
|
|
double outerRoundness = ( VGlobal::twopi * m_outerRadius * m_roundness ) / m_edges;
|
|
|
|
for ( uint i = 0; i < m_edges; ++i )
|
|
{
|
|
double nextOuterAngle = angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( i + 1.0 );
|
|
double nextInnerAngle = angle + inAngle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( i + 0.5 );
|
|
if( m_type != polygon )
|
|
{
|
|
p.setX( m_innerRadius * cos( nextInnerAngle ) );
|
|
p.setY( m_innerRadius * sin( nextInnerAngle ) );
|
|
|
|
if( m_roundness == 0.0 )
|
|
lineTo( p );
|
|
else
|
|
{
|
|
p2.setX( m_outerRadius *
|
|
cos( angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( i ) ) -
|
|
cos( angle + VGlobal::twopi / m_edges * ( i ) ) * outerRoundness );
|
|
p2.setY( m_outerRadius *
|
|
sin( angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( i ) ) -
|
|
sin( angle + VGlobal::twopi / m_edges * ( i ) ) * outerRoundness );
|
|
|
|
p3.setX( m_innerRadius * cos( nextInnerAngle ) +
|
|
cos( angle + inAngle + VGlobal::twopi / m_edges * ( i + 0.5 ) ) * innerRoundness );
|
|
p3.setY( m_innerRadius * sin( nextInnerAngle ) +
|
|
sin( angle + inAngle + VGlobal::twopi / m_edges * ( i + 0.5 ) ) * innerRoundness );
|
|
|
|
if( m_type == gear )
|
|
{
|
|
lineTo( p2 );
|
|
lineTo( p3 );
|
|
lineTo( p );
|
|
}
|
|
else
|
|
curveTo( p2, p3, p );
|
|
}
|
|
}
|
|
|
|
p.setX( m_outerRadius * cos( nextOuterAngle ) );
|
|
p.setY( m_outerRadius * sin( nextOuterAngle ) );
|
|
|
|
if( m_roundness == 0.0 )
|
|
lineTo( p );
|
|
else
|
|
{
|
|
p2.setX( m_innerRadius * cos( nextInnerAngle ) -
|
|
cos( angle + inAngle + VGlobal::twopi / m_edges * ( i + 0.5 ) ) * innerRoundness );
|
|
p2.setY( m_innerRadius * sin( nextInnerAngle ) -
|
|
sin( angle + inAngle + VGlobal::twopi / m_edges * ( i + 0.5 ) ) * innerRoundness );
|
|
|
|
p3.setX( m_outerRadius * cos( nextOuterAngle ) +
|
|
cos( angle + VGlobal::twopi / m_edges * ( i + 1.0 ) ) * outerRoundness );
|
|
p3.setY( m_outerRadius * sin( nextOuterAngle ) +
|
|
sin( angle + VGlobal::twopi / m_edges * ( i + 1.0 ) ) * outerRoundness );
|
|
|
|
if( m_type == gear )
|
|
{
|
|
lineTo( p2 );
|
|
lineTo( p3 );
|
|
lineTo( p );
|
|
}
|
|
else
|
|
curveTo( p2, p3, p );
|
|
}
|
|
}
|
|
}
|
|
if( m_type == wheel || m_type == framed_star )
|
|
{
|
|
close();
|
|
for ( int i = m_edges - 1; i >= 0; --i )
|
|
{
|
|
double nextOuterAngle = angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( i + 1.0 );
|
|
p.setX( m_outerRadius * cos( nextOuterAngle ) );
|
|
p.setY( m_outerRadius * sin( nextOuterAngle ) );
|
|
lineTo( p );
|
|
}
|
|
}
|
|
close();
|
|
|
|
// translate path to center:
|
|
TQWMatrix m;
|
|
m.translate( m_center.x(), m_center.y() );
|
|
|
|
// only tranform the path data
|
|
VTransformCmd cmd( 0L, m );
|
|
cmd.VVisitor::visitVPath( *this );
|
|
|
|
setFillRule( evenOdd );
|
|
|
|
m_matrix.reset();
|
|
}
|
|
|
|
double
|
|
VStar::getOptimalInnerRadius( uint edges, double outerRadius, uint /*innerAngle*/ )
|
|
{
|
|
int j = (edges % 2 == 0 ) ? ( edges - 2 ) / 2 : ( edges - 1 ) / 2;
|
|
|
|
// get two well chosen lines of the star
|
|
KoPoint p1( outerRadius * cos( VGlobal::pi_2 ), outerRadius * sin( VGlobal::pi_2 ) );
|
|
int jumpto = ( j ) % edges;
|
|
double nextOuterAngle = VGlobal::pi_2 + VGlobal::twopi / edges * jumpto;
|
|
KoPoint p2( outerRadius * cos( nextOuterAngle ), outerRadius * sin( nextOuterAngle ) );
|
|
|
|
nextOuterAngle = VGlobal::pi_2 + VGlobal::twopi / edges;
|
|
KoPoint p3( outerRadius * cos( nextOuterAngle ),
|
|
outerRadius * sin( nextOuterAngle ) );
|
|
jumpto = ( edges - j + 1 ) % edges;
|
|
nextOuterAngle = VGlobal::pi_2 + VGlobal::twopi / edges * jumpto;
|
|
KoPoint p4( outerRadius * cos( nextOuterAngle ), outerRadius * sin( nextOuterAngle ) );
|
|
|
|
// calc (x, y) -> intersection point
|
|
double b1 = ( p2.y() - p1.y() ) / ( p2.x() - p1.x() );
|
|
double b2 = ( p4.y() - p3.y() ) / ( p4.x() - p3.x() );
|
|
double a1 = p1.y() - b1 * p1.x();
|
|
double a2 = p3.y() - b2 * p3.x();
|
|
double x = -( a1 - a2 ) / ( b1 - b2 );
|
|
double y = a1 + b1 * x;
|
|
// calc inner radius from intersection point and center
|
|
return sqrt( x * x + y * y );
|
|
}
|
|
|
|
TQString
|
|
VStar::name() const
|
|
{
|
|
TQString result = VObject::name();
|
|
return !result.isEmpty() ? result : i18n( "Star" );
|
|
}
|
|
|
|
void
|
|
VStar::save( TQDomElement& element ) const
|
|
{
|
|
VDocument *doc = document();
|
|
if( doc && doc->saveAsPath() )
|
|
{
|
|
VPath::save( element );
|
|
return;
|
|
}
|
|
|
|
if( state() != deleted )
|
|
{
|
|
TQDomElement me = element.ownerDocument().createElement( "STAR" );
|
|
element.appendChild( me );
|
|
|
|
// save fill/stroke untransformed
|
|
VPath path( *this );
|
|
VTransformCmd cmd( 0L, m_matrix.invert() );
|
|
cmd.visit( path );
|
|
path.VObject::save( me );
|
|
//VObject::save( me );
|
|
|
|
me.setAttribute( "cx", m_center.x() );
|
|
me.setAttribute( "cy", m_center.y() );
|
|
|
|
me.setAttribute( "outerradius", m_outerRadius );
|
|
me.setAttribute( "innerradius", m_innerRadius );
|
|
me.setAttribute( "edges", m_edges );
|
|
|
|
me.setAttribute( "angle", m_angle );
|
|
me.setAttribute( "innerangle", m_innerAngle );
|
|
|
|
me.setAttribute( "roundness", m_roundness );
|
|
|
|
me.setAttribute( "type", m_type );
|
|
|
|
TQString transform = buildSvgTransform();
|
|
if( !transform.isEmpty() )
|
|
me.setAttribute( "transform", transform );
|
|
}
|
|
}
|
|
|
|
void
|
|
VStar::load( const TQDomElement& element )
|
|
{
|
|
setState( normal );
|
|
|
|
TQDomNodeList list = element.childNodes();
|
|
for( uint i = 0; i < list.count(); ++i )
|
|
if( list.item( i ).isElement() )
|
|
VObject::load( list.item( i ).toElement() );
|
|
|
|
m_center.setX( KoUnit::parseValue( element.attribute( "cx" ) ) );
|
|
m_center.setY( KoUnit::parseValue( element.attribute( "cy" ) ) );
|
|
|
|
m_outerRadius = KoUnit::parseValue( element.attribute( "outerradius" ) );
|
|
m_innerRadius = KoUnit::parseValue( element.attribute( "innerradius" ) );
|
|
m_edges = element.attribute( "edges" ).toUInt();
|
|
|
|
m_innerAngle = element.attribute( "innerangle" ).toUInt();
|
|
m_angle = element.attribute( "angle" ).toDouble();
|
|
|
|
m_roundness = element.attribute( "roundness" ).toDouble();
|
|
|
|
m_type =(VStar::VStarType) element.attribute( "type" ).toInt();
|
|
|
|
init();
|
|
|
|
TQString trafo = element.attribute( "transform" );
|
|
if( !trafo.isEmpty() )
|
|
transform( trafo );
|
|
}
|
|
|
|
VPath*
|
|
VStar::clone() const
|
|
{
|
|
return new VStar( *this );
|
|
}
|