You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/karbon/shapes/vstar.cc

349 lines
10 KiB

/* This file is part of the KDE project
Copyright (C) 2001, 2002, 2003 The Karbon Developers
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include <math.h>
#include <tqwmatrix.h>
#include <tqdom.h>
#include "vglobal.h"
#include "vstar.h"
#include "vtransformcmd.h"
#include <klocale.h>
#include <KoUnit.h>
#include <vdocument.h>
VStar::VStar( VObject* tqparent, VState state )
: VPath( tqparent, state )
{
}
VStar::VStar( VObject* tqparent,
const KoPoint& center, double outerRadius, double innerRadius,
uint edges, double angle, uint innerAngle, double roundness, VStarType type )
: VPath( tqparent ), m_center( center), m_outerRadius( outerRadius ), m_innerRadius( innerRadius), m_edges( edges ), m_angle( angle ), m_innerAngle( innerAngle ), m_roundness( roundness ), m_type( type )
{
init();
}
void
VStar::init()
{
double angle = m_angle;
// A star should have at least 3 edges:
if( m_edges < 3 )
m_edges = 3;
// Make sure, radii are positive:
if( m_outerRadius < 0.0 )
m_outerRadius = -m_outerRadius;
if( m_innerRadius < 0.0 )
m_innerRadius = -m_innerRadius;
// trick for spoke, wheel (libart bug?)
if( m_type == spoke || m_type == wheel && m_roundness == 0.0 )
m_roundness = 0.01;
// We start at angle + VGlobal::pi_2:
KoPoint p2, p3;
KoPoint p(
m_outerRadius * cos( angle + VGlobal::pi_2 ),
m_outerRadius * sin( angle + VGlobal::pi_2 ) );
moveTo( p );
double inAngle = VGlobal::twopi / 360 * m_innerAngle;
if( m_type == star )
{
int j = ( m_edges % 2 == 0 ) ? ( m_edges - 2 ) / 2 : ( m_edges - 1 ) / 2;
//innerRadius = getOptimalInnerRadius( outerRadius, edges, innerAngle );
int jumpto = 0;
bool discontinueous = ( m_edges % 4 == 2 );
double outerRoundness = ( VGlobal::twopi * m_outerRadius * m_roundness ) / m_edges;
double nextOuterAngle;
for ( uint i = 1; i < m_edges + 1; ++i )
{
double nextInnerAngle = angle + inAngle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( jumpto + 0.5 );
p.setX( m_innerRadius * cos( nextInnerAngle ) );
p.setY( m_innerRadius * sin( nextInnerAngle ) );
if( m_roundness == 0.0 )
lineTo( p );
else
{
nextOuterAngle = angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * jumpto;
p2.setX( m_outerRadius * cos( nextOuterAngle ) -
cos( angle + VGlobal::twopi / m_edges * jumpto ) * outerRoundness );
p2.setY( m_outerRadius * sin( nextOuterAngle ) -
sin( angle + VGlobal::twopi / m_edges * jumpto ) * outerRoundness );
curveTo( p2, p, p );
}
jumpto = ( i * j ) % m_edges;
nextInnerAngle = angle + inAngle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( jumpto - 0.5 );
p.setX( m_innerRadius * cos( nextInnerAngle ) );
p.setY( m_innerRadius * sin( nextInnerAngle ) );
lineTo( p );
nextOuterAngle = angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * jumpto;
p.setX( m_outerRadius * cos( nextOuterAngle ) );
p.setY( m_outerRadius * sin( nextOuterAngle ) );
if( m_roundness == 0.0 )
lineTo( p );
else
{
p2.setX( m_innerRadius * cos( nextInnerAngle ) );
p2.setY( m_innerRadius * sin( nextInnerAngle ) );
p3.setX( m_outerRadius * cos( nextOuterAngle ) +
cos( angle + VGlobal::twopi / m_edges * jumpto ) * outerRoundness );
p3.setY( m_outerRadius * sin( nextOuterAngle ) +
sin( angle + VGlobal::twopi / m_edges * jumpto ) * outerRoundness );
curveTo( p2, p3, p );
}
if( discontinueous && i == ( m_edges / 2 ) )
{
angle += VGlobal::pi;
nextOuterAngle = angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * jumpto;
p.setX( m_outerRadius * cos( nextOuterAngle ) );
p.setY( m_outerRadius * sin( nextOuterAngle ) );
moveTo( p );
}
}
}
else
{
if( m_type == wheel || m_type == spoke )
m_innerRadius = 0.0;
double innerRoundness = ( VGlobal::twopi * m_innerRadius * m_roundness ) / m_edges;
double outerRoundness = ( VGlobal::twopi * m_outerRadius * m_roundness ) / m_edges;
for ( uint i = 0; i < m_edges; ++i )
{
double nextOuterAngle = angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( i + 1.0 );
double nextInnerAngle = angle + inAngle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( i + 0.5 );
if( m_type != polygon )
{
p.setX( m_innerRadius * cos( nextInnerAngle ) );
p.setY( m_innerRadius * sin( nextInnerAngle ) );
if( m_roundness == 0.0 )
lineTo( p );
else
{
p2.setX( m_outerRadius *
cos( angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( i ) ) -
cos( angle + VGlobal::twopi / m_edges * ( i ) ) * outerRoundness );
p2.setY( m_outerRadius *
sin( angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( i ) ) -
sin( angle + VGlobal::twopi / m_edges * ( i ) ) * outerRoundness );
p3.setX( m_innerRadius * cos( nextInnerAngle ) +
cos( angle + inAngle + VGlobal::twopi / m_edges * ( i + 0.5 ) ) * innerRoundness );
p3.setY( m_innerRadius * sin( nextInnerAngle ) +
sin( angle + inAngle + VGlobal::twopi / m_edges * ( i + 0.5 ) ) * innerRoundness );
if( m_type == gear )
{
lineTo( p2 );
lineTo( p3 );
lineTo( p );
}
else
curveTo( p2, p3, p );
}
}
p.setX( m_outerRadius * cos( nextOuterAngle ) );
p.setY( m_outerRadius * sin( nextOuterAngle ) );
if( m_roundness == 0.0 )
lineTo( p );
else
{
p2.setX( m_innerRadius * cos( nextInnerAngle ) -
cos( angle + inAngle + VGlobal::twopi / m_edges * ( i + 0.5 ) ) * innerRoundness );
p2.setY( m_innerRadius * sin( nextInnerAngle ) -
sin( angle + inAngle + VGlobal::twopi / m_edges * ( i + 0.5 ) ) * innerRoundness );
p3.setX( m_outerRadius * cos( nextOuterAngle ) +
cos( angle + VGlobal::twopi / m_edges * ( i + 1.0 ) ) * outerRoundness );
p3.setY( m_outerRadius * sin( nextOuterAngle ) +
sin( angle + VGlobal::twopi / m_edges * ( i + 1.0 ) ) * outerRoundness );
if( m_type == gear )
{
lineTo( p2 );
lineTo( p3 );
lineTo( p );
}
else
curveTo( p2, p3, p );
}
}
}
if( m_type == wheel || m_type == framed_star )
{
close();
for ( int i = m_edges - 1; i >= 0; --i )
{
double nextOuterAngle = angle + VGlobal::pi_2 + VGlobal::twopi / m_edges * ( i + 1.0 );
p.setX( m_outerRadius * cos( nextOuterAngle ) );
p.setY( m_outerRadius * sin( nextOuterAngle ) );
lineTo( p );
}
}
close();
// translate path to center:
TQWMatrix m;
m.translate( m_center.x(), m_center.y() );
// only tranform the path data
VTransformCmd cmd( 0L, m );
cmd.VVisitor::visitVPath( *this );
setFillRule( evenOdd );
m_matrix.reset();
}
double
VStar::getOptimalInnerRadius( uint edges, double outerRadius, uint /*innerAngle*/ )
{
int j = (edges % 2 == 0 ) ? ( edges - 2 ) / 2 : ( edges - 1 ) / 2;
// get two well chosen lines of the star
KoPoint p1( outerRadius * cos( VGlobal::pi_2 ), outerRadius * sin( VGlobal::pi_2 ) );
int jumpto = ( j ) % edges;
double nextOuterAngle = VGlobal::pi_2 + VGlobal::twopi / edges * jumpto;
KoPoint p2( outerRadius * cos( nextOuterAngle ), outerRadius * sin( nextOuterAngle ) );
nextOuterAngle = VGlobal::pi_2 + VGlobal::twopi / edges;
KoPoint p3( outerRadius * cos( nextOuterAngle ),
outerRadius * sin( nextOuterAngle ) );
jumpto = ( edges - j + 1 ) % edges;
nextOuterAngle = VGlobal::pi_2 + VGlobal::twopi / edges * jumpto;
KoPoint p4( outerRadius * cos( nextOuterAngle ), outerRadius * sin( nextOuterAngle ) );
// calc (x, y) -> intersection point
double b1 = ( p2.y() - p1.y() ) / ( p2.x() - p1.x() );
double b2 = ( p4.y() - p3.y() ) / ( p4.x() - p3.x() );
double a1 = p1.y() - b1 * p1.x();
double a2 = p3.y() - b2 * p3.x();
double x = -( a1 - a2 ) / ( b1 - b2 );
double y = a1 + b1 * x;
// calc inner radius from intersection point and center
return sqrt( x * x + y * y );
}
TQString
VStar::name() const
{
TQString result = VObject::name();
return !result.isEmpty() ? result : i18n( "Star" );
}
void
VStar::save( TQDomElement& element ) const
{
VDocument *doc = document();
if( doc && doc->saveAsPath() )
{
VPath::save( element );
return;
}
if( state() != deleted )
{
TQDomElement me = element.ownerDocument().createElement( "STAR" );
element.appendChild( me );
// save fill/stroke untransformed
VPath path( *this );
VTransformCmd cmd( 0L, m_matrix.invert() );
cmd.visit( path );
path.VObject::save( me );
//VObject::save( me );
me.setAttribute( "cx", m_center.x() );
me.setAttribute( "cy", m_center.y() );
me.setAttribute( "outerradius", m_outerRadius );
me.setAttribute( "innerradius", m_innerRadius );
me.setAttribute( "edges", m_edges );
me.setAttribute( "angle", m_angle );
me.setAttribute( "innerangle", m_innerAngle );
me.setAttribute( "roundness", m_roundness );
me.setAttribute( "type", m_type );
TQString transform = buildSvgTransform();
if( !transform.isEmpty() )
me.setAttribute( "transform", transform );
}
}
void
VStar::load( const TQDomElement& element )
{
setState( normal );
TQDomNodeList list = element.childNodes();
for( uint i = 0; i < list.count(); ++i )
if( list.item( i ).isElement() )
VObject::load( list.item( i ).toElement() );
m_center.setX( KoUnit::parseValue( element.attribute( "cx" ) ) );
m_center.setY( KoUnit::parseValue( element.attribute( "cy" ) ) );
m_outerRadius = KoUnit::parseValue( element.attribute( "outerradius" ) );
m_innerRadius = KoUnit::parseValue( element.attribute( "innerradius" ) );
m_edges = element.attribute( "edges" ).toUInt();
m_innerAngle = element.attribute( "innerangle" ).toUInt();
m_angle = element.attribute( "angle" ).toDouble();
m_roundness = element.attribute( "roundness" ).toDouble();
m_type =(VStar::VStarType) element.attribute( "type" ).toInt();
init();
TQString trafo = element.attribute( "transform" );
if( !trafo.isEmpty() )
transform( trafo );
}
VPath*
VStar::clone() const
{
return new VStar( *this );
}