/* * Copyright (c) 2002 Patrick Julien * Copyright (c) 2004 Cyrille Berger * Copyright (c) 2004 Boudewijn Rempt * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include LCMS_HEADER #include #include #include #include #include "kis_abstract_colorspace.h" #include "kis_u8_base_colorspace.h" #include "kis_gray_colorspace.h" #include "kis_integer_maths.h" #define downscale(quantum) (quantum) //((unsigned char) ((quantum)/257UL)) #define upscale(value) (value) // ((TQ_UINT8) (257UL*(value))) namespace { const TQ_INT32 MAX_CHANNEL_GRAYSCALE = 1; const TQ_INT32 MAX_CHANNEL_GRAYSCALEA = 2; } KisGrayColorSpace::KisGrayColorSpace(KisColorSpaceFactoryRegistry * parent, KisProfile *p) : KisU8BaseColorSpace(KisID("GRAYA", i18n("Grayscale")), TYPE_GRAYA_8, icSigGrayData, parent, p) { m_channels.push_back(new KisChannelInfo(i18n("Gray"), i18n("G"), 0, KisChannelInfo::COLOR, KisChannelInfo::UINT8)); m_channels.push_back(new KisChannelInfo(i18n("Alpha"), i18n("A"), 1, KisChannelInfo::ALPHA, KisChannelInfo::UINT8)); m_alphaPos = PIXEL_GRAY_ALPHA; init(); } KisGrayColorSpace::~KisGrayColorSpace() { } void KisGrayColorSpace::setPixel(TQ_UINT8 *pixel, TQ_UINT8 gray, TQ_UINT8 alpha) const { pixel[PIXEL_GRAY] = gray; pixel[PIXEL_GRAY_ALPHA] = alpha; } void KisGrayColorSpace::getPixel(const TQ_UINT8 *pixel, TQ_UINT8 *gray, TQ_UINT8 *alpha) const { *gray = pixel[PIXEL_GRAY]; *alpha = pixel[PIXEL_GRAY_ALPHA]; } void KisGrayColorSpace::getAlpha(const TQ_UINT8 *pixel, TQ_UINT8 *alpha) const { *alpha = pixel[PIXEL_GRAY_ALPHA]; } void KisGrayColorSpace::setAlpha(TQ_UINT8 *pixels, TQ_UINT8 alpha, TQ_INT32 nPixels) const { while (nPixels > 0) { pixels[PIXEL_GRAY_ALPHA] = alpha; --nPixels; pixels += MAX_CHANNEL_GRAYSCALEA; } } void KisGrayColorSpace::mixColors(const TQ_UINT8 **colors, const TQ_UINT8 *weights, TQ_UINT32 nColors, TQ_UINT8 *dst) const { TQ_UINT32 totalGray = 0, newAlpha = 0; while (nColors--) { TQ_UINT32 alpha = (*colors)[PIXEL_GRAY_ALPHA]; TQ_UINT32 alphaTimesWeight = UINT8_MULT(alpha, *weights); totalGray += (*colors)[PIXEL_GRAY] * alphaTimesWeight; newAlpha += alphaTimesWeight; weights++; colors++; } Q_ASSERT(newAlpha <= 255); dst[PIXEL_GRAY_ALPHA] = newAlpha; if (newAlpha > 0) { totalGray = UINT8_DIVIDE(totalGray, newAlpha); } // Divide by 255. totalGray += 0x80; TQ_UINT32 dstGray = ((totalGray >> 8) + totalGray) >> 8; Q_ASSERT(dstGray <= 255); dst[PIXEL_GRAY] = dstGray; } void KisGrayColorSpace::convolveColors(TQ_UINT8** colors, TQ_INT32* kernelValues, KisChannelInfo::enumChannelFlags channelFlags, TQ_UINT8 *dst, TQ_INT32 factor, TQ_INT32 offset, TQ_INT32 nColors) const { TQ_INT32 totalGray = 0, totalAlpha = 0; while (nColors--) { TQ_INT32 weight = *kernelValues; if (weight != 0) { totalGray += (*colors)[PIXEL_GRAY] * weight; totalAlpha += (*colors)[PIXEL_GRAY_ALPHA] * weight; } colors++; kernelValues++; } if (channelFlags & KisChannelInfo::FLAG_COLOR) { dst[PIXEL_GRAY] = CLAMP((totalGray / factor) + offset, 0, TQ_UINT8_MAX); } if (channelFlags & KisChannelInfo::FLAG_ALPHA) { dst[PIXEL_GRAY_ALPHA] = CLAMP((totalAlpha/ factor) + offset, 0, TQ_UINT8_MAX); } } void KisGrayColorSpace::invertColor(TQ_UINT8 * src, TQ_INT32 nPixels) { TQ_UINT32 psize = pixelSize(); while (nPixels--) { src[PIXEL_GRAY] = TQ_UINT8_MAX - src[PIXEL_GRAY]; src += psize; } } void KisGrayColorSpace::darken(const TQ_UINT8 * src, TQ_UINT8 * dst, TQ_INT32 shade, bool compensate, double compensation, TQ_INT32 nPixels) const { TQ_UINT32 pSize = pixelSize(); while (nPixels--) { if (compensate) { dst[PIXEL_GRAY] = (TQ_INT8) TQMIN(255,((src[PIXEL_GRAY] * shade) / (compensation * 255))); } else { dst[PIXEL_GRAY] = (TQ_INT8) TQMIN(255, (src[PIXEL_GRAY] * shade / 255)); } dst += pSize; src += pSize; } } TQ_UINT8 KisGrayColorSpace::intensity8(const TQ_UINT8 * src) const { return src[PIXEL_GRAY]; } TQValueVector KisGrayColorSpace::channels() const { return m_channels; } TQ_UINT32 KisGrayColorSpace::nChannels() const { return MAX_CHANNEL_GRAYSCALEA; } TQ_UINT32 KisGrayColorSpace::nColorChannels() const { return MAX_CHANNEL_GRAYSCALE; } TQ_UINT32 KisGrayColorSpace::pixelSize() const { return MAX_CHANNEL_GRAYSCALEA; } void KisGrayColorSpace::bitBlt(TQ_UINT8 *dst, TQ_INT32 dstRowStride, const TQ_UINT8 *src, TQ_INT32 srcRowStride, const TQ_UINT8 *mask, TQ_INT32 maskRowStride, TQ_UINT8 opacity, TQ_INT32 rows, TQ_INT32 cols, const KisCompositeOp& op) { switch (op.op()) { case COMPOSITE_OVER: compositeOver(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_MULT: compositeMultiply(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_DIVIDE: compositeDivide(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_DARKEN: compositeDarken(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_LIGHTEN: compositeLighten(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_SCREEN: compositeScreen(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_OVERLAY: compositeOverlay(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_DODGE: compositeDodge(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_BURN: compositeBurn(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_ERASE: compositeErase(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_COPY: compositeCopy(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_CLEAR: { TQ_UINT8 *d; TQ_INT32 linesize; linesize = MAX_CHANNEL_GRAYSCALEA*sizeof(TQ_UINT8) * cols; d = dst; while (rows-- > 0) { memset(d, 0, linesize); d += dstRowStride; } } break; case COMPOSITE_ALPHA_DARKEN: compositeAlphaDarken(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; default: break; } } KisCompositeOpList KisGrayColorSpace::userVisiblecompositeOps() const { KisCompositeOpList list; list.append(KisCompositeOp(COMPOSITE_OVER)); list.append(KisCompositeOp(COMPOSITE_MULT)); list.append(KisCompositeOp(COMPOSITE_BURN)); list.append(KisCompositeOp(COMPOSITE_DODGE)); list.append(KisCompositeOp(COMPOSITE_DIVIDE)); list.append(KisCompositeOp(COMPOSITE_SCREEN)); list.append(KisCompositeOp(COMPOSITE_OVERLAY)); list.append(KisCompositeOp(COMPOSITE_DARKEN)); list.append(KisCompositeOp(COMPOSITE_LIGHTEN)); return list; } void KisGrayColorSpace::compositeOver(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity) { while (rows > 0) { const TQ_UINT8 *src = srcRowStart; TQ_UINT8 *dst = dstRowStart; TQ_INT32 columns = numColumns; const TQ_UINT8 *mask = maskRowStart; while (columns > 0) { TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA]; // apply the alphamask if(mask != 0) { if(*mask != OPACITY_OPAQUE) srcAlpha = UINT8_MULT(srcAlpha, *mask); mask++; } if (srcAlpha != OPACITY_TRANSPARENT) { if (opacity != OPACITY_OPAQUE) { srcAlpha = UINT8_MULT(srcAlpha, opacity); } if (srcAlpha == OPACITY_OPAQUE) { memcpy(dst, src, MAX_CHANNEL_GRAYSCALEA * sizeof(TQ_UINT8)); } else { TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA]; TQ_UINT8 srcBlend; if (dstAlpha == OPACITY_OPAQUE) { srcBlend = srcAlpha; } else { TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha); dst[PIXEL_GRAY_ALPHA] = newAlpha; if (newAlpha != 0) { srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha); } else { srcBlend = srcAlpha; } } if (srcBlend == OPACITY_OPAQUE) { memcpy(dst, src, MAX_CHANNEL_GRAYSCALE * sizeof(TQ_UINT8)); } else { dst[PIXEL_GRAY] = UINT8_BLEND(src[PIXEL_GRAY], dst[PIXEL_GRAY], srcBlend); } } } columns--; src += MAX_CHANNEL_GRAYSCALEA; dst += MAX_CHANNEL_GRAYSCALEA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) maskRowStart += maskRowStride; } } void KisGrayColorSpace::compositeMultiply(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity) { while (rows > 0) { const TQ_UINT8 *src = srcRowStart; TQ_UINT8 *dst = dstRowStart; TQ_INT32 columns = numColumns; const TQ_UINT8 *mask = maskRowStart; while (columns > 0) { TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA]; TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA]; srcAlpha = TQMIN(srcAlpha, dstAlpha); // apply the alphamask if(mask != 0) { if(*mask != OPACITY_OPAQUE) srcAlpha = UINT8_MULT(srcAlpha, *mask); mask++; } if (srcAlpha != OPACITY_TRANSPARENT) { if (opacity != OPACITY_OPAQUE) { srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity); } TQ_UINT8 srcBlend; if (dstAlpha == OPACITY_OPAQUE) { srcBlend = srcAlpha; } else { TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha); dst[PIXEL_GRAY_ALPHA] = newAlpha; if (newAlpha != 0) { srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha); } else { srcBlend = srcAlpha; } } TQ_UINT8 srcColor = src[PIXEL_GRAY]; TQ_UINT8 dstColor = dst[PIXEL_GRAY]; srcColor = UINT8_MULT(srcColor, dstColor); dst[PIXEL_GRAY] = UINT8_BLEND(srcColor, dstColor, srcBlend); } columns--; src += MAX_CHANNEL_GRAYSCALEA; dst += MAX_CHANNEL_GRAYSCALEA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) maskRowStart += maskRowStride; } } void KisGrayColorSpace::compositeDivide(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity) { while (rows > 0) { const TQ_UINT8 *src = srcRowStart; TQ_UINT8 *dst = dstRowStart; TQ_INT32 columns = numColumns; const TQ_UINT8 *mask = maskRowStart; while (columns > 0) { TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA]; TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA]; srcAlpha = TQMIN(srcAlpha, dstAlpha); // apply the alphamask if(mask != 0) { if(*mask != OPACITY_OPAQUE) srcAlpha = UINT8_MULT(srcAlpha, *mask); mask++; } if (srcAlpha != OPACITY_TRANSPARENT) { if (opacity != OPACITY_OPAQUE) { srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity); } TQ_UINT8 srcBlend; if (dstAlpha == OPACITY_OPAQUE) { srcBlend = srcAlpha; } else { TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha); dst[PIXEL_GRAY_ALPHA] = newAlpha; if (newAlpha != 0) { srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha); } else { srcBlend = srcAlpha; } } for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) { TQ_UINT8 srcColor = src[channel]; TQ_UINT8 dstColor = dst[channel]; srcColor = TQMIN((dstColor * (UINT8_MAX + 1)) / (1 + srcColor), UINT8_MAX); TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } columns--; src += MAX_CHANNEL_GRAYSCALEA; dst += MAX_CHANNEL_GRAYSCALEA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) maskRowStart += maskRowStride; } } void KisGrayColorSpace::compositeScreen(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity) { while (rows > 0) { const TQ_UINT8 *src = srcRowStart; TQ_UINT8 *dst = dstRowStart; TQ_INT32 columns = numColumns; const TQ_UINT8 *mask = maskRowStart; while (columns > 0) { TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA]; TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA]; srcAlpha = TQMIN(srcAlpha, dstAlpha); // apply the alphamask if(mask != 0) { if(*mask != OPACITY_OPAQUE) srcAlpha = UINT8_MULT(srcAlpha, *mask); mask++; } if (srcAlpha != OPACITY_TRANSPARENT) { if (opacity != OPACITY_OPAQUE) { srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity); } TQ_UINT8 srcBlend; if (dstAlpha == OPACITY_OPAQUE) { srcBlend = srcAlpha; } else { TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha); dst[PIXEL_GRAY_ALPHA] = newAlpha; if (newAlpha != 0) { srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha); } else { srcBlend = srcAlpha; } } for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) { TQ_UINT8 srcColor = src[channel]; TQ_UINT8 dstColor = dst[channel]; srcColor = UINT8_MAX - UINT8_MULT(UINT8_MAX - dstColor, UINT8_MAX - srcColor); TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } columns--; src += MAX_CHANNEL_GRAYSCALEA; dst += MAX_CHANNEL_GRAYSCALEA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) maskRowStart += maskRowStride; } } void KisGrayColorSpace::compositeOverlay(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity) { while (rows > 0) { const TQ_UINT8 *src = srcRowStart; TQ_UINT8 *dst = dstRowStart; TQ_INT32 columns = numColumns; const TQ_UINT8 *mask = maskRowStart; while (columns > 0) { TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA]; TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA]; srcAlpha = TQMIN(srcAlpha, dstAlpha); // apply the alphamask if(mask != 0) { if(*mask != OPACITY_OPAQUE) srcAlpha = UINT8_MULT(srcAlpha, *mask); mask++; } if (srcAlpha != OPACITY_TRANSPARENT) { if (opacity != OPACITY_OPAQUE) { srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity); } TQ_UINT8 srcBlend; if (dstAlpha == OPACITY_OPAQUE) { srcBlend = srcAlpha; } else { TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha); dst[PIXEL_GRAY_ALPHA] = newAlpha; if (newAlpha != 0) { srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha); } else { srcBlend = srcAlpha; } } for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) { TQ_UINT8 srcColor = src[channel]; TQ_UINT8 dstColor = dst[channel]; srcColor = UINT8_MULT(dstColor, dstColor + UINT8_MULT(2 * srcColor, UINT8_MAX - dstColor)); TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } columns--; src += MAX_CHANNEL_GRAYSCALEA; dst += MAX_CHANNEL_GRAYSCALEA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) maskRowStart += maskRowStride; } } void KisGrayColorSpace::compositeDodge(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity) { while (rows > 0) { const TQ_UINT8 *src = srcRowStart; TQ_UINT8 *dst = dstRowStart; TQ_INT32 columns = numColumns; const TQ_UINT8 *mask = maskRowStart; while (columns > 0) { TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA]; TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA]; srcAlpha = TQMIN(srcAlpha, dstAlpha); // apply the alphamask if(mask != 0) { if(*mask != OPACITY_OPAQUE) srcAlpha = UINT8_MULT(srcAlpha, *mask); mask++; } if (srcAlpha != OPACITY_TRANSPARENT) { if (opacity != OPACITY_OPAQUE) { srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity); } TQ_UINT8 srcBlend; if (dstAlpha == OPACITY_OPAQUE) { srcBlend = srcAlpha; } else { TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha); dst[PIXEL_GRAY_ALPHA] = newAlpha; if (newAlpha != 0) { srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha); } else { srcBlend = srcAlpha; } } for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) { TQ_UINT8 srcColor = src[channel]; TQ_UINT8 dstColor = dst[channel]; srcColor = TQMIN((dstColor * (UINT8_MAX + 1)) / (UINT8_MAX + 1 - srcColor), UINT8_MAX); TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } columns--; src += MAX_CHANNEL_GRAYSCALEA; dst += MAX_CHANNEL_GRAYSCALEA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) maskRowStart += maskRowStride; } } void KisGrayColorSpace::compositeBurn(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity) { while (rows > 0) { const TQ_UINT8 *src = srcRowStart; TQ_UINT8 *dst = dstRowStart; TQ_INT32 columns = numColumns; const TQ_UINT8 *mask = maskRowStart; while (columns > 0) { TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA]; TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA]; srcAlpha = TQMIN(srcAlpha, dstAlpha); // apply the alphamask if(mask != 0) { if(*mask != OPACITY_OPAQUE) srcAlpha = UINT8_MULT(srcAlpha, *mask); mask++; } if (srcAlpha != OPACITY_TRANSPARENT) { if (opacity != OPACITY_OPAQUE) { srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity); } TQ_UINT8 srcBlend; if (dstAlpha == OPACITY_OPAQUE) { srcBlend = srcAlpha; } else { TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha); dst[PIXEL_GRAY_ALPHA] = newAlpha; if (newAlpha != 0) { srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha); } else { srcBlend = srcAlpha; } } for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) { TQ_UINT8 srcColor = src[channel]; TQ_UINT8 dstColor = dst[channel]; srcColor = kMin(((UINT8_MAX - dstColor) * (UINT8_MAX + 1)) / (srcColor + 1), UINT8_MAX); srcColor = kClamp(UINT8_MAX - srcColor, 0u, UINT8_MAX); TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } columns--; src += MAX_CHANNEL_GRAYSCALEA; dst += MAX_CHANNEL_GRAYSCALEA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) maskRowStart += maskRowStride; } } void KisGrayColorSpace::compositeDarken(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity) { while (rows > 0) { const TQ_UINT8 *src = srcRowStart; TQ_UINT8 *dst = dstRowStart; TQ_INT32 columns = numColumns; const TQ_UINT8 *mask = maskRowStart; while (columns > 0) { TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA]; TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA]; srcAlpha = TQMIN(srcAlpha, dstAlpha); // apply the alphamask if(mask != 0) { if(*mask != OPACITY_OPAQUE) srcAlpha = UINT8_MULT(srcAlpha, *mask); mask++; } if (srcAlpha != OPACITY_TRANSPARENT) { if (opacity != OPACITY_OPAQUE) { srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity); } TQ_UINT8 srcBlend; if (dstAlpha == OPACITY_OPAQUE) { srcBlend = srcAlpha; } else { TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha); dst[PIXEL_GRAY_ALPHA] = newAlpha; if (newAlpha != 0) { srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha); } else { srcBlend = srcAlpha; } } for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) { TQ_UINT8 srcColor = src[channel]; TQ_UINT8 dstColor = dst[channel]; srcColor = TQMIN(srcColor, dstColor); TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } columns--; src += MAX_CHANNEL_GRAYSCALEA; dst += MAX_CHANNEL_GRAYSCALEA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) maskRowStart += maskRowStride; } } void KisGrayColorSpace::compositeLighten(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity) { while (rows > 0) { const TQ_UINT8 *src = srcRowStart; TQ_UINT8 *dst = dstRowStart; TQ_INT32 columns = numColumns; const TQ_UINT8 *mask = maskRowStart; while (columns > 0) { TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA]; TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA]; srcAlpha = TQMIN(srcAlpha, dstAlpha); // apply the alphamask if(mask != 0) { if(*mask != OPACITY_OPAQUE) srcAlpha = UINT8_MULT(srcAlpha, *mask); mask++; } if (srcAlpha != OPACITY_TRANSPARENT) { if (opacity != OPACITY_OPAQUE) { srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity); } TQ_UINT8 srcBlend; if (dstAlpha == OPACITY_OPAQUE) { srcBlend = srcAlpha; } else { TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha); dst[PIXEL_GRAY_ALPHA] = newAlpha; if (newAlpha != 0) { srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha); } else { srcBlend = srcAlpha; } } for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) { TQ_UINT8 srcColor = src[channel]; TQ_UINT8 dstColor = dst[channel]; srcColor = TQMAX(srcColor, dstColor); TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } columns--; src += MAX_CHANNEL_GRAYSCALEA; dst += MAX_CHANNEL_GRAYSCALEA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) maskRowStart += maskRowStride; } } void KisGrayColorSpace::compositeErase(TQ_UINT8 *dst, TQ_INT32 dstRowSize, const TQ_UINT8 *src, TQ_INT32 srcRowSize, const TQ_UINT8 *srcAlphaMask, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 cols, TQ_UINT8 /*opacity*/) { TQ_INT32 i; TQ_UINT8 srcAlpha; while (rows-- > 0) { const TQ_UINT8 *s = src; TQ_UINT8 *d = dst; const TQ_UINT8 *mask = srcAlphaMask; for (i = cols; i > 0; i--, s+=MAX_CHANNEL_GRAYSCALEA, d+=MAX_CHANNEL_GRAYSCALEA) { srcAlpha = s[PIXEL_GRAY_ALPHA]; // apply the alphamask if(mask != 0) { if(*mask != OPACITY_OPAQUE) srcAlpha = UINT8_BLEND(srcAlpha, OPACITY_OPAQUE, *mask); mask++; } d[PIXEL_GRAY_ALPHA] = UINT8_MULT(srcAlpha, d[PIXEL_GRAY_ALPHA]); } dst += dstRowSize; if(srcAlphaMask) srcAlphaMask += maskRowStride; src += srcRowSize; } } void KisGrayColorSpace::compositeAlphaDarken(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity) { while (rows > 0) { const TQ_UINT8 *src = srcRowStart; TQ_UINT8 *dst = dstRowStart; const TQ_UINT8 *mask = maskRowStart; TQ_INT32 columns = numColumns; while (columns > 0) { TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA]; TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA]; // apply the alphamask if(mask != 0) { if(*mask != OPACITY_OPAQUE) srcAlpha = UINT8_MULT(srcAlpha, *mask); mask++; } if (opacity != OPACITY_OPAQUE) { srcAlpha = UINT8_MULT(srcAlpha, opacity); } if (srcAlpha != OPACITY_TRANSPARENT && srcAlpha >= dstAlpha) { dst[PIXEL_GRAY_ALPHA] = srcAlpha; memcpy(dst, src, MAX_CHANNEL_GRAYSCALE * sizeof(TQ_UINT8)); } columns--; src += MAX_CHANNEL_GRAYSCALEA; dst += MAX_CHANNEL_GRAYSCALEA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) maskRowStart += maskRowStride; } }