/* This file is part of the KDE project Copyright (C) 2001 Laurent MONTEL This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "KoPointArray.h" #include #include #include void KoPointArray::translate( double dx, double dy ) { KoPoint *p = data(); int i = size(); KoPoint pt( dx, dy ); while ( i-- ) { *p += pt; p++; } } void KoPointArray::point( uint index, double *x, double *y ) const { KoPoint p = TQMemArray::at( index ); if ( x ) *x = (double)p.x(); if ( y ) *y = (double)p.y(); } KoPoint KoPointArray::point( uint index ) const { // #### index out of bounds return TQMemArray::at( index ); } void KoPointArray::setPoint( uint index, double x, double y ) { // #### index out of bounds TQMemArray::at( index ) = KoPoint( x, y ); } bool KoPointArray::putPoints( int index, int nPoints, double firstx, double firsty, ... ) { va_list ap; if ( index + nPoints > (int)size() ) { // extend array if ( !resize(index + nPoints) ) return FALSE; } if ( nPoints <= 0 ) return TRUE; setPoint( index, firstx, firsty ); // set first point int i = index + 1; double x, y; nPoints--; va_start( ap, firsty ); while ( nPoints-- ) { x = va_arg( ap, double ); y = va_arg( ap, double ); setPoint( i++, x, y ); } va_end( ap ); return TRUE; } void split(const double *p, double *l, double *r) { double tmpx; double tmpy; l[0] = p[0]; l[1] = p[1]; r[6] = p[6]; r[7] = p[7]; l[2] = (p[0]+ p[2])/2; l[3] = (p[1]+ p[3])/2; tmpx = (p[2]+ p[4])/2; tmpy = (p[3]+ p[5])/2; r[4] = (p[4]+ p[6])/2; r[5] = (p[5]+ p[7])/2; l[4] = (l[2]+ tmpx)/2; l[5] = (l[3]+ tmpy)/2; r[2] = (tmpx + r[4])/2; r[3] = (tmpy + r[5])/2; l[6] = (l[4]+ r[2])/2; l[7] = (l[5]+ r[3])/2; r[0] = l[6]; r[1] = l[7]; } // Based on: // // A Fast 2D Point-On-Line Test // by Alan Paeth // from "Graphics Gems", Academic Press, 1990 static int pnt_on_line( const int* p, const int* q, const int* t ) { /* * given a line through P:(px,py) Q:(qx,qy) and T:(tx,ty) * return 0 if T is not on the line through <--P--Q--> * 1 if T is on the open ray ending at P: <--P * 2 if T is on the closed interior along: P--Q * 3 if T is on the open ray beginning at Q: Q--> * * Example: consider the line P = (3,2), Q = (17,7). A plot * of the test points T(x,y) (with 0 mapped onto '.') yields: * * 8| . . . . . . . . . . . . . . . . . 3 3 * Y 7| . . . . . . . . . . . . . . 2 2 Q 3 3 Q = 2 * 6| . . . . . . . . . . . 2 2 2 2 2 . . . * a 5| . . . . . . . . 2 2 2 2 2 2 . . . . . * x 4| . . . . . 2 2 2 2 2 2 . . . . . . . . * i 3| . . . 2 2 2 2 2 . . . . . . . . . . . * s 2| 1 1 P 2 2 . . . . . . . . . . . . . . P = 2 * 1| 1 1 . . . . . . . . . . . . . . . . . * +-------------------------------------- * 1 2 3 4 5 X-axis 10 15 19 * * Point-Line distance is normalized with the Infinity Norm * avoiding square-root code and tightening the test vs the * Manhattan Norm. All math is done on the field of integers. * The latter replaces the initial ">= MAX(...)" test with * "> (ABS(qx-px) + ABS(qy-py))" loosening both inequality * and norm, yielding a broader target line for selection. * The tightest test is employed here for best discrimination * in merging collinear (to grid coordinates) vertex chains * into a larger, spanning vectors within the Lemming editor. */ // if all points are coincident, return condition 2 (on line) if(q[0]==p[0] && q[1]==p[1] && q[0]==t[0] && q[1]==t[1]) { return 2; } if ( TQABS((q[1]-p[1])*(t[0]-p[0])-(t[1]-p[1])*(q[0]-p[0])) >= (TQMAX(TQABS(q[0]-p[0]), TQABS(q[1]-p[1])))) return 0; if (((q[0] maxsize / 2 ) { // This never happens in practice. if ( accsize >= maxsize-4 ) return; // Running out of space - approximate by a line. acc[accsize++] = ctrl[0]; acc[accsize++] = ctrl[1]; acc[accsize++] = ctrl[6]; acc[accsize++] = ctrl[7]; return; } //intersects: double l[8]; double r[8]; split( ctrl, l, r); // convert to integers for line condition check int c0[2]; c0[0] = int(ctrl[0]); c0[1] = int(ctrl[1]); int c1[2]; c1[0] = int(ctrl[2]); c1[1] = int(ctrl[3]); int c2[2]; c2[0] = int(ctrl[4]); c2[1] = int(ctrl[5]); int c3[2]; c3[0] = int(ctrl[6]); c3[1] = int(ctrl[7]); // #### Duplication needed? if ( TQABS(c1[0]-c0[0]) <= 1 && TQABS(c1[1]-c0[1]) <= 1 && TQABS(c2[0]-c0[0]) <= 1 && TQABS(c2[1]-c0[1]) <= 1 && TQABS(c3[0]-c1[0]) <= 1 && TQABS(c3[1]-c0[1]) <= 1 ) { // Approximate by one line. // Dont need to write last pt as it is the same as first pt // on the next segment acc[accsize++] = l[0]; acc[accsize++] = l[1]; return; } if ( ( pnt_on_line( c0, c3, c1 ) == 2 && pnt_on_line( c0, c3, c2 ) == 2 ) || ( TQABS(c1[0]-c0[0]) <= 1 && TQABS(c1[1]-c0[1]) <= 1 && TQABS(c2[0]-c0[0]) <= 1 && TQABS(c2[1]-c0[1]) <= 1 && TQABS(c3[0]-c1[0]) <= 1 && TQABS(c3[1]-c0[1]) <= 1 ) ) { // Approximate by one line. // Dont need to write last pt as it is the same as first pt // on the next segment acc[accsize++] = l[0]; acc[accsize++] = l[1]; return; } // Too big and too curved - recusively subdivide. polygonizeTQBezier( acc, accsize, l, maxsize ); polygonizeTQBezier( acc, accsize, r, maxsize ); } KoRect KoPointArray::boundingRect() const { if ( isEmpty() ) return KoRect( 0, 0, 0, 0 ); // null rectangle KoPoint *pd = data(); double minx, maxx, miny, maxy; minx = maxx = pd->x(); miny = maxy = pd->y(); pd++; for ( int i=1; i<(int)size(); i++ ) { // find min+max x and y if ( pd->x() < minx ) minx = pd->x(); else if ( pd->x() > maxx ) maxx = pd->x(); if ( pd->y() < miny ) miny = pd->y(); else if ( pd->y() > maxy ) maxy = pd->y(); pd++; } return KoRect( KoPoint(minx,miny), KoPoint(maxx,maxy) ); } KoPointArray KoPointArray::cubicBezier() const { if ( size() != 4 ) { #if defined(TQT_CHECK_RANGE) tqWarning( "TQPointArray::bezier: The array must have 4 control points" ); #endif KoPointArray pa; return pa; } else { KoRect r = boundingRect(); int m = (int)(4+2*TQMAX(r.width(),r.height())); double *p = new double[m]; double ctrl[8]; int i; for (i=0; i<4; i++) { ctrl[i*2] = at(i).x(); ctrl[i*2+1] = at(i).y(); } int len=0; polygonizeTQBezier( p, len, ctrl, m ); KoPointArray pa((len/2)+1); // one extra point for last point on line int j=0; for (i=0; jzoomItX(p.x()),zoomHandler->zoomItY(p.y()) ); } return tmpPoints; } TQPointArray KoPointArray::zoomPointArray( const KoZoomHandler* zoomHandler, int penWidth ) const { double fx; double fy; KoSize ext = boundingRect().size(); int pw = zoomHandler->zoomItX( penWidth ) / 2; fx = (double)( zoomHandler->zoomItX(ext.width()) - 2 * pw ) / ext.width(); fy = (double)( zoomHandler->zoomItY(ext.height()) - 2 * pw ) / ext.height(); unsigned int index = 0; TQPointArray tmpPoints; KoPointArray::ConstIterator it; for ( it = begin(); it != end(); ++it, ++index ) { int tmpX = tqRound((*it).x() * fx + pw); int tmpY = tqRound((*it).y() * fy + pw); tmpPoints.putPoints( index, 1, tmpX, tmpY ); } return tmpPoints; }