You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
472 lines
14 KiB
472 lines
14 KiB
/*
|
|
** Copyright (C) 2002,2003 Erik de Castro Lopo <erikd@mega-nerd.com>
|
|
**
|
|
** This program is free software; you can redistribute it and/or modify
|
|
** it under the terms of the GNU General Public License as published by
|
|
** the Free Software Foundation; either version 2 of the License, or
|
|
** (at your option) any later version.
|
|
**
|
|
** This program is distributed in the hope that it will be useful,
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
** GNU General Public License for more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public License
|
|
** along with this program; if not, write to the Free Software
|
|
** Foundation, Inc., 51 Franklin Steet, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "config.h"
|
|
#include "float_cast.h"
|
|
#include "common.h"
|
|
|
|
#define SINC_MAGIC_MARKER MAKE_MAGIC(' ','s','i','n','c',' ')
|
|
|
|
#define ARRAY_LEN(x) ((int) (sizeof (x) / sizeof ((x) [0])))
|
|
|
|
/*========================================================================================
|
|
** Macros for handling the index into the array for the filter.
|
|
** Double precision floating point is not accurate enough so use a 64 bit
|
|
** fixed point value instead. SHIFT_BITS (current value of 48) is the number
|
|
** of bits to the right of the decimal point.
|
|
** The rest of the macros are for retrieving the fractional and integer parts
|
|
** and for converting floats and ints to the fixed point format or from the
|
|
** fixed point type back to integers and floats.
|
|
*/
|
|
|
|
#define MAKE_INCREMENT_T(x) ((increment_t) (x))
|
|
|
|
#define SHIFT_BITS 16
|
|
#define FP_ONE ((double) (((increment_t) 1) << SHIFT_BITS))
|
|
|
|
#define DOUBLE_TO_FP(x) (lrint ((x) * FP_ONE))
|
|
#define INT_TO_FP(x) (((increment_t) (x)) << SHIFT_BITS)
|
|
|
|
#define FP_FRACTION_PART(x) ((x) & ((((increment_t) 1) << SHIFT_BITS) - 1))
|
|
#define FP_INTEGER_PART(x) ((x) & (((increment_t) -1) << SHIFT_BITS))
|
|
|
|
#define FP_TO_INT(x) (((x) >> SHIFT_BITS))
|
|
#define FP_TO_DOUBLE(x) (FP_FRACTION_PART (x) / FP_ONE)
|
|
|
|
/*========================================================================================
|
|
*/
|
|
|
|
typedef int32_t increment_t ;
|
|
typedef float coeff_t ;
|
|
|
|
enum
|
|
{
|
|
STATE_BUFFER_START = 101,
|
|
STATE_DATA_CONTINUE = 102,
|
|
STATE_BUFFER_END = 103,
|
|
STATE_FINISHED
|
|
} ;
|
|
|
|
typedef struct
|
|
{ int sinc_magic_marker ;
|
|
|
|
int channels ;
|
|
long in_count, in_used ;
|
|
long out_count, out_gen ;
|
|
|
|
int coeff_half_len, index_inc ;
|
|
int has_diffs ;
|
|
|
|
double src_ratio, input_index ;
|
|
|
|
int coeff_len ;
|
|
coeff_t const *coeffs ;
|
|
|
|
int b_current, b_end, b_real_end, b_len ;
|
|
float *pdata ;
|
|
float buffer [1] ;
|
|
} SINC_FILTER ;
|
|
|
|
static double calc_output (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index, int ch) ;
|
|
|
|
static void prepare_data (SINC_FILTER *filter, SRC_DATA *data, int half_filter_chan_len) ;
|
|
|
|
static void sinc_reset (SRC_PRIVATE *psrc) ;
|
|
|
|
static coeff_t const high_qual_coeffs [] =
|
|
{
|
|
#include "high_qual_coeffs.h"
|
|
} ; /* high_qual_coeffs */
|
|
|
|
static coeff_t const mid_qual_coeffs [] =
|
|
{
|
|
#include "mid_qual_coeffs.h"
|
|
} ; /* mid_qual_coeffs */
|
|
|
|
static coeff_t const fastest_coeffs [] =
|
|
{
|
|
#include "fastest_coeffs.h"
|
|
} ; /* fastest_coeffs */
|
|
|
|
/*----------------------------------------------------------------------------------------
|
|
*/
|
|
|
|
const char*
|
|
sinc_get_name (int src_enum)
|
|
{
|
|
switch (src_enum)
|
|
{ case SRC_SINC_BEST_TQUALITY :
|
|
return "Best Sinc Interpolator" ;
|
|
|
|
case SRC_SINC_MEDIUM_TQUALITY :
|
|
return "Medium Sinc Interpolator" ;
|
|
|
|
case SRC_SINC_FASTEST :
|
|
return "Fastest Sinc Interpolator" ;
|
|
} ;
|
|
|
|
return NULL ;
|
|
} /* sinc_get_descrition */
|
|
|
|
const char*
|
|
sinc_get_description (int src_enum)
|
|
{
|
|
switch (src_enum)
|
|
{ case SRC_SINC_BEST_TQUALITY :
|
|
return "Band limitied sinc interpolation, best quality, 97dB SNR, 96% BW." ;
|
|
|
|
case SRC_SINC_MEDIUM_TQUALITY :
|
|
return "Band limitied sinc interpolation, medium quality, 97dB SNR, 90% BW." ;
|
|
|
|
case SRC_SINC_FASTEST :
|
|
return "Band limitied sinc interpolation, fastest, 97dB SNR, 80% BW." ;
|
|
} ;
|
|
|
|
return NULL ;
|
|
} /* sinc_get_descrition */
|
|
|
|
int
|
|
sinc_set_converter (SRC_PRIVATE *psrc, int src_enum)
|
|
{ SINC_FILTER *filter, temp_filter ;
|
|
int count ;
|
|
|
|
/* Quick sanity check. */
|
|
if (SHIFT_BITS >= sizeof (increment_t) * 8 - 1)
|
|
return SRC_ERR_SHIFT_BITS ;
|
|
|
|
if (psrc->private_data != NULL)
|
|
{ filter = (SINC_FILTER*) psrc->private_data ;
|
|
if (filter->sinc_magic_marker != SINC_MAGIC_MARKER)
|
|
{ free (psrc->private_data) ;
|
|
psrc->private_data = NULL ;
|
|
} ;
|
|
} ;
|
|
|
|
memset (&temp_filter, 0, sizeof (temp_filter)) ;
|
|
|
|
temp_filter.sinc_magic_marker = SINC_MAGIC_MARKER ;
|
|
temp_filter.channels = psrc->channels ;
|
|
|
|
psrc->process = sinc_process ;
|
|
psrc->reset = sinc_reset ;
|
|
|
|
switch (src_enum)
|
|
{ case SRC_SINC_BEST_TQUALITY :
|
|
temp_filter.coeffs = high_qual_coeffs ;
|
|
temp_filter.coeff_half_len = (sizeof (high_qual_coeffs) / sizeof (coeff_t)) - 1 ;
|
|
temp_filter.index_inc = 128 ;
|
|
temp_filter.has_diffs = SRC_FALSE ;
|
|
temp_filter.coeff_len = sizeof (high_qual_coeffs) / sizeof (coeff_t) ;
|
|
break ;
|
|
|
|
case SRC_SINC_MEDIUM_TQUALITY :
|
|
temp_filter.coeffs = mid_qual_coeffs ;
|
|
temp_filter.coeff_half_len = (sizeof (mid_qual_coeffs) / sizeof (coeff_t)) - 1 ;
|
|
temp_filter.index_inc = 128 ;
|
|
temp_filter.has_diffs = SRC_FALSE ;
|
|
temp_filter.coeff_len = sizeof (mid_qual_coeffs) / sizeof (coeff_t) ;
|
|
break ;
|
|
|
|
case SRC_SINC_FASTEST :
|
|
temp_filter.coeffs = fastest_coeffs ;
|
|
temp_filter.coeff_half_len = (sizeof (fastest_coeffs) / sizeof (coeff_t)) - 1 ;
|
|
temp_filter.index_inc = 128 ;
|
|
temp_filter.has_diffs = SRC_FALSE ;
|
|
temp_filter.coeff_len = sizeof (fastest_coeffs) / sizeof (coeff_t) ;
|
|
break ;
|
|
|
|
default :
|
|
return SRC_ERR_BAD_CONVERTER ;
|
|
} ;
|
|
|
|
/*
|
|
** FIXME : This needs to be looked at more closely to see if there is
|
|
** a better way. Need to look at prepare_data () at the same time.
|
|
*/
|
|
|
|
temp_filter.b_len = 1000 + 2 * lrint (ceil (temp_filter.coeff_len / (temp_filter.index_inc * 1.0) * SRC_MAX_RATIO)) ;
|
|
temp_filter.b_len *= temp_filter.channels ;
|
|
|
|
if ((filter = calloc (1, sizeof (SINC_FILTER) + sizeof (filter->buffer [0]) * (temp_filter.b_len + temp_filter.channels))) == NULL)
|
|
return SRC_ERR_MALLOC_FAILED ;
|
|
|
|
*filter = temp_filter ;
|
|
memset (&temp_filter, 0xEE, sizeof (temp_filter)) ;
|
|
|
|
psrc->private_data = filter ;
|
|
|
|
sinc_reset (psrc) ;
|
|
|
|
count = (filter->coeff_half_len * INT_TO_FP (1)) / FP_ONE ;
|
|
|
|
if (abs (count - filter->coeff_half_len) >= 1)
|
|
return SRC_ERR_FILTER_LEN ;
|
|
|
|
return SRC_ERR_NO_ERROR ;
|
|
} /* sinc_set_converter */
|
|
|
|
static void
|
|
sinc_reset (SRC_PRIVATE *psrc)
|
|
{ SINC_FILTER *filter ;
|
|
|
|
filter = (SINC_FILTER*) psrc->private_data ;
|
|
if (filter == NULL)
|
|
return ;
|
|
|
|
filter->b_current = filter->b_end = 0 ;
|
|
filter->b_real_end = -1 ;
|
|
|
|
filter->src_ratio = filter->input_index = 0.0 ;
|
|
|
|
memset (filter->buffer, 0, filter->b_len * sizeof (filter->buffer [0])) ;
|
|
|
|
/* Set this for a sanity check */
|
|
memset (filter->buffer + filter->b_len, 0xAA, filter->channels * sizeof (filter->buffer [0])) ;
|
|
} /* sinc_reset */
|
|
|
|
/*========================================================================================
|
|
** Beware all ye who dare pass this point. There be dragons here.
|
|
*/
|
|
|
|
int
|
|
sinc_process (SRC_PRIVATE *psrc, SRC_DATA *data)
|
|
{ SINC_FILTER *filter ;
|
|
double input_index, src_ratio, count, float_increment, terminate ;
|
|
increment_t increment, start_filter_index ;
|
|
int half_filter_chan_len, samples_in_hand, ch ;
|
|
|
|
if (psrc->private_data == NULL)
|
|
return SRC_ERR_NO_PRIVATE ;
|
|
|
|
filter = (SINC_FILTER*) psrc->private_data ;
|
|
|
|
/* If there is not a problem, this will be optimised out. */
|
|
if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0]))
|
|
return SRC_ERR_SIZE_INCOMPATIBILITY ;
|
|
|
|
filter->in_count = data->input_frames * filter->channels ;
|
|
filter->out_count = data->output_frames * filter->channels ;
|
|
filter->in_used = filter->out_gen = 0 ;
|
|
|
|
src_ratio = psrc->last_ratio ;
|
|
|
|
/* Check the sample rate ratio wrt the buffer len. */
|
|
count = (filter->coeff_half_len + 2.0) / filter->index_inc ;
|
|
if (MIN (psrc->last_ratio, data->src_ratio) < 1.0)
|
|
count /= MIN (psrc->last_ratio, data->src_ratio) ;
|
|
count = lrint (ceil (count)) ;
|
|
|
|
/* Maximum coefficientson either side of center point. */
|
|
half_filter_chan_len = filter->channels * (lrint (count) + 1) ;
|
|
|
|
input_index = psrc->last_position ;
|
|
if (input_index >= 1.0)
|
|
{ filter->b_current = (filter->b_current + filter->channels * lrint (floor (input_index))) % filter->b_len ;
|
|
input_index -= floor (input_index) ;
|
|
} ;
|
|
|
|
float_increment = filter->index_inc ;
|
|
|
|
filter->b_current = (filter->b_current + filter->channels * lrint (floor (input_index))) % filter->b_len ;
|
|
input_index -= floor (input_index) ;
|
|
|
|
terminate = 1.0 / src_ratio + 1e-20 ;
|
|
|
|
/* Main processing loop. */
|
|
while (filter->out_gen < filter->out_count)
|
|
{
|
|
/* Need to reload buffer? */
|
|
samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
|
|
|
|
if (samples_in_hand <= half_filter_chan_len)
|
|
{ prepare_data (filter, data, half_filter_chan_len) ;
|
|
|
|
samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
|
|
if (samples_in_hand <= half_filter_chan_len)
|
|
break ;
|
|
} ;
|
|
|
|
/* This is the termination condition. */
|
|
if (filter->b_real_end >= 0)
|
|
{ if (filter->b_current + input_index + terminate >= filter->b_real_end)
|
|
break ;
|
|
} ;
|
|
|
|
if (fabs (psrc->last_ratio - data->src_ratio) > 1e-10)
|
|
src_ratio = psrc->last_ratio + filter->out_gen * (data->src_ratio - psrc->last_ratio) / (filter->out_count - 1) ;
|
|
|
|
float_increment = filter->index_inc * 1.0 ;
|
|
if (src_ratio < 1.0)
|
|
float_increment = filter->index_inc * src_ratio ;
|
|
|
|
increment = DOUBLE_TO_FP (float_increment) ;
|
|
|
|
start_filter_index = DOUBLE_TO_FP (input_index * float_increment) ;
|
|
|
|
for (ch = 0 ; ch < filter->channels ; ch++)
|
|
{ data->data_out [filter->out_gen] = (float_increment / filter->index_inc) *
|
|
calc_output (filter, increment, start_filter_index, ch) ;
|
|
filter->out_gen ++ ;
|
|
} ;
|
|
|
|
/* Figure out the next index. */
|
|
input_index += 1.0 / src_ratio ;
|
|
|
|
filter->b_current = (filter->b_current + filter->channels * lrint (floor (input_index))) % filter->b_len ;
|
|
input_index -= floor (input_index) ;
|
|
} ;
|
|
|
|
psrc->last_position = input_index ;
|
|
|
|
/* Save current ratio rather then target ratio. */
|
|
psrc->last_ratio = src_ratio ;
|
|
|
|
data->input_frames_used = filter->in_used / filter->channels ;
|
|
data->output_frames_gen = filter->out_gen / filter->channels ;
|
|
|
|
return SRC_ERR_NO_ERROR ;
|
|
} /* sinc_process */
|
|
|
|
/*----------------------------------------------------------------------------------------
|
|
*/
|
|
|
|
static void
|
|
prepare_data (SINC_FILTER *filter, SRC_DATA *data, int half_filter_chan_len)
|
|
{ int len = 0 ;
|
|
|
|
if (filter->b_real_end >= 0)
|
|
return ; /* This doesn't make sense, so return. */
|
|
|
|
if (filter->b_current == 0)
|
|
{ /* Initial state. Set up zeros at the start of the buffer and
|
|
** then load new data after that.
|
|
*/
|
|
len = filter->b_len - 2 * half_filter_chan_len ;
|
|
|
|
filter->b_current = filter->b_end = half_filter_chan_len ;
|
|
}
|
|
else if (filter->b_end + half_filter_chan_len + filter->channels < filter->b_len)
|
|
{ /* Load data at current end position. */
|
|
len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ;
|
|
}
|
|
else
|
|
{ /* Move data at end of buffer back to the start of the buffer. */
|
|
len = filter->b_end - filter->b_current ;
|
|
memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len,
|
|
(half_filter_chan_len + len) * sizeof (filter->buffer [0])) ;
|
|
|
|
filter->b_current = half_filter_chan_len ;
|
|
filter->b_end = filter->b_current + len ;
|
|
|
|
/* Now load data at current end of buffer. */
|
|
len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ;
|
|
} ;
|
|
|
|
len = MIN (filter->in_count - filter->in_used, len) ;
|
|
len -= (len % filter->channels) ;
|
|
|
|
memcpy (filter->buffer + filter->b_end, data->data_in + filter->in_used,
|
|
len * sizeof (filter->buffer [0])) ;
|
|
|
|
filter->b_end += len ;
|
|
filter->in_used += len ;
|
|
|
|
if (filter->in_used == filter->in_count &&
|
|
filter->b_end - filter->b_current < 2 * half_filter_chan_len && data->end_of_input)
|
|
{ /* Handle the case where all data in the current buffer has been
|
|
** consumed and this is the last buffer.
|
|
*/
|
|
|
|
if (filter->b_len - filter->b_end < half_filter_chan_len + 5)
|
|
{ /* If necessary, move data down to the start of the buffer. */
|
|
len = filter->b_end - filter->b_current ;
|
|
memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len,
|
|
(half_filter_chan_len + len) * sizeof (filter->buffer [0])) ;
|
|
|
|
filter->b_current = half_filter_chan_len ;
|
|
filter->b_end = filter->b_current + len ;
|
|
} ;
|
|
|
|
filter->b_real_end = filter->b_end ;
|
|
len = half_filter_chan_len + 5 ;
|
|
|
|
memset (filter->buffer + filter->b_end, 0, len * sizeof (filter->buffer [0])) ;
|
|
filter->b_end += len ;
|
|
} ;
|
|
|
|
return ;
|
|
} /* prepare_data */
|
|
|
|
|
|
static double
|
|
calc_output (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index, int ch)
|
|
{ double fraction, left, right, icoeff ;
|
|
increment_t filter_index, max_filter_index ;
|
|
int data_index, coeff_count, indx ;
|
|
|
|
/* Convert input parameters into fixed point. */
|
|
max_filter_index = INT_TO_FP (filter->coeff_half_len) ;
|
|
|
|
/* First apply the left half of the filter. */
|
|
filter_index = start_filter_index ;
|
|
coeff_count = (max_filter_index - filter_index) / increment ;
|
|
filter_index = filter_index + coeff_count * increment ;
|
|
data_index = filter->b_current - filter->channels * coeff_count ;
|
|
|
|
left = 0.0 ;
|
|
do
|
|
{ fraction = FP_TO_DOUBLE (filter_index) ;
|
|
indx = FP_TO_INT (filter_index) ;
|
|
|
|
icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
|
|
|
|
left += icoeff * filter->buffer [data_index + ch] ;
|
|
|
|
filter_index -= increment ;
|
|
data_index = data_index + filter->channels ;
|
|
}
|
|
while (filter_index >= MAKE_INCREMENT_T (0)) ;
|
|
|
|
/* Now apply the right half of the filter. */
|
|
filter_index = increment - start_filter_index ;
|
|
coeff_count = (max_filter_index - filter_index) / increment ;
|
|
filter_index = filter_index + coeff_count * increment ;
|
|
data_index = filter->b_current + filter->channels * (1 + coeff_count) ;
|
|
|
|
right = 0.0 ;
|
|
do
|
|
{ fraction = FP_TO_DOUBLE (filter_index) ;
|
|
indx = FP_TO_INT (filter_index) ;
|
|
|
|
icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
|
|
|
|
right += icoeff * filter->buffer [data_index + ch] ;
|
|
|
|
filter_index -= increment ;
|
|
data_index = data_index - filter->channels ;
|
|
}
|
|
while (filter_index > MAKE_INCREMENT_T (0)) ;
|
|
|
|
return (left + right) ;
|
|
} /* calc_output */
|
|
|