You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
gwenview/src/gvcore/qxcfi.cpp

2406 lines
63 KiB

/*
* qxcfi.cpp: A Qt 3 plug-in for reading GIMP XCF image files
* Copyright (C) 2001 lignum Computing, Inc. <allen@lignumcomputing.com>
* $Id: qxcfi.cpp 531593 2006-04-19 15:46:52Z gateau $
*
* This plug-in is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <qiodevice.h>
#include <kdeversion.h>
#include <stdlib.h>
#include "qxcfi.h"
// Change a QRgb value's alpha only. (an optimization)
inline QRgb qRgba ( QRgb rgb, int a )
{
return ( ( a & 0xff ) << 24 | ( rgb & RGB_MASK ) );
}
namespace Gwenview {
int SafeDataStream::at() const {
return mDevice->at();
}
const float INCHESPERMETER = (100. / 2.54);
// Static global values
int XCFImageFormat::random_table[RANDOM_TABLE_SIZE];
int XCFImageFormat::add_lut[256][256];
XCFImageFormat::LayerModes XCFImageFormat::layer_modes[] = {
{ true }, // NORMAL_MODE
{ true }, // DISSOLVE_MODE
{ true }, // BEHIND_MODE
{ false }, // MULTIPLY_MODE
{ false }, // SCREEN_MODE
{ false }, // OVERLAY_MODE
{ false }, // DIFFERENCE_MODE
{ false }, // ADDITION_MODE
{ false }, // SUBTRACT_MODE
{ false }, // DARKEN_ONLY_MODE
{ false }, // LIGHTEN_ONLY_MODE
{ false }, // HUE_MODE
{ false }, // SATURATION_MODE
{ false }, // COLOR_MODE
{ false }, // VALUE_MODE
{ false }, // DIVIDE_MODE
{ true }, // ERASE_MODE
{ true }, // REPLACE_MODE
{ true }, // ANTI_ERASE_MODE
};
//////////////////////////////////////////////////////////////////////////////////
// From GIMP "paint_funcs.c" v1.2
/*!
* Multiply two color components. Really expects the arguments to be
* 8-bit quantities.
* \param a first minuend.
* \param b second minuend.
* \return product of arguments.
*/
inline int INT_MULT ( int a, int b )
{
int c = a * b + 0x80;
return ( ( c >> 8 ) + c ) >> 8;
}
/*!
* Blend the two color components in the proportion alpha:
*
* result = alpha a + ( 1 - alpha b)
*
* \param a first component.
* \param b second component.
* \param alpha blend proportion.
* \return blended color components.
*/
inline int INT_BLEND ( int a, int b, int alpha )
{
return INT_MULT( a - b, alpha ) + b;
}
// Actually from GLIB
inline int MIN ( int a, int b )
{
return ( a < b ? a : b );
}
inline int MAX ( int a, int b )
{
return ( a > b ? a : b );
}
// From GIMP "gimpcolorspace.c" v1.2
/*!
* Convert a color in RGB space to HSV space (Hue, Saturation, Value).
* \param red the red component (modified in place).
* \param green the green component (modified in place).
* \param blue the blue component (modified in place).
*/
void RGBTOHSV ( uchar& red, uchar& green, uchar& blue )
{
int r, g, b;
double h, s, v;
int min, max;
h = 0.;
r = red;
g = green;
b = blue;
if ( r > g ) {
max = MAX( r, b );
min = MIN( g, b );
}
else {
max = MAX( g, b );
min = MIN( r, b );
}
v = max;
if ( max != 0 )
s = ( ( max - min ) * 255 ) / (double)max;
else
s = 0;
if ( s == 0 )
h = 0;
else {
int delta = max - min;
if ( r == max )
h = ( g - b ) / (double)delta;
else if ( g == max )
h = 2 + ( b - r ) / (double)delta;
else if ( b == max )
h = 4 + ( r - g ) / (double)delta;
h *= 42.5;
if ( h < 0 )
h += 255;
if ( h > 255 )
h -= 255;
}
red = (uchar)h;
green = (uchar)s;
blue = (uchar)v;
}
/*!
* Convert a color in HSV space to RGB space.
* \param hue the hue component (modified in place).
* \param saturation the saturation component (modified in place).
* \param value the value component (modified in place).
*/
void HSVTORGB ( uchar& hue, uchar& saturation, uchar& value )
{
if ( saturation == 0 ) {
hue = value;
saturation = value;
value = value;
}
else {
double h = hue * 6. / 255.;
double s = saturation / 255.;
double v = value / 255.;
double f = h - (int)h;
double p = v * ( 1. - s );
double q = v * ( 1. - ( s * f ) );
double t = v * ( 1. - ( s * ( 1. - f ) ) );
// Worth a note here that gcc 2.96 will generate different results
// depending on optimization mode on i386.
switch ((int)h) {
case 0:
hue = (uchar)( v * 255 );
saturation = (uchar)( t * 255 );
value = (uchar)( p * 255 );
break;
case 1:
hue = (uchar)( q * 255 );
saturation = (uchar)( v * 255 );
value = (uchar)( p * 255 );
break;
case 2:
hue = (uchar)( p * 255 );
saturation = (uchar)( v * 255 );
value = (uchar)( t * 255 );
break;
case 3:
hue = (uchar)( p * 255 );
saturation = (uchar)( q * 255 );
value = (uchar)( v * 255 );
break;
case 4:
hue = (uchar)( t * 255 );
saturation = (uchar)( p * 255 );
value = (uchar)( v * 255 );
break;
case 5:
hue = (uchar)( v * 255 );
saturation = (uchar)( p * 255 );
value = (uchar)( q * 255 );
}
}
}
/*!
* Convert a color in RGB space to HLS space (Hue, Lightness, Saturation).
* \param red the red component (modified in place).
* \param green the green component (modified in place).
* \param blue the blue component (modified in place).
*/
void RGBTOHLS ( uchar& red, uchar& green, uchar& blue )
{
int r = red;
int g = green;
int b = blue;
int min, max;
if ( r > g ) {
max = MAX( r, b );
min = MIN( g, b );
}
else {
max = MAX( g, b );
min = MIN( r, b );
}
double h;
double l = ( max + min ) / 2.;
double s;
if ( max == min ) {
s = 0.;
h = 0.;
}
else {
int delta = max - min;
if ( l < 128 )
s = 255 * (double)delta / (double)( max + min );
else
s = 255 * (double)delta / (double)( 511 - max - min );
if ( r == max )
h = ( g - b ) / (double)delta;
else if ( g == max )
h = 2 + ( b - r ) / (double)delta;
else
h = 4 + ( r - g ) / (double)delta;
h *= 42.5;
if ( h < 0 )
h += 255;
else if ( h > 255 )
h -= 255;
}
red = (uchar)h;
green = (uchar)l;
blue = (uchar)s;
}
/*!
* Implement the HLS "double hex-cone".
* \param n1 lightness fraction (?)
* \param n2 saturation fraction (?)
* \param hue hue "angle".
* \return HLS value.
*/
int HLSVALUE ( double n1, double n2, double hue )
{
double value;
if ( hue > 255 )
hue -= 255;
else if ( hue < 0 )
hue += 255;
if ( hue < 42.5 )
value = n1 + ( n2 - n1 ) * ( hue / 42.5 );
else if ( hue < 127.5 )
value = n2;
else if ( hue < 170 )
value = n1 + ( n2 - n1 ) * ( ( 170 - hue ) / 42.5 );
else
value = n1;
return (int)( value * 255 );
}
/*!
* Convert a color in HLS space to RGB space.
* \param hue the hue component (modified in place).
* \param lightness the lightness component (modified in place).
* \param saturation the saturation component (modified in place).
*/
void HLSTORGB ( uchar& hue, uchar& lightness, uchar& saturation )
{
double h = hue;
double l = lightness;
double s = saturation;
if ( s == 0 ) {
hue = (uchar)l;
lightness = (uchar)l;
saturation = (uchar)l;
}
else {
double m1, m2;
if ( l < 128 )
m2 = ( l * ( 255 + s ) ) / 65025.;
else
m2 = ( l + s - ( l * s ) / 255. ) / 255.;
m1 = ( l / 127.5 ) - m2;
hue = HLSVALUE( m1, m2, h + 85 );
lightness = HLSVALUE( m1, m2, h );
saturation = HLSVALUE( m1, m2, h - 85 );
}
}
//////////////////////////////////////////////////////////////////////////////////
XCFImageFormat::XCFImageFormat() {
// From GIMP "paint_funcs.c" v1.2
srand( RANDOM_SEED );
for ( int i = 0; i < RANDOM_TABLE_SIZE; i++ )
random_table[i] = rand();
for ( int i = 0; i < RANDOM_TABLE_SIZE; i++ ) {
int tmp;
int swap = i + rand() % ( RANDOM_TABLE_SIZE - i );
tmp = random_table[i];
random_table[i] = random_table[swap];
random_table[swap] = tmp;
}
for ( int j = 0; j < 256; j++ ) {
for ( int k = 0; k < 256; k++ ) {
int tmp_sum = j + k;
if ( tmp_sum > 255 )
tmp_sum = 255;
add_lut[j][k] = tmp_sum;
}
}
}
bool XCFImageFormat::installIOHandler ( const QString& ) {
QImageIO::defineIOHandler( "XCF", "gimp xcf", 0,
&XCFImageFormat::readXCF,
#ifdef TMP_WRITE
&XCFImageFormat::writeXCF );
#else
0 );
#endif
return true;
}
void XCFImageFormat::registerFormat() {
QImageIO::defineIOHandler( "XCF","^gimp xcf",
0,XCFImageFormat::readXCF,0L);
}
/*!
* The Qt QImageIO architecture invokes this routine to read the image.
* The file (or other data stream) is already open and the
* initial string indicating a XCF file has been matched (but the stream
* is positioned at its beginning).
*
* The XCF file is binary and is stored in big endian format. The
* SafeDataStream class is used to read the file. Even though the XCF file
* was not written with SafeDataStream, there is still a good match. At least
* in version 001 of XCF and version 4 of SafeDataStream. Any other combination
* is suspect.
*
* Any failures while reading the XCF image are reported by the
* QImage::status() method.
*
* \param image_io the QImageIO object connected to the XCF image.
*/
void XCFImageFormat::readXCF ( QImageIO* image_io )
{
XCFImage xcf_image;
// The XCF data is stored in big endian format, which SafeDataStream handles
// very well.
SafeDataStream xcf_io( image_io->ioDevice() );
char tag[14];
xcf_io.readRawBytes( tag, sizeof(tag) );
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on header tag" );
return;
}
xcf_io >> xcf_image.width >> xcf_image.height >> xcf_image.type;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on image info" );
return;
}
if ( !loadImageProperties( xcf_io, xcf_image ) ) return;
// The layers appear to be stored in top-to-bottom order. This is
// the reverse of how a merged image must be computed. So, the layer
// offsets are pushed onto a LIFO stack (thus, we don't have to load
// all the data of all layers before beginning to construct the
// merged image).
QValueStack< Q_INT32 > layer_offsets;
while ( true ) {
Q_INT32 layer_offset;
xcf_io >> layer_offset;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on layer offsets" );
return;
}
if ( layer_offset == 0 ) break;
layer_offsets.push( layer_offset );
}
xcf_image.num_layers = layer_offsets.size();
if ( layer_offsets.size() == 0 ) {
qDebug( "XCF: no layers!" );
return;
}
// Load each layer and add it to the image
while ( !layer_offsets.isEmpty() ) {
Q_INT32 layer_offset = layer_offsets.pop();
xcf_io.device()->at( layer_offset );
if ( !loadLayer( xcf_io, xcf_image ) ) return;
}
if ( !xcf_image.initialized ) {
qDebug( "XCF: no visible layers!" );
return;
}
image_io->setImage( xcf_image.image );
image_io->setStatus( 0 );
}
/*!
* Construct the QImage which will eventually be returned to the QImage
* loader.
*
* There are a couple of situations which require that the QImage is not
* exactly the same as The GIMP's representation. The full table is:
* \verbatim
* Grayscale opaque : 8 bpp indexed
* Grayscale translucent : 32 bpp + alpha
* Indexed opaque : 1 bpp if num_colors <= 2
* : 8 bpp indexed otherwise
* Indexed translucent : 8 bpp indexed + alpha if num_colors < 256
* : 32 bpp + alpha otherwise
* RGB opaque : 32 bpp
* RGBA translucent : 32 bpp + alpha
* \endverbatim
* Whether the image is translucent or not is determined by the bottom layer's
* alpha channel. However, even if the bottom layer lacks an alpha channel,
* it can still have an opacity < 1. In this case, the QImage is promoted
* to 32-bit. (Note this is different from the output from the GIMP image
* exporter, which seems to ignore this attribute.)
*
* Independently, higher layers can be translucent, but the background of
* the image will not show through if the bottom layer is opaque.
*
* For indexed images, translucency is an all or nothing effect.
* \param xcf_image contains image info and bottom-most layer.
*/
void XCFImageFormat::initializeImage ( XCFImage& xcf_image )
{
// (Aliases to make the code look a little better.)
Layer& layer( xcf_image.layer );
QImage& image( xcf_image.image );
switch ( layer.type ) {
case RGB_GIMAGE:
if ( layer.opacity == OPAQUE_OPACITY ) {
image.create( xcf_image.width, xcf_image.height, 32 );
image.fill( qRgb( 255, 255, 255 ) );
break;
} // else, fall through to 32-bit representation
case RGBA_GIMAGE:
image.create( xcf_image.width, xcf_image.height, 32 );
image.fill( qRgba( 255, 255, 255, 0 ) );
// Turning this on prevents fill() from affecting the alpha channel,
// by the way.
image.setAlphaBuffer( true );
break;
case GRAY_GIMAGE:
if ( layer.opacity == OPAQUE_OPACITY ) {
image.create( xcf_image.width, xcf_image.height, 8, 256 );
setGrayPalette( image );
image.fill( 255 );
break;
} // else, fall through to 32-bit representation
case GRAYA_GIMAGE:
image.create( xcf_image.width, xcf_image.height, 32 );
image.fill( qRgba( 255, 255, 255, 0 ) );
image.setAlphaBuffer( true );
break;
case INDEXED_GIMAGE:
// As noted in the table above, there are quite a few combinations
// which are possible with indexed images, depending on the
// presence of transparency (note: not translucency, which is not
// supported by The GIMP for indexed images) and the number of
// individual colors.
// Note: Qt treats a bitmap with a Black and White color palette
// as a mask, so only the "on" bits are drawn, regardless of the
// order color table entries. Otherwise (i.e., at least one of the
// color table entries is not black or white), it obeys the one-
// or two-color palette. Have to ask about this...
if ( xcf_image.num_colors <= 2 ) {
image.create( xcf_image.width, xcf_image.height,
1, xcf_image.num_colors,
QImage::LittleEndian );
image.fill( 0 );
setPalette( xcf_image, image );
}
else if ( xcf_image.num_colors <= 256 ) {
image.create( xcf_image.width, xcf_image.height,
8, xcf_image.num_colors,
QImage::LittleEndian );
image.fill( 0 );
setPalette( xcf_image, image );
}
break;
case INDEXEDA_GIMAGE:
if ( xcf_image.num_colors == 1 ) {
// Plenty(!) of room to add a transparent color
xcf_image.num_colors++;
xcf_image.palette.resize( xcf_image.num_colors );
xcf_image.palette[1] = xcf_image.palette[0];
xcf_image.palette[0] = qRgba( 255, 255, 255, 0 );
image.create( xcf_image.width, xcf_image.height,
1, xcf_image.num_colors,
QImage::LittleEndian );
image.fill( 0 );
setPalette( xcf_image, image );
image.setAlphaBuffer( true );
}
else if ( xcf_image.num_colors < 256 ) {
// Plenty of room to add a transparent color
xcf_image.num_colors++;
xcf_image.palette.resize( xcf_image.num_colors );
for ( int c = xcf_image.num_colors-1; c >= 1; c-- )
xcf_image.palette[c] = xcf_image.palette[c-1];
xcf_image.palette[0] = qRgba( 255, 255, 255, 0 );
image.create( xcf_image.width, xcf_image.height,
8, xcf_image.num_colors );
image.fill( 0 );
setPalette( xcf_image, image );
image.setAlphaBuffer( true );
}
else {
// No room for a transparent color, so this has to be promoted to
// true color. (There is no equivalent PNG representation output
// from The GIMP as of v1.2.)
image.create( xcf_image.width, xcf_image.height, 32 );
image.fill( qRgba( 255, 255, 255, 0 ) );
image.setAlphaBuffer( true );
}
break;
}
image.setDotsPerMeterX( (int)( xcf_image.x_resolution * INCHESPERMETER ) );
image.setDotsPerMeterY( (int)( xcf_image.y_resolution * INCHESPERMETER ) );
}
/*!
* Compute the number of tiles in the current layer and allocate
* QImage structures for each of them.
* \param xcf_image contains the current layer.
*/
void XCFImageFormat::composeTiles ( XCFImage& xcf_image )
{
Layer& layer( xcf_image.layer );
layer.nrows = ( layer.height + TILE_HEIGHT - 1 ) / TILE_HEIGHT;
layer.ncols = ( layer.width + TILE_WIDTH - 1 ) / TILE_WIDTH;
layer.image_tiles.resize( layer.nrows );
if ( layer.type == GRAYA_GIMAGE || layer.type == INDEXEDA_GIMAGE )
layer.alpha_tiles.resize( layer.nrows );
if ( layer.mask_offset != 0 )
layer.mask_tiles.resize( layer.nrows );
for ( uint j = 0; j < layer.nrows; j++ ) {
layer.image_tiles[j].resize( layer.ncols );
if ( layer.type == GRAYA_GIMAGE || layer.type == INDEXEDA_GIMAGE )
layer.alpha_tiles[j].resize( layer.ncols );
if ( layer.mask_offset != 0 )
layer.mask_tiles[j].resize( layer.ncols );
}
for ( uint j = 0; j < layer.nrows; j++ ) {
for ( uint i = 0; i < layer.ncols; i++ ) {
uint tile_width = (i+1) * TILE_WIDTH <= layer.width ?
TILE_WIDTH : layer.width - i*TILE_WIDTH;
uint tile_height = (j+1) * TILE_HEIGHT <= layer.height ?
TILE_HEIGHT : layer.height - j*TILE_HEIGHT;
// Try to create the most appropriate QImage (each GIMP layer
// type is treated slightly differently)
switch ( layer.type ) {
case RGB_GIMAGE:
layer.image_tiles[j][i] = QImage( tile_width, tile_height, 32, 0 );
layer.image_tiles[j][i].setAlphaBuffer( false );
break;
case RGBA_GIMAGE:
layer.image_tiles[j][i] = QImage( tile_width, tile_height, 32, 0 );
layer.image_tiles[j][i].setAlphaBuffer( true );
break;
case GRAY_GIMAGE:
layer.image_tiles[j][i] = QImage( tile_width, tile_height, 8, 256 );
setGrayPalette( layer.image_tiles[j][i] );
break;
case GRAYA_GIMAGE:
layer.image_tiles[j][i] = QImage( tile_width, tile_height, 8, 256 );
setGrayPalette( layer.image_tiles[j][i] );
layer.alpha_tiles[j][i] = QImage( tile_width, tile_height, 8, 256 );
setGrayPalette( layer.alpha_tiles[j][i] );
break;
case INDEXED_GIMAGE:
layer.image_tiles[j][i] = QImage( tile_width, tile_height, 8,
xcf_image.num_colors );
setPalette( xcf_image, layer.image_tiles[j][i] );
break;
case INDEXEDA_GIMAGE:
layer.image_tiles[j][i] = QImage( tile_width, tile_height, 8,
xcf_image.num_colors );
setPalette( xcf_image, layer.image_tiles[j][i] );
layer.alpha_tiles[j][i] = QImage( tile_width, tile_height, 8, 256 );
setGrayPalette( layer.alpha_tiles[j][i] );
}
if ( layer.mask_offset != 0 ) {
layer.mask_tiles[j][i] = QImage( tile_width, tile_height, 8, 256 );
setGrayPalette( layer.mask_tiles[j][i] );
}
}
}
}
/*!
* Apply a grayscale palette to the QImage. Note that Qt does not distinguish
* between grayscale and indexed images. A grayscale image is just
* an indexed image with a 256-color, grayscale palette.
* \param image image to set to a grayscale palette.
*/
void XCFImageFormat::setGrayPalette ( QImage& image )
{
for ( int i = 0; i < 256; i++ )
image.setColor( i, qRgb(i,i,i) );
}
/*!
* Copy the indexed palette from the XCF image into the QImage.
* \param xcf_image XCF image containing the palette read from the data stream.
* \param image image to apply the palette to.
*/
void XCFImageFormat::setPalette ( XCFImage& xcf_image, QImage& image )
{
for ( int i = 0; i < xcf_image.num_colors; i++ )
image.setColor( i, xcf_image.palette[i] );
}
/*!
* An XCF file can contain an arbitrary number of properties associated
* with the image (and layer and mask).
* \param xcf_io the data stream connected to the XCF image
* \param xcf_image XCF image data.
* \return true if there were no I/O errors.
*/
bool XCFImageFormat::loadImageProperties ( SafeDataStream& xcf_io,
XCFImage& xcf_image )
{
while ( true ) {
PropType type;
QByteArray bytes;
if ( !loadProperty( xcf_io, type, bytes ) ) {
qDebug( "XCF: error loading global image properties" );
return false;
}
QDataStream property( bytes, IO_ReadOnly );
switch ( type ) {
case PROP_END:
return true;
case PROP_COMPRESSION:
property >> xcf_image.compression;
break;
case PROP_GUIDES:
// This property is ignored.
break;
case PROP_RESOLUTION:
property >> xcf_image.x_resolution >> xcf_image.y_resolution;
break;
case PROP_TATTOO:
property >> xcf_image.tattoo;
break;
case PROP_PARASITES:
while ( !property.atEnd() ) {
char* tag;
Q_UINT32 size;
property.readBytes( tag, size );
Q_UINT32 flags;
char* data;
property >> flags >> data;
if ( strcmp( tag, "gimp-comment" ) == 0 )
xcf_image.image.setText( "Comment", 0, data );
delete[] tag;
delete[] data;
}
break;
case PROP_UNIT:
property >> xcf_image.unit;
break;
case PROP_PATHS:
// This property is ignored.
break;
case PROP_USER_UNIT:
// This property is ignored.
break;
case PROP_COLORMAP:
property >> xcf_image.num_colors;
xcf_image.palette.reserve( xcf_image.num_colors );
for ( int i = 0; i < xcf_image.num_colors; i++ ) {
uchar r, g, b;
property >> r >> g >> b;
xcf_image.palette.push_back( qRgb(r,g,b) );
}
break;
default:
qDebug( "XCF: unimplemented image property %d, size %d", type, bytes.size() );
}
}
}
/*!
* Load a layer from the XCF file. The data stream must be positioned at
* the beginning of the layer data.
* \param xcf_io the image file data stream.
* \param xcf_image contains the layer and the color table
* (if the image is indexed).
* \return true if there were no I/O errors.
*/
bool XCFImageFormat::loadLayer ( SafeDataStream& xcf_io, XCFImage& xcf_image )
{
Layer& layer( xcf_image.layer );
if ( layer.name != 0 ) delete[] layer.name;
xcf_io >> layer.width >> layer.height >> layer.type >> layer.name;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on layer" );
return false;
}
if ( !loadLayerProperties( xcf_io, layer ) ) return false;
#if 0
cout << "layer: \"" << layer.name << "\", size: " << layer.width << " x "
<< layer.height << ", type: " << layer.type << ", mode: " << layer.mode
<< ", opacity: " << layer.opacity << ", visible: " << layer.visible
<< ", offset: " << layer.x_offset << ", " << layer.y_offset << endl;
#endif
// Skip reading the rest of it if it is not visible. Typically, when
// you export an image from the The GIMP it flattens (or merges) only
// the visible layers into the output image.
if ( layer.visible == 0 ) return true;
// If there are any more layers, merge them into the final QImage.
xcf_io >> layer.hierarchy_offset >> layer.mask_offset;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on layer image offsets" );
return false;
}
// Allocate the individual tile QImages based on the size and type
// of this layer.
composeTiles( xcf_image );
xcf_io.device()->at( layer.hierarchy_offset );
// As tiles are loaded, they are copied into the layers tiles by
// this routine. (loadMask(), below, uses a slightly different
// version of assignBytes().)
layer.assignBytes = assignImageBytes;
if ( !loadHierarchy( xcf_io, layer ) ) return false;
if ( layer.mask_offset != 0 ) {
xcf_io.device()->at( layer.mask_offset );
if ( !loadMask( xcf_io, layer ) ) return false;
}
// Now we should have enough information to initialize the final
// QImage. The first visible layer determines the attributes
// of the QImage.
if ( !xcf_image.initialized ) {
initializeImage( xcf_image );
copyLayerToImage( xcf_image );
xcf_image.initialized = true;
}
else
mergeLayerIntoImage( xcf_image );
return true;
}
/*!
* An XCF file can contain an arbitrary number of properties associated
* with a layer.
* \param xcf_io the data stream connected to the XCF image.
* \param layer layer to collect the properties.
* \return true if there were no I/O errors.
*/
bool XCFImageFormat::loadLayerProperties ( SafeDataStream& xcf_io, Layer& layer )
{
while ( true ) {
PropType type;
QByteArray bytes;
if ( !loadProperty( xcf_io, type, bytes ) ) {
qDebug( "XCF: error loading layer properties" );
return false;
}
QDataStream property( bytes, IO_ReadOnly );
switch ( type ) {
case PROP_END:
return true;
case PROP_ACTIVE_LAYER:
layer.active = true;
break;
case PROP_OPACITY:
property >> layer.opacity;
break;
case PROP_VISIBLE:
property >> layer.visible;
break;
case PROP_LINKED:
property >> layer.linked;
break;
case PROP_PRESERVE_TRANSPARENCY:
property >> layer.preserve_transparency;
break;
case PROP_APPLY_MASK:
property >> layer.apply_mask;
break;
case PROP_EDIT_MASK:
property >> layer.edit_mask;
break;
case PROP_SHOW_MASK:
property >> layer.show_mask;
break;
case PROP_OFFSETS:
property >> layer.x_offset >> layer.y_offset;
break;
case PROP_MODE:
property >> layer.mode;
break;
case PROP_TATTOO:
property >> layer.tattoo;
break;
default:
qDebug( "XCF: unimplemented layer property %d, size %d", type, bytes.size() );
}
}
}
/*!
* An XCF file can contain an arbitrary number of properties associated
* with a channel. Note that this routine only reads mask channel properties.
* \param xcf_io the data stream connected to the XCF image.
* \param layer layer containing the mask channel to collect the properties.
* \return true if there were no I/O errors.
*/
bool XCFImageFormat::loadChannelProperties ( SafeDataStream& xcf_io, Layer& layer )
{
while ( true ) {
PropType type;
QByteArray bytes;
if ( !loadProperty( xcf_io, type, bytes ) ) {
qDebug( "XCF: error loading channel properties" );
return false;
}
QDataStream property( bytes, IO_ReadOnly );
switch ( type ) {
case PROP_END:
return true;
case PROP_OPACITY:
property >> layer.mask_channel.opacity;
break;
case PROP_VISIBLE:
property >> layer.mask_channel.visible;
break;
case PROP_SHOW_MASKED:
property >> layer.mask_channel.show_masked;
break;
case PROP_COLOR:
property >> layer.mask_channel.red >> layer.mask_channel.green
>> layer.mask_channel.blue;
break;
case PROP_TATTOO:
property >> layer.mask_channel.tattoo;
break;
default:
qDebug( "XCF: unimplemented channel property %d, size %d", type, bytes.size() );
}
}
}
/*!
* The GIMP stores images in a "mipmap"-like hierarchy. As far as the QImage
* is concerned, however, only the top level (i.e., the full resolution image)
* is used.
* \param xcf_io the data stream connected to the XCF image.
* \param layer the layer to collect the image.
* \return true if there were no I/O errors.
*/
bool XCFImageFormat::loadHierarchy ( SafeDataStream& xcf_io, Layer& layer )
{
Q_INT32 width;
Q_INT32 height;
Q_INT32 bpp;
Q_UINT32 offset;
xcf_io >> width >> height >> bpp >> offset;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on layer %s image header", layer.name );
return false;
}
// GIMP stores images in a "mipmap"-like format (multiple levels of
// increasingly lower resolution). Only the top level is used here,
// however.
Q_UINT32 junk;
do {
xcf_io >> junk;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on layer %s level offsets", layer.name );
return false;
}
} while ( junk != 0 );
QIODevice::Offset saved_pos = xcf_io.device()->at();
xcf_io.device()->at( offset );
if ( !loadLevel( xcf_io, layer, bpp ) ) return false;
xcf_io.device()->at( saved_pos );
return true;
}
/*!
* Load one level of the image hierarchy (but only the top level is ever used).
* \param xcf_io the data stream connected to the XCF image.
* \param layer the layer to collect the image.
* \param bpp the number of bytes in a pixel.
* \return true if there were no I/O errors.
* \sa loadTileRLE().
*/
bool XCFImageFormat::loadLevel ( SafeDataStream& xcf_io, Layer& layer, Q_INT32 bpp )
{
Q_INT32 width;
Q_INT32 height;
Q_UINT32 offset;
xcf_io >> width >> height >> offset;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on layer %s level info", layer.name );
return false;
}
if ( offset == 0 ) return true;
for ( uint j = 0; j < layer.nrows; j++ ) {
for ( uint i = 0; i < layer.ncols; i++ ) {
if ( offset == 0 ) {
qDebug( "XCF: incorrect number of tiles in layer %s", layer.name );
return false;
}
QIODevice::Offset saved_pos = xcf_io.device()->at();
Q_UINT32 offset2;
xcf_io >> offset2;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on layer %s level offset look-ahead",
layer.name );
return false;
}
// Evidently, RLE can occasionally expand a tile instead of compressing it!
if ( offset2 == 0 )
offset2 = offset + (uint)( TILE_WIDTH * TILE_HEIGHT * 4 * 1.5 );
xcf_io.device()->at( offset );
int size = layer.image_tiles[j][i].width() * layer.image_tiles[j][i].height();
if ( !loadTileRLE( xcf_io, layer.tile, size, offset2 - offset, bpp ) )
return false;
// The bytes in the layer tile are juggled differently depending on
// the target QImage. The caller has set layer.assignBytes to the
// appropriate routine.
layer.assignBytes( layer, i, j );
xcf_io.device()->at( saved_pos );
xcf_io >> offset;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on layer %s level offset", layer.name );
return false;
}
}
}
return true;
}
/*!
* A layer can have a one channel image which is used as a mask.
* \param xcf_io the data stream connected to the XCF image.
* \param layer the layer to collect the mask image.
* \return true if there were no I/O errors.
*/
bool XCFImageFormat::loadMask ( SafeDataStream& xcf_io, Layer& layer )
{
Q_INT32 width;
Q_INT32 height;
char* name;
xcf_io >> width >> height >> name;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on mask info" );
return false;
}
delete name;
if ( !loadChannelProperties( xcf_io, layer ) ) return false;
Q_UINT32 hierarchy_offset;
xcf_io >> hierarchy_offset;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on mask image offset" );
return false;
}
xcf_io.device()->at( hierarchy_offset );
layer.assignBytes = assignMaskBytes;
if ( !loadHierarchy( xcf_io, layer ) ) return false;
return true;
}
/*!
* This is the routine for which all the other code is simply
* infrastructure. Read the image bytes out of the file and
* store them in the tile buffer. This is passed a full 32-bit deep
* buffer, even if bpp is smaller. The caller can figure out what to
* do with the bytes.
*
* The tile is stored in "channels", i.e. the red component of all
* pixels, then the green component of all pixels, then blue then
* alpha, or, for indexed images, the color indices of all pixels then
* the alpha of all pixels.
*
* The data is compressed with "run length encoding". Some simple data
* integrity checks are made.
*
* \param xcf_io the data stream connected to the XCF image.
* \param tile the buffer to expand the RLE into.
* \param image_size number of bytes expected to be in the image tile.
* \param data_length number of bytes expected in the RLE.
* \param bpp number of bytes per pixel.
* \return true if there were no I/O errors and no obvious corruption of
* the RLE data.
*/
bool XCFImageFormat::loadTileRLE ( SafeDataStream& xcf_io, uchar* tile, int image_size,
int data_length, Q_INT32 bpp )
{
uchar* data;
uchar* xcfdata;
uchar* xcfodata;
uchar* xcfdatalimit;
xcfdata = xcfodata = new uchar[data_length];
int read_length=xcf_io.device()->readBlock( (char*)xcfdata, data_length );
if ( read_length<=0 ) {
delete[] xcfodata;
qDebug( "XCF: read failure on tile" );
return false;
}
xcfdatalimit = &xcfodata[read_length-1];
for ( int i = 0; i < bpp; ++i ) {
data = tile + i;
int count = 0;
int size = image_size;
while ( size > 0 ) {
if ( xcfdata > xcfdatalimit )
goto bogus_rle;
uchar val = *xcfdata++;
uint length = val;
if ( length >= 128 ) {
length = 255 - ( length - 1 );
if ( length == 128 ) {
if ( xcfdata >= xcfdatalimit )
goto bogus_rle;
length = ( *xcfdata << 8 ) + xcfdata[1];
xcfdata += 2;
}
count += length;
size -= length;
if ( size < 0 )
goto bogus_rle;
if ( &xcfdata[length-1] > xcfdatalimit )
goto bogus_rle;
while ( length-- > 0 ) {
*data = *xcfdata++;
data += sizeof(QRgb);
}
}
else {
length += 1;
if ( length == 128 ) {
if ( xcfdata >= xcfdatalimit )
goto bogus_rle;
length = ( *xcfdata << 8 ) + xcfdata[1];
xcfdata += 2;
}
count += length;
size -= length;
if ( size < 0 )
goto bogus_rle;
if ( xcfdata > xcfdatalimit )
goto bogus_rle;
val = *xcfdata++;
while ( length-- > 0 ) {
*data = val;
data += sizeof(QRgb);
}
}
}
}
delete[] xcfodata;
return true;
bogus_rle:
qDebug( "The run length encoding could not be decoded properly" );
delete[] xcfodata;
return false;
}
/*!
* Copy the bytes from the tile buffer into the image tile QImage, taking into
* account all the myriad different modes.
* \param layer layer containing the tile buffer and the image tile matrix.
* \param i column index of current tile.
* \param j row index of current tile.
*/
void XCFImageFormat::assignImageBytes ( Layer& layer, uint i, uint j )
{
uchar* tile = layer.tile;
switch ( layer.type ) {
case RGB_GIMAGE:
for ( int l = 0; l < layer.image_tiles[j][i].height(); l++ ) {
for ( int k = 0; k < layer.image_tiles[j][i].width(); k++ ) {
layer.image_tiles[j][i].setPixel( k, l, qRgb( tile[0], tile[1], tile[2] ) );
tile += sizeof(QRgb);
}
}
break;
case RGBA_GIMAGE:
for ( int l = 0; l < layer.image_tiles[j][i].height(); l++ ) {
for ( int k = 0; k < layer.image_tiles[j][i].width(); k++ ) {
layer.image_tiles[j][i].setPixel( k, l,
qRgba( tile[0], tile[1], tile[2], tile[3] ) );
tile += sizeof(QRgb);
}
}
break;
case GRAY_GIMAGE:
case INDEXED_GIMAGE:
for ( int l = 0; l < layer.image_tiles[j][i].height(); l++ ) {
for ( int k = 0; k < layer.image_tiles[j][i].width(); k++ ) {
layer.image_tiles[j][i].setPixel( k, l, tile[0] );
tile += sizeof(QRgb);
}
}
break;
case GRAYA_GIMAGE:
case INDEXEDA_GIMAGE:
for ( int l = 0; l < layer.image_tiles[j][i].height(); l++ ) {
for ( int k = 0; k < layer.image_tiles[j][i].width(); k++ ) {
// The "if" here should not be necessary, but apparently there
// are some cases where the image can contain larger indices
// than there are colors in the palette. (A bug in The GIMP?)
if ( tile[0] < layer.image_tiles[j][i].numColors() )
layer.image_tiles[j][i].setPixel( k, l, tile[0] );
layer.alpha_tiles[j][i].setPixel( k, l, tile[1] );
tile += sizeof(QRgb);
}
}
break;
}
}
/*!
* Copy the bytes from the tile buffer into the mask tile QImage.
* \param layer layer containing the tile buffer and the mask tile matrix.
* \param i column index of current tile.
* \param j row index of current tile.
*/
void XCFImageFormat::assignMaskBytes ( Layer& layer, uint i, uint j )
{
uchar* tile = layer.tile;
for ( int l = 0; l < layer.image_tiles[j][i].height(); l++ ) {
for ( int k = 0; k < layer.image_tiles[j][i].width(); k++ ) {
layer.mask_tiles[j][i].setPixel( k, l, tile[0] );
tile += sizeof(QRgb);
}
}
}
/*!
* Read a single property from the image file. The property type is returned
* in type and the data is returned in bytes.
* \param xcf the image file data stream.
* \param type returns with the property type.
* \param bytes returns with the property data.
* \return true if there were no IO errors. */
bool XCFImageFormat::loadProperty ( SafeDataStream& xcf_io, PropType& type,
QByteArray& bytes )
{
Q_UINT32 tmp;
xcf_io >> tmp;
type=static_cast<PropType>(tmp);
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on property type" );
return false;
}
char* data;
Q_UINT32 size;
// The COLORMAP property is tricky: in version of GIMP older than 2.0.2, the
// property size was wrong (it was 4 + ncolors instead of 4 + 3*ncolors).
// This has been fixed in 2.0.2 (*), but the XCF format version has not been
// increased, so we can't rely on the property size. The UINT32 after the
// property size is the number of colors, which has always been correct, so
// we read it, compute the size from it and put it back in the stream.
//
// * See http://bugzilla.gnome.org/show_bug.cgi?id=142149 and
// gimp/app/xcf-save.c, revision 1.42
if ( type == PROP_COLORMAP ) {
Q_UINT32 ignoredSize, ncolors;
xcf_io >> ignoredSize;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on property %d size", type );
return false;
}
xcf_io >> ncolors;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on property %d size", type );
return false;
}
xcf_io.device()->ungetch( ncolors & 0xff);
xcf_io.device()->ungetch( (ncolors>> 8) & 0xff );
xcf_io.device()->ungetch( (ncolors>>16) & 0xff );
xcf_io.device()->ungetch( (ncolors>>24) & 0xff );
size=4 + 3 * ncolors;
data = new char[size];
xcf_io.readRawBytes( data, size );
}
// The USER UNIT property size is not correct. I'm not sure why, though.
else if ( type == PROP_USER_UNIT ) {
float factor;
Q_INT32 digits;
char* unit_strings;
xcf_io >> size >> factor >> digits;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on property %d", type );
return false;
}
for ( int i = 0; i < 5; i++ ) {
xcf_io >> unit_strings;
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on property %d", type );
return false;
}
delete[] unit_strings;
}
size = 0;
}
else
xcf_io.readBytes( data, size );
if ( xcf_io.failed() ) {
qDebug( "XCF: read failure on property %d data, size %d", type, size );
return false;
}
if ( size != 0 ) {
bytes.resize( size );
for ( uint i = 0; i < size; i++ ) bytes[i] = data[i];
delete[] data;
}
return true;
}
/*!
* Copy a layer into an image, taking account of the manifold modes. The
* contents of the image are replaced.
* \param xcf_image contains the layer and image to be replaced.
*/
void XCFImageFormat::copyLayerToImage ( XCFImage& xcf_image )
{
Layer& layer( xcf_image.layer );
QImage& image( xcf_image.image );
PixelCopyOperation copy = 0;
switch ( layer.type ) {
case RGB_GIMAGE:
case RGBA_GIMAGE:
copy = copyRGBToRGB; break;
case GRAY_GIMAGE:
if ( layer.opacity == OPAQUE_OPACITY )
copy = copyGrayToGray;
else
copy = copyGrayToRGB;
break;
case GRAYA_GIMAGE:
copy = copyGrayAToRGB; break;
case INDEXED_GIMAGE:
copy = copyIndexedToIndexed; break;
case INDEXEDA_GIMAGE:
if ( xcf_image.image.depth() <= 8 )
copy = copyIndexedAToIndexed;
else
copy = copyIndexedAToRGB;
}
// For each tile...
for ( uint j = 0; j < layer.nrows; j++ ) {
uint y = j * TILE_HEIGHT;
for ( uint i = 0; i < layer.ncols; i++ ) {
uint x = i * TILE_WIDTH;
// This seems the best place to apply the dissolve because it
// depends on the global position of each tile's
// pixels. Apparently it's the only mode which can apply to a
// single layer.
if ( layer.mode == DISSOLVE_MODE ) {
if ( layer.type == RGBA_GIMAGE )
dissolveRGBPixels( layer.image_tiles[j][i], x, y );
else if ( layer.type == GRAYA_GIMAGE )
dissolveAlphaPixels( layer.alpha_tiles[j][i], x, y );
}
for ( int l = 0; l < layer.image_tiles[j][i].height(); l++ ) {
for ( int k = 0; k < layer.image_tiles[j][i].width(); k++ ) {
int m = x + k + layer.x_offset;
int n = y + l + layer.y_offset;
if ( m < 0 || m >= image.width() || n < 0 || n >= image.height() )
continue;
(*copy)( layer, i, j, k, l, image, m, n );
}
}
}
}
}
/*!
* Copy an RGB pixel from the layer to the RGB image. Straight-forward.
* The only thing this has to take account of is the opacity of the
* layer. Evidently, the GIMP exporter itself does not actually do this.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::copyRGBToRGB ( Layer& layer, uint i, uint j, int k, int l,
QImage& image, int m, int n )
{
QRgb src = layer.image_tiles[j][i].pixel( k, l );
uchar src_a = layer.opacity;
if ( layer.type == RGBA_GIMAGE )
src_a = INT_MULT( src_a, qAlpha( src ) );
// Apply the mask (if any)
if ( layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
layer.mask_tiles[j].size() > i )
src_a = INT_MULT( src_a, layer.mask_tiles[j][i].pixelIndex( k, l ) );
image.setPixel( m, n, qRgba( src, src_a ) );
}
/*!
* Copy a Gray pixel from the layer to the Gray image. Straight-forward.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::copyGrayToGray ( Layer& layer, uint i, uint j, int k, int l,
QImage& image, int m, int n )
{
int src = layer.image_tiles[j][i].pixelIndex( k, l );
image.setPixel( m, n, src );
}
/*!
* Copy a Gray pixel from the layer to an RGB image. Straight-forward.
* The only thing this has to take account of is the opacity of the
* layer. Evidently, the GIMP exporter itself does not actually do this.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::copyGrayToRGB ( Layer& layer, uint i, uint j, int k, int l,
QImage& image, int m, int n )
{
QRgb src = layer.image_tiles[j][i].pixel( k, l );
uchar src_a = layer.opacity;
image.setPixel( m, n, qRgba( src, src_a ) );
}
/*!
* Copy a GrayA pixel from the layer to an RGB image. Straight-forward.
* The only thing this has to take account of is the opacity of the
* layer. Evidently, the GIMP exporter itself does not actually do this.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::copyGrayAToRGB ( Layer& layer, uint i, uint j, int k, int l,
QImage& image, int m, int n )
{
QRgb src = layer.image_tiles[j][i].pixel( k, l );
uchar src_a = layer.alpha_tiles[j][i].pixelIndex( k, l );
src_a = INT_MULT( src_a, layer.opacity );
// Apply the mask (if any)
if ( layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
layer.mask_tiles[j].size() > i )
src_a = INT_MULT( src_a, layer.mask_tiles[j][i].pixelIndex( k, l ) );
image.setPixel( m, n, qRgba( src, src_a ) );
}
/*!
* Copy an Indexed pixel from the layer to the Indexed image. Straight-forward.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::copyIndexedToIndexed ( Layer& layer, uint i,uint j,int k,int l,
QImage& image, int m, int n )
{
int src = layer.image_tiles[j][i].pixelIndex( k, l );
image.setPixel( m, n, src );
}
/*!
* Copy an IndexedA pixel from the layer to the Indexed image. Straight-forward.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::copyIndexedAToIndexed ( Layer& layer,uint i,uint j,int k,int l,
QImage& image, int m, int n )
{
uchar src = layer.image_tiles[j][i].pixelIndex( k, l );
uchar src_a = layer.alpha_tiles[j][i].pixelIndex( k, l );
src_a = INT_MULT( src_a, layer.opacity );
if ( layer.apply_mask == 1 &&
layer.mask_tiles.size() > j &&
layer.mask_tiles[j].size() > i )
src_a = INT_MULT( src_a,
layer.mask_tiles[j][i].pixelIndex( k, l ) );
if ( src_a > 127 )
src++;
else
src = 0;
image.setPixel( m, n, src );
}
/*!
* Copy an IndexedA pixel from the layer to an RGB image. Straight-forward.
* The only thing this has to take account of is the opacity of the
* layer. Evidently, the GIMP exporter itself does not actually do this.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::copyIndexedAToRGB ( Layer& layer, uint i, uint j, int k, int l,
QImage& image, int m, int n )
{
QRgb src = layer.image_tiles[j][i].pixel( k, l );
uchar src_a = layer.alpha_tiles[j][i].pixelIndex( k, l );
src_a = INT_MULT( src_a, layer.opacity );
// Apply the mask (if any)
if ( layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
layer.mask_tiles[j].size() > i )
src_a = INT_MULT( src_a, layer.mask_tiles[j][i].pixelIndex( k, l ) );
// This is what appears in the GIMP window
if ( src_a <= 127 )
src_a = 0;
else
src_a = OPAQUE_OPACITY;
image.setPixel( m, n, qRgba( src, src_a ) );
}
/*!
* Merge a layer into an image, taking account of the manifold modes.
* \param xcf_image contains the layer and image to merge.
*/
void XCFImageFormat::mergeLayerIntoImage ( XCFImage& xcf_image )
{
Layer& layer( xcf_image.layer );
QImage& image( xcf_image.image );
PixelMergeOperation merge = 0;
switch ( layer.type ) {
case RGB_GIMAGE:
case RGBA_GIMAGE:
merge = mergeRGBToRGB; break;
case GRAY_GIMAGE:
if ( layer.opacity == OPAQUE_OPACITY )
merge = mergeGrayToGray;
else
merge = mergeGrayToRGB;
break;
case GRAYA_GIMAGE:
if ( xcf_image.image.depth() <= 8 )
merge = mergeGrayAToGray;
else
merge = mergeGrayAToRGB;
break;
case INDEXED_GIMAGE:
merge = mergeIndexedToIndexed; break;
case INDEXEDA_GIMAGE:
if ( xcf_image.image.depth() <= 8 )
merge = mergeIndexedAToIndexed;
else
merge = mergeIndexedAToRGB;
}
for ( uint j = 0; j < layer.nrows; j++ ) {
uint y = j * TILE_HEIGHT;
for ( uint i = 0; i < layer.ncols; i++ ) {
uint x = i * TILE_WIDTH;
// This seems the best place to apply the dissolve because it
// depends on the global position of each tile's
// pixels. Apparently it's the only mode which can apply to a
// single layer.
if ( layer.mode == DISSOLVE_MODE ) {
if ( layer.type == RGBA_GIMAGE )
dissolveRGBPixels( layer.image_tiles[j][i], x, y );
else if ( layer.type == GRAYA_GIMAGE )
dissolveAlphaPixels( layer.alpha_tiles[j][i], x, y );
}
for ( int l = 0; l < layer.image_tiles[j][i].height(); l++ ) {
for ( int k = 0; k < layer.image_tiles[j][i].width(); k++ ) {
int m = x + k + layer.x_offset;
int n = y + l + layer.y_offset;
if ( m < 0 || m >= image.width() || n < 0 || n >= image.height() )
continue;
(*merge)( layer, i, j, k, l, image, m, n );
}
}
}
}
}
/*!
* Merge an RGB pixel from the layer to the RGB image. Straight-forward.
* The only thing this has to take account of is the opacity of the
* layer. Evidently, the GIMP exporter itself does not actually do this.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::mergeRGBToRGB ( Layer& layer, uint i, uint j, int k, int l,
QImage& image, int m, int n )
{
QRgb src = layer.image_tiles[j][i].pixel( k, l );
QRgb dst = image.pixel( m, n );
uchar src_r = qRed( src );
uchar src_g = qGreen( src );
uchar src_b = qBlue( src );
uchar src_a = qAlpha( src );
uchar dst_r = qRed( dst );
uchar dst_g = qGreen( dst );
uchar dst_b = qBlue( dst );
uchar dst_a = qAlpha( dst );
switch ( layer.mode ) {
case MULTIPLY_MODE: {
src_r = INT_MULT( src_r, dst_r );
src_g = INT_MULT( src_g, dst_g );
src_b = INT_MULT( src_b, dst_b );
src_a = MIN( src_a, dst_a );
}
break;
case DIVIDE_MODE: {
src_r = MIN( ( dst_r * 256 ) / ( 1 + src_r ), 255 );
src_g = MIN( ( dst_g * 256 ) / ( 1 + src_g ), 255 );
src_b = MIN( ( dst_b * 256 ) / ( 1 + src_b ), 255 );
src_a = MIN( src_a, dst_a );
}
break;
case SCREEN_MODE: {
src_r = 255 - INT_MULT( 255 - dst_r, 255 - src_r );
src_g = 255 - INT_MULT( 255 - dst_g, 255 - src_g );
src_b = 255 - INT_MULT( 255 - dst_b, 255 - src_b );
src_a = MIN( src_a, dst_a );
}
break;
case OVERLAY_MODE: {
src_r = INT_MULT( dst_r, dst_r + INT_MULT( 2 * src_r, 255 - dst_r ) );
src_g = INT_MULT( dst_g, dst_g + INT_MULT( 2 * src_g, 255 - dst_g ) );
src_b = INT_MULT( dst_b, dst_b + INT_MULT( 2 * src_b, 255 - dst_b ) );
src_a = MIN( src_a, dst_a );
}
break;
case DIFFERENCE_MODE: {
src_r = dst_r > src_r ? dst_r - src_r : src_r - dst_r;
src_g = dst_g > src_g ? dst_g - src_g : src_g - dst_g;
src_b = dst_b > src_b ? dst_b - src_b : src_b - dst_b;
src_a = MIN( src_a, dst_a );
}
break;
case ADDITION_MODE: {
src_r = add_lut[dst_r][src_r];
src_g = add_lut[dst_g][src_g];
src_b = add_lut[dst_b][src_b];
src_a = MIN( src_a, dst_a );
}
break;
case SUBTRACT_MODE: {
src_r = dst_r > src_r ? dst_r - src_r : 0;
src_g = dst_g > src_g ? dst_g - src_g : 0;
src_b = dst_b > src_b ? dst_b - src_b : 0;
src_a = MIN( src_a, dst_a );
}
break;
case DARKEN_ONLY_MODE: {
src_r = dst_r < src_r ? dst_r : src_r;
src_g = dst_g < src_g ? dst_g : src_g;
src_b = dst_b < src_b ? dst_b : src_b;
src_a = MIN( src_a, dst_a );
}
break;
case LIGHTEN_ONLY_MODE: {
src_r = dst_r < src_r ? src_r : dst_r;
src_g = dst_g < src_g ? src_g : dst_g;
src_b = dst_b < src_b ? src_b : dst_b;
src_a = MIN( src_a, dst_a );
}
break;
case HUE_MODE: {
uchar new_r = dst_r;
uchar new_g = dst_g;
uchar new_b = dst_b;
RGBTOHSV( src_r, src_g, src_b );
RGBTOHSV( new_r, new_g, new_b );
new_r = src_r;
HSVTORGB( new_r, new_g, new_b );
src_r = new_r;
src_g = new_g;
src_b = new_b;
src_a = MIN( src_a, dst_a );
}
break;
case SATURATION_MODE: {
uchar new_r = dst_r;
uchar new_g = dst_g;
uchar new_b = dst_b;
RGBTOHSV( src_r, src_g, src_b );
RGBTOHSV( new_r, new_g, new_b );
new_g = src_g;
HSVTORGB( new_r, new_g, new_b );
src_r = new_r;
src_g = new_g;
src_b = new_b;
src_a = MIN( src_a, dst_a );
}
break;
case VALUE_MODE: {
uchar new_r = dst_r;
uchar new_g = dst_g;
uchar new_b = dst_b;
RGBTOHSV( src_r, src_g, src_b );
RGBTOHSV( new_r, new_g, new_b );
new_b = src_b;
HSVTORGB( new_r, new_g, new_b );
src_r = new_r;
src_g = new_g;
src_b = new_b;
src_a = MIN( src_a, dst_a );
}
break;
case COLOR_MODE: {
uchar new_r = dst_r;
uchar new_g = dst_g;
uchar new_b = dst_b;
RGBTOHLS( src_r, src_g, src_b );
RGBTOHLS( new_r, new_g, new_b );
new_r = src_r;
new_b = src_b;
HLSTORGB( new_r, new_g, new_b );
src_r = new_r;
src_g = new_g;
src_b = new_b;
src_a = MIN( src_a, dst_a );
}
break;
}
src_a = INT_MULT( src_a, layer.opacity );
// Apply the mask (if any)
if ( layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
layer.mask_tiles[j].size() > i )
src_a = INT_MULT( src_a, layer.mask_tiles[j][i].pixelIndex( k, l ) );
uchar new_r, new_g, new_b, new_a;
new_a = dst_a + INT_MULT( OPAQUE_OPACITY - dst_a, src_a );
float src_ratio = (float)src_a / new_a;
float dst_ratio = 1. - src_ratio;
new_r = (uchar)( src_ratio * src_r + dst_ratio * dst_r + EPSILON );
new_g = (uchar)( src_ratio * src_g + dst_ratio * dst_g + EPSILON );
new_b = (uchar)( src_ratio * src_b + dst_ratio * dst_b + EPSILON );
if ( !layer_modes[layer.mode].affect_alpha )
new_a = dst_a;
image.setPixel( m, n, qRgba( new_r, new_g, new_b, new_a ) );
}
/*!
* Merge a Gray pixel from the layer to the Gray image. Straight-forward.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::mergeGrayToGray ( Layer& layer, uint i, uint j, int k, int l,
QImage& image, int m, int n )
{
int src = layer.image_tiles[j][i].pixelIndex( k, l );
image.setPixel( m, n, src );
}
/*!
* Merge a GrayA pixel from the layer to the Gray image. Straight-forward.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::mergeGrayAToGray ( Layer& layer, uint i, uint j, int k, int l,
QImage& image, int m, int n )
{
int src = qGray( layer.image_tiles[j][i].pixel( k, l ) );
int dst = image.pixelIndex( m, n );
uchar src_a = layer.alpha_tiles[j][i].pixelIndex( k, l );
switch ( layer.mode ) {
case MULTIPLY_MODE: {
src = INT_MULT( src, dst );
}
break;
case DIVIDE_MODE: {
src = MIN( ( dst * 256 ) / ( 1 + src ), 255 );
}
break;
case SCREEN_MODE: {
src = 255 - INT_MULT( 255 - dst, 255 - src );
}
break;
case OVERLAY_MODE: {
src = INT_MULT( dst, dst + INT_MULT( 2 * src, 255 - dst ) );
}
break;
case DIFFERENCE_MODE: {
src = dst > src ? dst - src : src - dst;
}
break;
case ADDITION_MODE: {
src = add_lut[dst][src];
}
break;
case SUBTRACT_MODE: {
src = dst > src ? dst - src : 0;
}
break;
case DARKEN_ONLY_MODE: {
src = dst < src ? dst : src;
}
break;
case LIGHTEN_ONLY_MODE: {
src = dst < src ? src : dst;
}
break;
}
src_a = INT_MULT( src_a, layer.opacity );
// Apply the mask (if any)
if ( layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
layer.mask_tiles[j].size() > i )
src_a = INT_MULT( src_a, layer.mask_tiles[j][i].pixelIndex( k, l ) );
uchar new_a = OPAQUE_OPACITY;
float src_ratio = (float)src_a / new_a;
float dst_ratio = 1. - src_ratio;
uchar new_g = (uchar)( src_ratio * src + dst_ratio * dst + EPSILON );
image.setPixel( m, n, new_g );
}
/*!
* Merge a Gray pixel from the layer to an RGB image. Straight-forward.
* The only thing this has to take account of is the opacity of the
* layer. Evidently, the GIMP exporter itself does not actually do this.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::mergeGrayToRGB ( Layer& layer, uint i, uint j, int k, int l,
QImage& image, int m, int n )
{
QRgb src = layer.image_tiles[j][i].pixel( k, l );
uchar src_a = layer.opacity;
image.setPixel( m, n, qRgba( src, src_a ) );
}
/*!
* Merge a GrayA pixel from the layer to an RGB image. Straight-forward.
* The only thing this has to take account of is the opacity of the
* layer. Evidently, the GIMP exporter itself does not actually do this.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::mergeGrayAToRGB ( Layer& layer, uint i, uint j, int k, int l,
QImage& image, int m, int n )
{
int src = qGray( layer.image_tiles[j][i].pixel( k, l ) );
int dst = qGray( image.pixel( m, n ) );
uchar src_a = layer.alpha_tiles[j][i].pixelIndex( k, l );
uchar dst_a = qAlpha( image.pixel( m, n ) );
switch ( layer.mode ) {
case MULTIPLY_MODE: {
src = INT_MULT( src, dst );
src_a = MIN( src_a, dst_a );
}
break;
case DIVIDE_MODE: {
src = MIN( ( dst * 256 ) / ( 1 + src ), 255 );
src_a = MIN( src_a, dst_a );
}
break;
case SCREEN_MODE: {
src = 255 - INT_MULT( 255 - dst, 255 - src );
src_a = MIN( src_a, dst_a );
}
break;
case OVERLAY_MODE: {
src = INT_MULT( dst, dst + INT_MULT( 2 * src, 255 - dst ) );
src_a = MIN( src_a, dst_a );
}
break;
case DIFFERENCE_MODE: {
src = dst > src ? dst - src : src - dst;
src_a = MIN( src_a, dst_a );
}
break;
case ADDITION_MODE: {
src = add_lut[dst][src];
src_a = MIN( src_a, dst_a );
}
break;
case SUBTRACT_MODE: {
src = dst > src ? dst - src : 0;
src_a = MIN( src_a, dst_a );
}
break;
case DARKEN_ONLY_MODE: {
src = dst < src ? dst : src;
src_a = MIN( src_a, dst_a );
}
break;
case LIGHTEN_ONLY_MODE: {
src = dst < src ? src : dst;
src_a = MIN( src_a, dst_a );
}
break;
}
src_a = INT_MULT( src_a, layer.opacity );
// Apply the mask (if any)
if ( layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
layer.mask_tiles[j].size() > i )
src_a = INT_MULT( src_a, layer.mask_tiles[j][i].pixelIndex( k, l ) );
uchar new_a = dst_a + INT_MULT( OPAQUE_OPACITY - dst_a, src_a );
float src_ratio = (float)src_a / new_a;
float dst_ratio = 1. - src_ratio;
uchar new_g = (uchar)( src_ratio * src + dst_ratio * dst + EPSILON );
if ( !layer_modes[layer.mode].affect_alpha )
new_a = dst_a;
image.setPixel( m, n, qRgba( new_g, new_g, new_g, new_a ) );
}
/*!
* Merge an Indexed pixel from the layer to the Indexed image. Straight-forward.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::mergeIndexedToIndexed ( Layer& layer, uint i,uint j,int k,int l,
QImage& image, int m, int n )
{
int src = layer.image_tiles[j][i].pixelIndex( k, l );
image.setPixel( m, n, src );
}
/*!
* Merge an IndexedA pixel from the layer to the Indexed image. Straight-forward.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::mergeIndexedAToIndexed ( Layer& layer,uint i,uint j,int k,int l,
QImage& image, int m, int n )
{
uchar src = layer.image_tiles[j][i].pixelIndex( k, l );
uchar src_a = layer.alpha_tiles[j][i].pixelIndex( k, l );
src_a = INT_MULT( src_a, layer.opacity );
if ( layer.apply_mask == 1 &&
layer.mask_tiles.size() > j &&
layer.mask_tiles[j].size() > i )
src_a = INT_MULT( src_a,
layer.mask_tiles[j][i].pixelIndex( k, l ) );
if ( src_a > 127 ) {
src++;
image.setPixel( m, n, src );
}
}
/*!
* Merge an IndexedA pixel from the layer to an RGB image. Straight-forward.
* The only thing this has to take account of is the opacity of the
* layer. Evidently, the GIMP exporter itself does not actually do this.
* \param layer source layer.
* \param i x tile index.
* \param j y tile index.
* \param k x pixel index of tile i,j.
* \param l y pixel index of tile i,j.
* \param image destination image.
* \param m x pixel of destination image.
* \param n y pixel of destination image.
*/
void XCFImageFormat::mergeIndexedAToRGB ( Layer& layer, uint i, uint j, int k, int l,
QImage& image, int m, int n )
{
QRgb src = layer.image_tiles[j][i].pixel( k, l );
uchar src_a = layer.alpha_tiles[j][i].pixelIndex( k, l );
src_a = INT_MULT( src_a, layer.opacity );
// Apply the mask (if any)
if ( layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
layer.mask_tiles[j].size() > i )
src_a = INT_MULT( src_a, layer.mask_tiles[j][i].pixelIndex( k, l ) );
// This is what appears in the GIMP window
if ( src_a <= 127 )
src_a = 0;
else
src_a = OPAQUE_OPACITY;
image.setPixel( m, n, qRgba( src, src_a ) );
}
/*!
* Dissolving pixels: pick a random number between 0 and 255. If the pixel's
* alpha is less than that, make it transparent.
* \param image the image tile to dissolve.
* \param x the global x position of the tile.
* \param y the global y position of the tile.
*/
void XCFImageFormat::dissolveRGBPixels ( QImage& image, int x, int y )
{
// The apparently spurious rand() calls are to wind the random
// numbers up to the same point for each tile.
for ( int l = 0; l < image.height(); l++ ) {
srand( random_table[( l + y ) % RANDOM_TABLE_SIZE] );
for ( int k = 0; k < x; k++ )
rand();
for ( int k = 0; k < image.width(); k++ ) {
int rand_val = rand() & 0xff;
QRgb pixel = image.pixel( k, l );
if ( rand_val > qAlpha( pixel ) ) {
image.setPixel( k, l, qRgba( pixel, 0 ) );
}
}
}
}
/*!
* Dissolving pixels: pick a random number between 0 and 255. If the pixel's
* alpha is less than that, make it transparent. This routine works for
* the GRAYA and INDEXEDA image types where the pixel alpha's are stored
* separately from the pixel themselves.
* \param image the alpha tile to dissolve.
* \param x the global x position of the tile.
* \param y the global y position of the tile.
*/
void XCFImageFormat::dissolveAlphaPixels ( QImage& image, int x, int y )
{
// The apparently spurious rand() calls are to wind the random
// numbers up to the same point for each tile.
for ( int l = 0; l < image.height(); l++ ) {
srand( random_table[( l + y ) % RANDOM_TABLE_SIZE] );
for ( int k = 0; k < x; k++ )
rand();
for ( int k = 0; k < image.width(); k++ ) {
int rand_val = rand() & 0xff;
uchar alpha = image.pixelIndex( k, l );
if ( rand_val > alpha ) {
image.setPixel( k, l, 0 );
}
}
}
}
KDE_Q_EXPORT_PLUGIN( XCFImageFormat )
} // namespace