You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1384 lines
35 KiB

/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1996, 1997, 1998, 1999
* Sleepycat Software. All rights reserved.
*/
#include "db_config.h"
#ifndef lint
static const char sccsid[] = "@(#)lock.c 11.8 (Sleepycat) 10/19/99";
#endif /* not lint */
#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>
#include <errno.h>
#include <string.h>
#endif
#include "db_int.h"
#include "db_page.h"
#include "db_shash.h"
#include "lock.h"
#include "db_am.h"
#include "txn.h"
static int CDB___lock_checklocker __P((DB_LOCKTAB *,
struct __db_lock *, u_int32_t, u_int32_t, int *));
static int CDB___lock_get_internal __P((DB_LOCKTAB *, u_int32_t,
u_int32_t, const DBT *, db_lockmode_t, DB_LOCK *));
static int CDB___lock_is_parent __P((DB_LOCKTAB *, u_int32_t, DB_LOCKER *));
static int CDB___lock_put_internal __P((DB_LOCKTAB *,
struct __db_lock *, u_int32_t, u_int32_t));
static int CDB___lock_put_nolock __P((DB_ENV *, DB_LOCK *, int *));
static void CDB___lock_remove_waiter __P((DB_LOCKOBJ *,
struct __db_lock *, db_status_t));
/*
* CDB_lock_id --
* Generate a unique locker id.
*/
int
CDB_lock_id(dbenv, idp)
DB_ENV *dbenv;
u_int32_t *idp;
{
DB_LOCKTAB *lt;
DB_LOCKREGION *region;
PANIC_CHECK(dbenv);
ENV_REQUIRES_CONFIG(dbenv, dbenv->lk_handle, DB_INIT_LOCK);
lt = dbenv->lk_handle;
region = lt->reginfo.primary;
/*
* Note that we are letting locker IDs wrap.
*
* This is potentially dangerous in that it's conceivable that you
* could be allocating a new locker id and still have someone using
* it. However, the alternatives are that we keep a bitmap of
* locker ids or we forbid wrapping. Both are probably bad. The
* bitmap of locker ids will take up 64 MB of space. Forbidding
* wrapping means that we'll run out of locker IDs after 2 billion.
* In order for the wrap bug to fire, we'd need to have something
* that stayed open while 2 billion locker ids were used up. Since
* we cache cursors it means that something would have to stay open
* sufficiently long that we open and close a lot of files and a
* lot of cursors within them. Betting that this won't happen seems
* to the lesser of the evils.
*/
LOCKREGION(dbenv, lt);
if (region->id >= DB_LOCK_MAXID)
region->id = 0;
*idp = ++region->id;
UNLOCKREGION(dbenv, lt);
return (0);
}
/*
* Vector lock routine. This function takes a set of operations
* and performs them all at once. In addition, CDB_lock_vec provides
* functionality for lock inheritance, releasing all locks for a
* given locker (used during transaction commit/abort), releasing
* all locks on a given object, and generating debugging information.
*/
int
CDB_lock_vec(dbenv, locker, flags, list, nlist, elistp)
DB_ENV *dbenv;
u_int32_t locker, flags;
int nlist;
DB_LOCKREQ *list, **elistp;
{
struct __db_lock *lp, *next_lock;
DB_LOCKER *sh_locker, *sh_parent;
DB_LOCKOBJ *sh_obj;
DB_LOCKREGION *region;
DB_LOCKTAB *lt;
u_int32_t lndx, ndx, pndx;
int did_abort, i, ret, run_dd;
PANIC_CHECK(dbenv);
ENV_REQUIRES_CONFIG(dbenv, dbenv->lk_handle, DB_INIT_LOCK);
/* Validate arguments. */
if ((ret = CDB___db_fchk(dbenv, "CDB_lock_vec", flags, DB_LOCK_NOWAIT)) != 0)
return (ret);
lt = dbenv->lk_handle;
region = lt->reginfo.primary;
run_dd = 0;
LOCKREGION(dbenv, (DB_LOCKTAB *)dbenv->lk_handle);
for (i = 0, ret = 0; i < nlist && ret == 0; i++)
switch (list[i].op) {
case DB_LOCK_GET:
ret = CDB___lock_get_internal(dbenv->lk_handle,
locker, flags,
list[i].obj, list[i].mode, &list[i].lock);
break;
case DB_LOCK_INHERIT:
/*
* Get the committing locker and mark it as deleted.
* This allows us to traverse the locker links without
* worrying that someone else is deleting locks out
* from under us. However, if the locker doesn't
* exist, that just means that the child holds no
* locks, so inheritance is easy!
*/
LOCKER_LOCK(lt, region, locker, ndx);
if ((ret = CDB___lock_getlocker(lt,
locker, ndx, 0, &sh_locker)) != 0 ||
sh_locker == NULL ||
F_ISSET(sh_locker, DB_LOCKER_DELETED)) {
if (ret == 0 && sh_locker != NULL)
ret = EACCES;
LOCKER_UNLOCK(lt, ndx);
break;
}
/* Make sure we are a child transaction. */
if (sh_locker->parent_locker == INVALID_ROFF) {
ret = EINVAL;
LOCKER_UNLOCK(lt, ndx);
break;
}
sh_parent = (DB_LOCKER *)
R_ADDR(&lt->reginfo, sh_locker->parent_locker);
F_SET(sh_locker, DB_LOCKER_DELETED);
LOCKER_UNLOCK(lt, ndx);
/*
* Now, lock the parent locker; move locks from
* the committing list to the parent's list.
*/
LOCKER_LOCK(lt, region, sh_parent->id, pndx);
if (F_ISSET(sh_parent, DB_LOCKER_DELETED)) {
if (ret == 0)
ret = EACCES;
LOCKER_UNLOCK(lt, pndx);
break;
}
for (lp = SH_LIST_FIRST(&sh_locker->heldby, __db_lock);
lp != NULL;
lp = SH_LIST_FIRST(&sh_locker->heldby, __db_lock)) {
SH_LIST_REMOVE(lp, locker_links, __db_lock);
SH_LIST_INSERT_HEAD(&sh_parent->heldby, lp,
locker_links, __db_lock);
lp->holder = sh_parent->id;
}
LOCKER_UNLOCK(lt, pndx);
/* Now free the original locker. */
ret = CDB___lock_checklocker(lt,
NULL, locker, DB_LOCK_IGNOREDEL, NULL);
break;
case DB_LOCK_PUT:
ret = CDB___lock_put_nolock(dbenv, &list[i].lock, &run_dd);
break;
case DB_LOCK_PUT_ALL:
/*
* Get the locker and mark it as deleted. This
* allows us to traverse the locker links without
* worrying that someone else is deleting locks out
* from under us. Since the locker may hold no
* locks (i.e., you could call abort before you've
* done any work), it's perfectly reasonable for there
* to be no locker; this is not an error.
*/
LOCKER_LOCK(lt, region, locker, ndx);
if ((ret = CDB___lock_getlocker(lt,
locker, ndx, 0, &sh_locker)) != 0 ||
sh_locker == NULL ||
F_ISSET(sh_locker, DB_LOCKER_DELETED)) {
/*
* If ret is set, then we'll generate an
* error. If it's not set, we have nothing
* to do.
*/
LOCKER_UNLOCK(lt, ndx);
break;
}
F_SET(sh_locker, DB_LOCKER_DELETED);
LOCKER_UNLOCK(lt, ndx);
/* Now traverse the locks, releasing each one. */
for (lp = SH_LIST_FIRST(&sh_locker->heldby, __db_lock);
lp != NULL;
lp = SH_LIST_FIRST(&sh_locker->heldby, __db_lock)) {
SH_LIST_REMOVE(lp, locker_links, __db_lock);
sh_obj =
(DB_LOCKOBJ *)((u_int8_t *)lp + lp->obj);
SHOBJECT_LOCK(lt, region, sh_obj, lndx);
ret = CDB___lock_put_internal(lt,
lp, lndx, DB_LOCK_FREE | DB_LOCK_DOALL);
OBJECT_UNLOCK(lt, lndx);
if (ret != 0)
break;
}
ret = CDB___lock_checklocker(lt,
NULL, locker, DB_LOCK_IGNOREDEL, NULL);
break;
case DB_LOCK_PUT_OBJ:
/* Remove all the locks associated with an object. */
OBJECT_LOCK(lt, region, list[i].obj, ndx);
if ((ret = CDB___lock_getobj(lt, list[i].obj,
ndx, 0, &sh_obj)) != 0 || sh_obj == NULL) {
if (ret == 0)
ret = EINVAL;
OBJECT_UNLOCK(lt, ndx);
break;
}
/*
* Go through both waiters and holders. Don't bother
* to run promotion, because everyone is getting
* released. The processes waiting will still get
* awakened as their waiters are released.
*/
for (lp = SH_TAILQ_FIRST(&sh_obj->waiters, __db_lock);
ret == 0 && lp != NULL;
lp = SH_TAILQ_FIRST(&sh_obj->waiters, __db_lock))
ret = CDB___lock_put_internal(lt,
lp, ndx, DB_LOCK_NOPROMOTE | DB_LOCK_DOALL);
/*
* On the last time around, the object will get
* reclaimed by CDB___lock_put_internal, structure the
* loop carefully so we do not get bitten.
*/
for (lp = SH_TAILQ_FIRST(&sh_obj->holders, __db_lock);
ret == 0 && lp != NULL;
lp = next_lock) {
next_lock = SH_TAILQ_NEXT(lp, links, __db_lock);
ret = CDB___lock_put_internal(lt,
lp, ndx, DB_LOCK_NOPROMOTE | DB_LOCK_DOALL);
}
OBJECT_UNLOCK(lt, ndx);
break;
#ifdef DEBUG
case DB_LOCK_DUMP:
/* Find the locker. */
LOCKER_LOCK(lt, region, locker, ndx);
if ((ret = CDB___lock_getlocker(lt,
locker, ndx, 0, &sh_locker)) != 0
|| sh_locker == NULL
|| F_ISSET(sh_locker, DB_LOCKER_DELETED)) {
LOCKER_UNLOCK(lt, ndx);
break;
}
for (lp = SH_LIST_FIRST(&sh_locker->heldby, __db_lock);
lp != NULL;
lp = SH_LIST_NEXT(lp, locker_links, __db_lock)) {
CDB___lock_printlock(lt, lp, 1);
}
LOCKER_UNLOCK(lt, ndx);
break;
#endif
default:
ret = EINVAL;
break;
}
if (ret == 0) {
MEMORY_LOCK(lt);
if (region->need_dd && region->detect != DB_LOCK_NORUN) {
run_dd = 1;
region->need_dd = 0;
}
MEMORY_UNLOCK(lt);
}
UNLOCKREGION(dbenv, (DB_LOCKTAB *)dbenv->lk_handle);
if (run_dd)
(void)CDB_lock_detect(dbenv, 0, region->detect, &did_abort);
if (ret != 0 && elistp != NULL)
*elistp = &list[i - 1];
return (ret);
}
/*
* Lock acquisition routines. There are two library interfaces:
*
* CDB_lock_get --
* original lock get interface that takes a locker id.
*
* All the work for CDB_lock_get (and for the GET option of CDB_lock_vec) is done
* inside of lock_get_internal.
*/
int
CDB_lock_get(dbenv, locker, flags, obj, lock_mode, lock)
DB_ENV *dbenv;
u_int32_t locker, flags;
const DBT *obj;
db_lockmode_t lock_mode;
DB_LOCK *lock;
{
int ret;
PANIC_CHECK(dbenv);
ENV_REQUIRES_CONFIG(dbenv, dbenv->lk_handle, DB_INIT_LOCK);
/* Validate arguments. */
if ((ret = CDB___db_fchk(dbenv,
"CDB_lock_get", flags, DB_LOCK_NOWAIT | DB_LOCK_UPGRADE)) != 0)
return (ret);
if (lock == NULL)
return (EINVAL);
LOCKREGION(dbenv, (DB_LOCKTAB *)dbenv->lk_handle);
ret = CDB___lock_get_internal(dbenv->lk_handle,
locker, flags, obj, lock_mode, lock);
UNLOCKREGION(dbenv, (DB_LOCKTAB *)dbenv->lk_handle);
return (ret);
}
static int
CDB___lock_get_internal(lt, locker, flags, obj, lock_mode, lock)
DB_LOCKTAB *lt;
u_int32_t locker, flags;
const DBT *obj;
db_lockmode_t lock_mode;
DB_LOCK *lock;
{
struct __db_lock *newl, *lp;
DB_ENV *dbenv;
DB_LOCKER *sh_locker;
DB_LOCKOBJ *sh_obj;
DB_LOCKREGION *region;
u_int32_t locker_ndx;
int did_abort, freed, ihold, on_locker_list, no_dd, ret;
no_dd = ret = 0;
on_locker_list = 0;
region = lt->reginfo.primary;
dbenv = lt->dbenv;
/*
* Check that the lock mode is valid.
*/
if ((u_int32_t)lock_mode >= region->nmodes) {
CDB___db_err(dbenv,
"CDB_lock_get: invalid lock mode %lu\n", (u_long)lock_mode);
return (EINVAL);
}
/* Allocate a new lock. Optimize for the common case of a grant. */
MEMORY_LOCK(lt);
region->nrequests++;
if ((newl = SH_TAILQ_FIRST(&region->free_locks, __db_lock)) != NULL)
SH_TAILQ_REMOVE(&region->free_locks, newl, links, __db_lock);
MEMORY_UNLOCK(lt);
if (newl == NULL)
return (ENOMEM);
/* Allocate a new object. */
OBJECT_LOCK(lt, region, obj, lock->ndx);
if ((ret = CDB___lock_getobj(lt, obj, lock->ndx, 1, &sh_obj)) != 0)
goto err;
/* Get the locker, we may need it to find our parent. */
LOCKER_LOCK(lt, region, locker, locker_ndx);
if ((ret =
CDB___lock_getlocker(lt, locker, locker_ndx, 1, &sh_locker)) != 0) {
/*
* XXX: Margo
* CLEANUP the object and the lock.
*/
LOCKER_UNLOCK(lt, locker_ndx);
OBJECT_UNLOCK(lt, lock->ndx);
return (ret);
}
/*
* Now we have a lock and an object and we need to see if we should
* grant the lock. We use a FIFO ordering so we can only grant a
* new lock if it does not conflict with anyone on the holders list
* OR anyone on the waiters list. The reason that we don't grant if
* there's a conflict is that this can lead to starvation (a writer
* waiting on a popularly read item will never be granted). The
* downside of this is that a waiting reader can prevent an upgrade
* from reader to writer, which is not uncommon.
*
* There is one exception to the no-conflict rule. If a lock is held
* by the requesting locker AND the new lock does not conflict with
* any other holders, then we grant the lock. The most common place
* this happens is when the holder has a WRITE lock and a READ lock
* request comes in for the same locker. If we do not grant the read
* lock, then we guarantee deadlock.
*
* In case of conflict, we put the new lock on the end of the waiters
* list, unless we are upgrading in which case the locker goes on the
* front of the list.
*/
ihold = 0;
for (lp = SH_TAILQ_FIRST(&sh_obj->holders, __db_lock);
lp != NULL;
lp = SH_TAILQ_NEXT(lp, links, __db_lock)) {
if (locker == lp->holder ||
CDB___lock_is_parent(lt, lp->holder, sh_locker)) {
if (lp->mode == lock_mode &&
lp->status == DB_LSTAT_HELD) {
if (LF_ISSET(DB_LOCK_UPGRADE))
goto upgrade;
/*
* Lock is held, so we can increment the
* reference count and return this lock.
*/
lp->refcount++;
lock->off = R_OFFSET(&lt->reginfo, lp);
lock->gen = lp->gen;
ret = 0;
LOCKER_UNLOCK(lt, locker_ndx);
goto done;
} else
ihold = 1;
} else if (CONFLICTS(lt, region, lp->mode, lock_mode))
break;
}
/*
* Make the new lock point to the new object, initialize fields.
*
* This lock is not linked in anywhere, so we can muck with it
* without holding any mutexes.
*/
newl->holder = locker;
newl->refcount = 1;
newl->mode = lock_mode;
newl->obj = SH_PTR_TO_OFF(newl, sh_obj);
newl->status = DB_LSTAT_HELD;
/*
* If we are upgrading, then there are two scenarios. Either
* we had no conflicts, so we can do the upgrade. Or, there
* is a conflict and we should wait at the HEAD of the waiters
* list.
*/
if (LF_ISSET(DB_LOCK_UPGRADE)) {
if (lp == NULL) {
LOCKER_UNLOCK(lt, locker_ndx);
goto upgrade;
}
/* There was a conflict, wait. */
SH_TAILQ_INSERT_HEAD(&sh_obj->waiters, newl, links, __db_lock);
goto llist;
}
if (lp == NULL && !ihold)
for (lp = SH_TAILQ_FIRST(&sh_obj->waiters, __db_lock);
lp != NULL;
lp = SH_TAILQ_NEXT(lp, links, __db_lock)) {
if (CONFLICTS(lt, region, lp->mode, lock_mode) &&
locker != lp->holder)
break;
}
if (lp == NULL)
SH_TAILQ_INSERT_TAIL(&sh_obj->holders, newl, links);
else if (!(flags & DB_LOCK_NOWAIT))
SH_TAILQ_INSERT_TAIL(&sh_obj->waiters, newl, links);
else {
ret = DB_LOCK_NOTGRANTED;
LOCKER_UNLOCK(lt, locker_ndx);
goto err;
}
llist:
/*
* Now, insert the lock onto its locker's list. If the locker does
* not currently hold any locks, there's no reason to run a deadlock
* detector, save that information.
*/
on_locker_list = 1;
no_dd = sh_locker->master_locker == INVALID_ROFF
&& SH_LIST_FIRST(&sh_locker->child_locker, __db_locker) == NULL
&& SH_LIST_FIRST(&sh_locker->heldby, __db_lock) == NULL;
SH_LIST_INSERT_HEAD(&sh_locker->heldby, newl, locker_links, __db_lock);
LOCKER_UNLOCK(lt, locker_ndx);
if (lp != NULL) {
/*
* This is really a blocker for the thread. It should be
* initized locked, so that when we try to acquire it, we
* block.
*/
newl->status = DB_LSTAT_WAITING;
MEMORY_LOCK(lt);
region->nconflicts++;
if (region->detect == DB_LOCK_NORUN)
region->need_dd = 1;
MEMORY_UNLOCK(lt);
OBJECT_UNLOCK(lt, lock->ndx);
UNLOCKREGION(dbenv, (DB_LOCKTAB *)dbenv->lk_handle);
/*
* We are about to wait; before waiting, see if the deadlock
* detector should be run.
*/
if (region->detect != DB_LOCK_NORUN && !no_dd)
(void)CDB_lock_detect(dbenv, 0, region->detect, &did_abort);
MUTEX_LOCK(&newl->mutex, dbenv->lockfhp);
LOCKREGION(dbenv, (DB_LOCKTAB *)dbenv->lk_handle);
OBJECT_LOCK_NDX(lt, lock->ndx);
if (newl->status != DB_LSTAT_PENDING) {
(void)CDB___lock_checklocker(lt,
newl, newl->holder, 0, &freed);
switch (newl->status) {
case DB_LSTAT_ABORTED:
on_locker_list = 0;
ret = DB_LOCK_DEADLOCK;
break;
case DB_LSTAT_NOGRANT:
ret = DB_LOCK_NOTGRANTED;
break;
default:
ret = EINVAL;
break;
}
goto err;
} else if (LF_ISSET(DB_LOCK_UPGRADE)) {
/*
* The lock that was just granted got put on the
* holders list. Since we're upgrading some other
* lock, we've got to remove it here.
*/
SH_TAILQ_REMOVE(
&sh_obj->holders, newl, links, __db_lock);
/*
* Ensure that the object is not believed to be on
* the object's lists, if we're traversing by locker.
*/
newl->links.stqe_prev = -1;
goto upgrade;
} else
newl->status = DB_LSTAT_HELD;
}
lock->off = R_OFFSET(&lt->reginfo, newl);
lock->gen = newl->gen;
OBJECT_UNLOCK(lt, lock->ndx);
return (0);
upgrade:/*
* This was an upgrade, so return the new lock to the free list and
* upgrade the mode of the original lock.
*/
((struct __db_lock *)R_ADDR(&lt->reginfo, lock->off))->mode = lock_mode;
ret = 0;
/* FALLTHROUGH */
done:
err: OBJECT_UNLOCK(lt, lock->ndx);
newl->status = DB_LSTAT_FREE;
if (on_locker_list) {
LOCKER_LOCK(lt, region, locker, locker_ndx);
SH_LIST_REMOVE(newl, locker_links, __db_lock);
LOCKER_UNLOCK(lt, locker_ndx);
}
MEMORY_LOCK(lt);
SH_TAILQ_INSERT_HEAD(&region->free_locks, newl, links, __db_lock);
MEMORY_UNLOCK(lt);
return (ret);
}
/*
* Lock release routines.
*
* The user callable one is CDB_lock_put and the three we use internally are
* CDB___lock_put_nolock, CDB___lock_put_internal and CDB___lock_downgrade.
*/
int
CDB_lock_put(dbenv, lock)
DB_ENV *dbenv;
DB_LOCK *lock;
{
DB_LOCKTAB *lt;
int ret, run_dd;
PANIC_CHECK(dbenv);
ENV_REQUIRES_CONFIG(dbenv, dbenv->lk_handle, DB_INIT_LOCK);
lt = dbenv->lk_handle;
LOCKREGION(dbenv, lt);
ret = CDB___lock_put_nolock(dbenv, lock, &run_dd);
UNLOCKREGION(dbenv, lt);
lock->off = LOCK_INVALID;
if (ret == 0 && run_dd)
(void)CDB_lock_detect(dbenv, 0,
((DB_LOCKREGION *)lt->reginfo.primary)->detect, NULL);
return (ret);
}
static int
CDB___lock_put_nolock(dbenv, lock, runp)
DB_ENV *dbenv;
DB_LOCK *lock;
int *runp;
{
struct __db_lock *lockp;
DB_LOCKREGION *region;
DB_LOCKTAB *lt;
u_int32_t locker;
int ret;
lt = dbenv->lk_handle;
region = lt->reginfo.primary;
OBJECT_LOCK_NDX(lt, lock->ndx);
lockp = (struct __db_lock *)R_ADDR(&lt->reginfo, lock->off);
if (lock->gen != lockp->gen) {
OBJECT_UNLOCK(lt, lock->ndx);
return(EACCES);
}
locker = lockp->holder;
ret = CDB___lock_put_internal(lt,
lockp, lock->ndx, DB_LOCK_UNLINK | DB_LOCK_FREE);
OBJECT_UNLOCK(lt, lock->ndx);
*runp = 0;
if (ret == 0) {
MEMORY_LOCK(lt);
if (region->need_dd && region->detect != DB_LOCK_NORUN) {
*runp = 1;
region->need_dd = 0;
}
MEMORY_UNLOCK(lt);
}
return (ret);
}
/*
* CDB___lock_downgrade --
* Used by the concurrent access product to downgrade write locks
* back to iwrite locks.
*
* PUBLIC: int CDB___lock_downgrade __P((DB_ENV *,
* PUBLIC: DB_LOCK *, db_lockmode_t, u_int32_t));
*/
int
CDB___lock_downgrade(dbenv, lock, new_mode, flags)
DB_ENV *dbenv;
DB_LOCK *lock;
db_lockmode_t new_mode;
u_int32_t flags;
{
struct __db_lock *lockp;
DB_LOCKOBJ *obj;
DB_LOCKREGION *region;
DB_LOCKTAB *lt;
int ret;
COMPQUIET(flags, 0);
PANIC_CHECK(dbenv);
lt = dbenv->lk_handle;
region = lt->reginfo.primary;
LOCKREGION(dbenv, lt);
OBJECT_LOCK_NDX(lt, lock->ndx);
lockp = (struct __db_lock *)R_ADDR(&lt->reginfo, lock->off);
if (lock->gen != lockp->gen) {
OBJECT_UNLOCK(lt, lock->ndx);
ret = EACCES;
goto out;
}
lockp->mode = new_mode;
/* Get the object associated with this lock. */
obj = (DB_LOCKOBJ *)((u_int8_t *)lockp + lockp->obj);
(void)CDB___lock_promote(lt, obj);
OBJECT_UNLOCK(lt, lock->ndx);
MEMORY_LOCK(lt);
++region->nreleases;
MEMORY_UNLOCK(lt);
out: UNLOCKREGION(dbenv, lt);
return (0);
}
static int
CDB___lock_put_internal(lt, lockp, obj_ndx, flags)
DB_LOCKTAB *lt;
struct __db_lock *lockp;
u_int32_t obj_ndx;
u_int32_t flags;
{
DB_LOCKOBJ *sh_obj;
DB_LOCKREGION *region;
int no_reclaim, ret, state_changed;
region = lt->reginfo.primary;
no_reclaim = ret = state_changed = 0;
if (!OBJ_LINKS_VALID(lockp)) {
/*
* Someone removed this lock while we were doing a release
* by locker id. We are trying to free this lock, but it's
* already been done; all we need to do is return it to the
* free list.
*/
MEMORY_LOCK(lt);
lockp->status = DB_LSTAT_FREE;
SH_TAILQ_INSERT_HEAD(
&region->free_locks, lockp, links, __db_lock);
MEMORY_UNLOCK(lt);
return (0);
}
MEMORY_LOCK(lt);
if (LF_ISSET(DB_LOCK_DOALL))
region->nreleases += lockp->refcount;
else
region->nreleases++;
MEMORY_UNLOCK(lt);
if (!LF_ISSET(DB_LOCK_DOALL) && lockp->refcount > 1) {
lockp->refcount--;
return (0);
}
/* Increment generation number. */
lockp->gen++;
/* Get the object associated with this lock. */
sh_obj = (DB_LOCKOBJ *)((u_int8_t *)lockp + lockp->obj);
/* Remove this lock from its holders/waitlist. */
if (lockp->status != DB_LSTAT_HELD)
CDB___lock_remove_waiter(sh_obj, lockp, DB_LSTAT_FREE);
else {
SH_TAILQ_REMOVE(&sh_obj->holders, lockp, links, __db_lock);
lockp->links.stqe_prev = -1;
}
if (LF_ISSET(DB_LOCK_NOPROMOTE))
state_changed = 0;
else
state_changed = CDB___lock_promote(lt, sh_obj);
if (LF_ISSET(DB_LOCK_UNLINK))
ret = CDB___lock_checklocker(lt, lockp, lockp->holder, flags, NULL);
/* Check if object should be reclaimed. */
if (SH_TAILQ_FIRST(&sh_obj->holders, __db_lock) == NULL) {
HASHREMOVE_EL(lt->obj_tab,
obj_ndx, __db_lockobj, links, sh_obj);
if (sh_obj->lockobj.size > sizeof(sh_obj->objdata))
CDB___db_shalloc_free(lt->reginfo.addr,
SH_DBT_PTR(&sh_obj->lockobj));
MEMORY_LOCK(lt);
SH_TAILQ_INSERT_HEAD(
&region->free_objs, sh_obj, links, __db_lockobj);
MEMORY_UNLOCK(lt);
state_changed = 1;
}
/* Free lock. */
if (!LF_ISSET(DB_LOCK_UNLINK) && LF_ISSET(DB_LOCK_FREE)) {
MEMORY_LOCK(lt);
lockp->status = DB_LSTAT_FREE;
SH_TAILQ_INSERT_HEAD(
&region->free_locks, lockp, links, __db_lock);
MEMORY_UNLOCK(lt);
}
/*
* If we did not promote anyone; we need to run the deadlock
* detector again.
*/
MEMORY_LOCK(lt);
if (state_changed == 0)
region->need_dd = 1;
MEMORY_UNLOCK(lt);
return (ret);
}
/*
* Utility functions; listed alphabetically.
*/
/*
* CDB___lock_checklocker --
* If a locker has no more locks, then we can free the object.
* Return a boolean indicating whether we freed the object or not.
*
* Must be called without the locker's lock set.
*/
static int
CDB___lock_checklocker(lt, lockp, locker, flags, freed)
DB_LOCKTAB *lt;
struct __db_lock *lockp;
u_int32_t locker, flags;
int *freed;
{
DB_ENV *dbenv;
DB_LOCKER *sh_locker;
DB_LOCKREGION *region;
u_int32_t indx;
int ret;
dbenv = lt->dbenv;
region = lt->reginfo.primary;
ret = 0;
if (freed != NULL)
*freed = 0;
LOCKER_LOCK(lt, region, locker, indx);
/* If the locker's list is NULL, free up the locker. */
if ((ret = CDB___lock_getlocker(lt,
locker, indx, 0, &sh_locker)) != 0 || sh_locker == NULL) {
if (ret == 0)
ret = EACCES;
goto freelock;
}
if (F_ISSET(sh_locker, DB_LOCKER_DELETED)) {
LF_CLR(DB_LOCK_FREE);
if (!LF_ISSET(DB_LOCK_IGNOREDEL))
goto freelock;
}
if (LF_ISSET(DB_LOCK_UNLINK))
SH_LIST_REMOVE(lockp, locker_links, __db_lock);
if (SH_LIST_FIRST(&sh_locker->heldby, __db_lock) == NULL
&& LOCKER_FREEABLE(sh_locker)) {
CDB___lock_freelocker( lt, region, sh_locker, indx);
if (freed != NULL)
*freed = 1;
}
freelock:
if (LF_ISSET(DB_LOCK_FREE)) {
lockp->status = DB_LSTAT_FREE;
MEMORY_LOCK(lt);
SH_TAILQ_INSERT_HEAD(
&region->free_locks, lockp, links, __db_lock);
MEMORY_UNLOCK(lt);
}
LOCKER_UNLOCK(lt, indx);
return (ret);
}
/*
* CDB___lock_addfamilylocker
* Put a locker entry in for a child transaction.
*
* PUBLIC: int CDB___lock_addfamilylocker __P((DB_ENV *, u_int32_t, u_int32_t));
*/
int
CDB___lock_addfamilylocker(dbenv, pid, id)
DB_ENV *dbenv;
u_int32_t pid, id;
{
DB_LOCKER *lockerp, *mlockerp;
DB_LOCKREGION *region;
DB_LOCKTAB *lt;
u_int32_t ndx;
int ret;
lt = dbenv->lk_handle;
region = lt->reginfo.primary;
LOCKREGION(dbenv, lt);
/* get/create the parent locker info */
LOCKER_LOCK(lt, region, pid, ndx);
if ((ret = CDB___lock_getlocker(dbenv->lk_handle,
pid, ndx, 1, &mlockerp)) != 0)
goto err;
LOCKER_UNLOCK(lt, ndx);
/*
* We assume that only one thread can manipulate
* a single transaction family.
* Therefore the master locker cannot go away while
* we manipulate it, nor can another child in the
* family be created at the same time.
*/
LOCKER_LOCK(lt, region, id, ndx);
if ((ret = CDB___lock_getlocker(dbenv->lk_handle,
id, ndx, 1, &lockerp)) != 0)
goto err;
/* Point to our parent. */
lockerp->parent_locker = R_OFFSET(&lt->reginfo, mlockerp);
/* See if this locker is the family master. */
if (mlockerp->master_locker == INVALID_ROFF)
lockerp->master_locker = R_OFFSET(&lt->reginfo, mlockerp);
else {
lockerp->master_locker = mlockerp->master_locker;
mlockerp = R_ADDR(&lt->reginfo, mlockerp->master_locker);
}
/*
* Link the child at the head of the master's list.
* The guess is when looking for deadlock that
* the most recent child is the one thats blocked.
*/
SH_LIST_INSERT_HEAD(
&mlockerp->child_locker, lockerp, child_link, __db_locker);
err:
LOCKER_UNLOCK(lt, ndx);
UNLOCKREGION(dbenv, lt);
return (ret);
}
/*
* CDB___lock_freefamilylocker
* Remove a locker from the hash table and its family.
*
* This must be called without the locker bucket locked.
*
* PUBLIC: int CDB___lock_freefamilylocker __P((DB_LOCKTAB *, u_int32_t));
*/
int
CDB___lock_freefamilylocker(lt, locker)
DB_LOCKTAB *lt;
u_int32_t locker;
{
DB_ENV *dbenv;
DB_LOCKER *sh_locker;
DB_LOCKREGION *region;
u_int32_t indx;
int ret;
dbenv = lt->dbenv;
region = lt->reginfo.primary;
LOCKREGION(dbenv, lt);
LOCKER_LOCK(lt, region, locker, indx);
if ((ret = CDB___lock_getlocker(lt,
locker, indx, 0, &sh_locker)) != 0 || sh_locker == NULL) {
if (ret == 0)
ret = EACCES;
goto freelock;
}
if (SH_LIST_FIRST(&sh_locker->heldby, __db_lock) != NULL) {
ret = EINVAL;
goto freelock;
}
/* If this is part of a family, we must fix up its links. */
if (sh_locker->master_locker != INVALID_ROFF)
SH_LIST_REMOVE(sh_locker, child_link, __db_locker);
CDB___lock_freelocker(lt, region, sh_locker, indx);
freelock:
LOCKER_UNLOCK(lt, indx);
UNLOCKREGION(dbenv, lt);
return (ret);
}
/*
* CDB___lock_freelocker
* common code for deleting a locker.
*
* This must be called with the locker bucket locked.
*
* PUBLIC: void CDB___lock_freelocker __P((DB_LOCKTAB *,
* PUBLIC: DB_LOCKREGION *, DB_LOCKER *, u_int32_t));
*/
void
CDB___lock_freelocker(lt, region, sh_locker, indx)
DB_LOCKTAB *lt;
DB_LOCKREGION *region;
DB_LOCKER *sh_locker;
u_int32_t indx;
{
HASHREMOVE_EL(
lt->locker_tab, indx, __db_locker, links, sh_locker);
MEMORY_LOCK(lt);
SH_TAILQ_INSERT_HEAD(
&region->free_lockers, sh_locker, links, __db_locker);
region->nlockers--;
MEMORY_UNLOCK(lt);
}
/*
* CDB___lock_getlocker --
* Get a locker in the locker hash table. The create parameter
* indicates if the locker should be created if it doesn't exist in
* the table.
*
* This must be called with the locker bucket locked.
*
* PUBLIC: int CDB___lock_getlocker __P((DB_LOCKTAB *,
* PUBLIC: u_int32_t, u_int32_t, int, DB_LOCKER **));
*/
int
CDB___lock_getlocker(lt, locker, indx, create, retp)
DB_LOCKTAB *lt;
u_int32_t locker, indx;
int create;
DB_LOCKER **retp;
{
DB_ENV *dbenv;
DB_LOCKER *sh_locker;
DB_LOCKREGION *region;
dbenv = lt->dbenv;
region = lt->reginfo.primary;
HASHLOOKUP(lt->locker_tab,
indx, __db_locker, links, locker, sh_locker, CDB___lock_locker_cmp);
/*
* If we found the locker, then we can just return it. If
* we didn't find the locker, then we need to create it.
*/
if (sh_locker == NULL && create) {
/* Create new locker and then insert it into hash table. */
MEMORY_LOCK(lt);
if ((sh_locker = SH_TAILQ_FIRST(
&region->free_lockers, __db_locker)) == NULL) {
MEMORY_UNLOCK(lt);
return (ENOMEM);
}
SH_TAILQ_REMOVE(
&region->free_lockers, sh_locker, links, __db_locker);
if (++region->nlockers > region->maxnlockers)
region->maxnlockers = region->nlockers;
MEMORY_UNLOCK(lt);
sh_locker->id = locker;
sh_locker->dd_id = 0;
sh_locker->master_locker = INVALID_ROFF;
sh_locker->parent_locker = INVALID_ROFF;
SH_LIST_INIT(&sh_locker->child_locker);
sh_locker->flags = 0;
SH_LIST_INIT(&sh_locker->heldby);
HASHINSERT(lt->locker_tab, indx, __db_locker, links, sh_locker);
}
*retp = sh_locker;
return (0);
}
/*
* CDB___lock_getobj --
* Get an object in the object hash table. The create parameter
* indicates if the object should be created if it doesn't exist in
* the table.
*
* This must be called with the object bucket locked.
*
* PUBLIC: int CDB___lock_getobj __P((DB_LOCKTAB *,
* PUBLIC: const DBT *, u_int32_t, int, DB_LOCKOBJ **));
*/
int
CDB___lock_getobj(lt, obj, ndx, create, retp)
DB_LOCKTAB *lt;
const DBT *obj;
u_int32_t ndx;
int create;
DB_LOCKOBJ **retp;
{
DB_ENV *dbenv;
DB_LOCKOBJ *sh_obj;
DB_LOCKREGION *region;
int ret;
void *p;
dbenv = lt->dbenv;
region = lt->reginfo.primary;
/* Look up the object in the hash table. */
HASHLOOKUP(lt->obj_tab,
ndx, __db_lockobj, links, obj, sh_obj, CDB___lock_cmp);
/*
* If we found the object, then we can just return it. If
* we didn't find the object, then we need to create it.
*/
if (sh_obj == NULL && create) {
/* Create new object and then insert it into hash table. */
MEMORY_LOCK(lt);
if ((sh_obj =
SH_TAILQ_FIRST(&region->free_objs, __db_lockobj)) == NULL)
goto err;
/*
* If we can fit this object in the structure, do so instead
* of shalloc-ing space for it.
*/
if (obj->size <= sizeof(sh_obj->objdata))
p = sh_obj->objdata;
else
if ((ret = CDB___db_shalloc(
lt->reginfo.addr, obj->size, 0, &p)) != 0)
goto err;
memcpy(p, obj->data, obj->size);
SH_TAILQ_REMOVE(
&region->free_objs, sh_obj, links, __db_lockobj);
MEMORY_UNLOCK(lt);
SH_TAILQ_INIT(&sh_obj->waiters);
SH_TAILQ_INIT(&sh_obj->holders);
sh_obj->lockobj.size = obj->size;
sh_obj->lockobj.off = SH_PTR_TO_OFF(&sh_obj->lockobj, p);
HASHINSERT(lt->obj_tab, ndx, __db_lockobj, links, sh_obj);
}
*retp = sh_obj;
return (0);
err: MEMORY_UNLOCK(lt);
return (ENOMEM);
}
/*
* CDB___lock_is_parent --
* Given a locker and a transaction, return 1 if the locker is
* an ancestor of the designcated transaction. This is used to determine
* if we should grant locks that appear to conflict, but don't because
* the lock is already held by an ancestor.
*/
static int
CDB___lock_is_parent(lt, locker, sh_locker)
DB_LOCKTAB *lt;
u_int32_t locker;
DB_LOCKER *sh_locker;
{
DB_LOCKER *parent;
parent = sh_locker;
while (parent->parent_locker != INVALID_ROFF) {
parent = (DB_LOCKER *)
R_ADDR(&lt->reginfo, parent->parent_locker);
if (parent->id == locker)
return (1);
}
return (0);
}
/*
* CDB___lock_promote --
*
* Look through the waiters and holders lists and decide which (if any)
* locks can be promoted. Promote any that are eligible.
*
* This function must be called with the object bucket locked.
*
* PUBLIC: int CDB___lock_promote __P((DB_LOCKTAB *, DB_LOCKOBJ *));
*/
int
CDB___lock_promote(lt, obj)
DB_LOCKTAB *lt;
DB_LOCKOBJ *obj;
{
struct __db_lock *lp_w, *lp_h, *next_waiter;
DB_LOCKREGION *region;
int state_changed, waiter_is_txn;
region = lt->reginfo.primary;
/*
* We need to do lock promotion. We also need to determine if we're
* going to need to run the deadlock detector again. If we release
* locks, and there are waiters, but no one gets promoted, then we
* haven't fundamentally changed the lockmgr state, so we may still
* have a deadlock and we have to run again. However, if there were
* no waiters, or we actually promoted someone, then we are OK and we
* don't have to run it immediately.
*
* During promotion, we look for state changes so we can return this
* information to the caller.
*/
for (lp_w = SH_TAILQ_FIRST(&obj->waiters, __db_lock),
state_changed = lp_w == NULL;
lp_w != NULL;
lp_w = next_waiter) {
waiter_is_txn = TXN_IS_HOLDING(lp_w);
next_waiter = SH_TAILQ_NEXT(lp_w, links, __db_lock);
for (lp_h = SH_TAILQ_FIRST(&obj->holders, __db_lock);
lp_h != NULL;
lp_h = SH_TAILQ_NEXT(lp_h, links, __db_lock)) {
if (CONFLICTS(lt, region, lp_h->mode, lp_w->mode) &&
lp_h->holder != lp_w->holder &&
!(waiter_is_txn && TXN_IS_HOLDING(lp_h) &&
CDB___txn_is_ancestor(
lt->dbenv, lp_h->txnoff, lp_w->txnoff)))
break;
}
if (lp_h != NULL) /* Found a conflict. */
break;
/* No conflict, promote the waiting lock. */
SH_TAILQ_REMOVE(&obj->waiters, lp_w, links, __db_lock);
lp_w->status = DB_LSTAT_PENDING;
SH_TAILQ_INSERT_TAIL(&obj->holders, lp_w, links);
/* Wake up waiter. */
MUTEX_UNLOCK(&lp_w->mutex);
state_changed = 1;
}
return (state_changed);
}
/*
* CDB___lock_remove_waiter --
* Any lock on the waitlist has a process waiting for it. Therefore,
* we can't return the lock to the freelist immediately. Instead, we can
* remove the lock from the list of waiters, set the status field of the
* lock, and then let the process waking up return the lock to the
* free list.
*
* This must be called with the Object bucket locked.
*/
static void
CDB___lock_remove_waiter(sh_obj, lockp, status)
DB_LOCKOBJ *sh_obj;
struct __db_lock *lockp;
db_status_t status;
{
int do_wakeup;
do_wakeup = lockp->status == DB_LSTAT_WAITING;
SH_TAILQ_REMOVE(&sh_obj->waiters, lockp, links, __db_lock);
lockp->links.stqe_prev = -1;
lockp->status = status;
/*
* Wake whoever is waiting on this lock.
*
* The MUTEX_UNLOCK macro normally resolves to a single argument,
* keep the compiler quiet.
*/
if (do_wakeup)
MUTEX_UNLOCK(&lockp->mutex);
}
/*
* CDB___lock_printlock --
*
* PUBLIC: void CDB___lock_printlock __P((DB_LOCKTAB *, struct __db_lock *, int));
*/
void
CDB___lock_printlock(lt, lp, ispgno)
DB_LOCKTAB *lt;
struct __db_lock *lp;
int ispgno;
{
DB_LOCKOBJ *lockobj;
db_pgno_t pgno;
u_int32_t *fidp;
u_int8_t *ptr, type;
const char *mode, *status;
switch (lp->mode) {
case DB_LOCK_IREAD:
mode = "IREAD";
break;
case DB_LOCK_IWR:
mode = "IWR";
break;
case DB_LOCK_IWRITE:
mode = "IWRITE";
break;
case DB_LOCK_NG:
mode = "NG";
break;
case DB_LOCK_READ:
mode = "READ";
break;
case DB_LOCK_WRITE:
mode = "WRITE";
break;
default:
mode = "UNKNOWN";
break;
}
switch (lp->status) {
case DB_LSTAT_ABORTED:
status = "ABORT";
break;
case DB_LSTAT_ERR:
status = "ERROR";
break;
case DB_LSTAT_FREE:
status = "FREE";
break;
case DB_LSTAT_HELD:
status = "HELD";
break;
case DB_LSTAT_NOGRANT:
status = "NONE";
break;
case DB_LSTAT_WAITING:
status = "WAIT";
break;
case DB_LSTAT_PENDING:
status = "PENDING";
break;
default:
status = "UNKNOWN";
break;
}
printf("\t%lx\t%s\t%lu\t%s\t",
(u_long)lp->holder, mode, (u_long)lp->refcount, status);
lockobj = (DB_LOCKOBJ *)((u_int8_t *)lp + lp->obj);
ptr = SH_DBT_PTR(&lockobj->lockobj);
if (ispgno && lockobj->lockobj.size == sizeof(struct __db_ilock)) {
/* Assume this is a DBT lock. */
memcpy(&pgno, ptr, sizeof(db_pgno_t));
fidp = (u_int32_t *)(ptr + sizeof(db_pgno_t));
type = *(u_int8_t *)(ptr + sizeof(db_pgno_t) + DB_FILE_ID_LEN);
printf("%s %lu (%lu %lu %lu %lu %lu)\n",
type == DB_PAGE_LOCK ? "page" : "record",
(u_long)pgno,
(u_long)fidp[0], (u_long)fidp[1], (u_long)fidp[2],
(u_long)fidp[3], (u_long)fidp[4]);
} else {
printf("0x%lx ", (u_long)R_OFFSET(&lt->reginfo, lockobj));
CDB___db_pr(ptr, lockobj->lockobj.size);
printf("\n");
}
}