#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int dgetf2_(integer *m, integer *n, doublereal *a, integer * lda, integer *ipiv, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1992 Purpose ======= DGETF2 computes an LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges. The factorization has the form A = P * L * U where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n). This is the right-looking Level 2 BLAS version of the algorithm. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the m by n matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). IPIV (output) INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value > 0: if INFO = k, U(k,k) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static doublereal c_b6 = -1.; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; /* Local variables */ extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); static integer j; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *, doublereal *, integer *); static integer jp; extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --ipiv; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("DGETF2", &i__1); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } i__1 = min(*m,*n); for (j = 1; j <= i__1; ++j) { /* Find pivot and test for singularity. */ i__2 = *m - j + 1; jp = j - 1 + idamax_(&i__2, &a_ref(j, j), &c__1); ipiv[j] = jp; if (a_ref(jp, j) != 0.) { /* Apply the interchange to columns 1:N. */ if (jp != j) { dswap_(n, &a_ref(j, 1), lda, &a_ref(jp, 1), lda); } /* Compute elements J+1:M of J-th column. */ if (j < *m) { i__2 = *m - j; d__1 = 1. / a_ref(j, j); dscal_(&i__2, &d__1, &a_ref(j + 1, j), &c__1); } } else if (*info == 0) { *info = j; } if (j < min(*m,*n)) { /* Update trailing submatrix. */ i__2 = *m - j; i__3 = *n - j; dger_(&i__2, &i__3, &c_b6, &a_ref(j + 1, j), &c__1, &a_ref(j, j + 1), lda, &a_ref(j + 1, j + 1), lda); } /* L10: */ } return 0; /* End of DGETF2 */ } /* dgetf2_ */ #undef a_ref