You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
arts/flow/gsl/gslcommon.c

1652 lines
39 KiB

/* GSL - Generic Sound Layer
* Copyright (C) 2001 Tim Janik
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General
* Public License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include <unistd.h>
#include <fcntl.h>
#include <sys/utsname.h>
#include <string.h>
#include <sched.h>
#include <errno.h>
#include <poll.h>
#include <sys/stat.h>
#include <sys/time.h>
#include "gslcommon.h"
#include "gsldatacache.h"
/* some systems don't have ERESTART (which is what linux returns for system
* calls on pipes which are being interrupted). most propably just use EINTR,
* and maybe some can return both. so we check for both in the below code,
* and alias ERESTART to EINTR if it's not present. compilers are supposed
* to catch and optimize the doubled check arising from this.
*/
#ifndef ERESTART
#define ERESTART EINTR
#endif
#define PREALLOC (8)
#define SIMPLE_CACHE_SIZE (64)
#define TS8_SIZE (MAX (sizeof (GTrashStack), 8))
#define DBG8_SIZE (MAX (sizeof (gsize), 8))
/* --- variables --- */
volatile guint64 gsl_externvar_tick_stamp = 0;
static guint64 tick_stamp_system_time = 0;
static guint global_tick_stamp_leaps = 0;
static GslDebugFlags gsl_debug_flags = 0;
/* --- memory allocation --- */
static GslMutex global_memory = { 0, };
static GTrashStack *simple_cache[SIMPLE_CACHE_SIZE] = { 0, 0, 0, /* ... */ };
static gulong memory_allocated = 0;
const guint
gsl_alloc_upper_power2 (const gulong number)
{
return number ? 1 << g_bit_storage (number - 1) : 0;
}
static inline gpointer
low_alloc (gsize mem_size)
{
gpointer mem;
if (mem_size >= TS8_SIZE && mem_size / 8 < SIMPLE_CACHE_SIZE)
{
guint cell;
mem_size = (mem_size + 7) & ~0x7;
cell = (mem_size >> 3) - 1;
GSL_SPIN_LOCK (&global_memory);
mem = g_trash_stack_pop (simple_cache + cell);
GSL_SPIN_UNLOCK (&global_memory);
if (!mem)
{
guint8 *cache_mem = g_malloc (mem_size * PREALLOC);
guint i;
GSL_SPIN_LOCK (&global_memory);
memory_allocated += mem_size * PREALLOC;
for (i = 0; i < PREALLOC - 1; i++)
{
g_trash_stack_push (simple_cache + cell, cache_mem);
cache_mem += mem_size;
}
GSL_SPIN_UNLOCK (&global_memory);
mem = cache_mem;
}
}
else
{
mem = g_malloc (mem_size);
GSL_SPIN_LOCK (&global_memory);
memory_allocated += mem_size;
GSL_SPIN_UNLOCK (&global_memory);
}
return mem;
}
static inline void
low_free (gsize mem_size,
gpointer mem)
{
if (mem_size >= TS8_SIZE && mem_size / 8 < SIMPLE_CACHE_SIZE)
{
guint cell;
mem_size = (mem_size + 7) & ~0x7;
cell = (mem_size >> 3) - 1;
GSL_SPIN_LOCK (&global_memory);
g_trash_stack_push (simple_cache + cell, mem);
GSL_SPIN_UNLOCK (&global_memory);
}
else
{
g_free (mem);
GSL_SPIN_LOCK (&global_memory);
memory_allocated -= mem_size;
GSL_SPIN_UNLOCK (&global_memory);
}
}
gpointer
gsl_alloc_memblock (gsize block_size)
{
guint8 *cmem;
gsize *debug_size;
g_return_val_if_fail (block_size >= sizeof (gpointer), NULL); /* cache-link size */
cmem = low_alloc (block_size + DBG8_SIZE);
debug_size = (gsize*) cmem;
*debug_size = block_size;
cmem += DBG8_SIZE;
return cmem;
}
void
gsl_free_memblock (gsize block_size,
gpointer mem)
{
gsize *debug_size;
guint8 *cmem;
g_return_if_fail (mem != NULL);
cmem = mem;
cmem -= DBG8_SIZE;
debug_size = (gsize*) cmem;
g_return_if_fail (block_size == *debug_size);
low_free (block_size + DBG8_SIZE, cmem);
}
void
gsl_alloc_report (void)
{
guint cell, cached = 0;
GSL_SPIN_LOCK (&global_memory);
for (cell = 0; cell < SIMPLE_CACHE_SIZE; cell++)
{
GTrashStack *trash = simple_cache[cell];
guint memsize, n = 0;
while (trash)
{
n++;
trash = trash->next;
}
if (n)
{
memsize = (cell + 1) << 3;
g_message ("cell %4u): %u bytes in %u nodes", memsize, memsize * n, n);
cached += memsize * n;
}
}
g_message ("%lu bytes allocated from system, %u bytes unused in cache", memory_allocated, cached);
GSL_SPIN_UNLOCK (&global_memory);
}
gpointer
gsl_alloc_memblock0 (gsize block_size)
{
gpointer mem = gsl_alloc_memblock (block_size);
memset (mem, 0, block_size);
return mem;
}
static void
gsl_free_node_list (gpointer mem,
gsize node_size)
{
struct { gpointer next, data; } *tmp, *node = mem;
g_return_if_fail (node != NULL);
g_return_if_fail (node_size >= 2 * sizeof (gpointer));
/* FIXME: this can be optimized to an O(1) operation with T-style links in mem-caches */
do
{
tmp = node->next;
gsl_free_memblock (node_size, node);
node = tmp;
}
while (node);
}
/* --- ring (circular-list) --- */
static inline GslRing*
gsl_ring_prepend_i (GslRing *head,
gpointer data)
{
GslRing *ring = gsl_new_struct (GslRing, 1);
ring->data = data;
if (!head)
{
ring->prev = ring;
ring->next = ring;
}
else
{
ring->prev = head->prev;
ring->next = head;
head->prev->next = ring;
head->prev = ring;
}
return ring;
}
GslRing*
gsl_ring_prepend (GslRing *head,
gpointer data)
{
return gsl_ring_prepend_i (head, data);
}
GslRing*
gsl_ring_prepend_uniq (GslRing *head,
gpointer data)
{
GslRing *walk;
for (walk = head; walk; walk = gsl_ring_walk (head, walk))
if (walk->data == data)
return head;
return gsl_ring_prepend_i (head, data);
}
GslRing*
gsl_ring_append (GslRing *head,
gpointer data)
{
GslRing *ring;
ring = gsl_ring_prepend_i (head, data);
return head ? head : ring;
}
GslRing*
gsl_ring_concat (GslRing *head1,
GslRing *head2)
{
GslRing *tail1, *tail2;
if (!head1)
return head2;
if (!head2)
return head1;
tail1 = head1->prev;
tail2 = head2->prev;
head1->prev = tail2;
tail2->next = head1;
head2->prev = tail1;
tail1->next = head2;
return head1;
}
GslRing*
gsl_ring_remove_node (GslRing *head,
GslRing *node)
{
if (!head)
g_return_val_if_fail (head == NULL && node == NULL, NULL);
if (!head || !node)
return NULL;
/* special case one item ring */
if (head->prev == head)
{
g_return_val_if_fail (node == head, head);
gsl_delete_struct (GslRing, node);
return NULL;
}
g_return_val_if_fail (node != node->next, head); /* node can't be a one item ring here */
node->next->prev = node->prev;
node->prev->next = node->next;
if (head == node)
head = node->next;
gsl_delete_struct (GslRing, node);
return head;
}
GslRing*
gsl_ring_remove (GslRing *head,
gpointer data)
{
GslRing *walk;
if (!head)
return NULL;
/* make tail data removal an O(1) operation */
if (head->prev->data == data)
return gsl_ring_remove_node (head, head->prev);
for (walk = head; walk; walk = gsl_ring_walk (head, walk))
if (walk->data == data)
return gsl_ring_remove_node (head, walk);
g_warning (G_STRLOC ": couldn't find data item (%p) to remove from ring (%p)", data, head);
return head;
}
guint
gsl_ring_length (GslRing *head)
{
GslRing *ring;
guint i = 0;
for (ring = head; ring; ring = gsl_ring_walk (head, ring))
i++;
return i;
}
GslRing*
gsl_ring_find (GslRing *head,
gconstpointer data)
{
GslRing *ring;
for (ring = head; ring; ring = gsl_ring_walk (head, ring))
if (ring->data == (gpointer) data)
return ring;
return NULL;
}
GslRing*
gsl_ring_nth (GslRing *head,
guint n)
{
GslRing *ring = head;
while (n-- && ring)
ring = gsl_ring_walk (head, ring);
return ring;
}
gpointer
gsl_ring_nth_data (GslRing *head,
guint n)
{
GslRing *ring = head;
while (n-- && ring)
ring = gsl_ring_walk (head, ring);
return ring ? ring->data : ring;
}
void
gsl_ring_free (GslRing *head)
{
if (head)
{
head->prev->next = NULL;
gsl_free_node_list (head, sizeof (*head));
}
}
gpointer
gsl_ring_pop_head (GslRing **head_p)
{
gpointer data;
g_return_val_if_fail (head_p != NULL, NULL);
if (!*head_p)
return NULL;
data = (*head_p)->data;
*head_p = gsl_ring_remove_node (*head_p, *head_p);
return data;
}
gpointer
gsl_ring_pop_tail (GslRing **head_p)
{
gpointer data;
g_return_val_if_fail (head_p != NULL, NULL);
if (!*head_p)
return NULL;
data = (*head_p)->prev->data;
*head_p = gsl_ring_remove_node (*head_p, (*head_p)->prev);
return data;
}
GslRing*
gsl_ring_insert_sorted (GslRing *head,
gpointer data,
GCompareFunc func)
{
gint cmp;
g_return_val_if_fail (func != NULL, head);
if (!head)
return gsl_ring_prepend (head, data);
/* typedef gint (*GCompareFunc) (gconstpointer a,
* gconstpointer b);
*/
cmp = func (data, head->data);
if (cmp >= 0) /* insert after head */
{
GslRing *tmp, *tail = head->prev;
/* make appending an O(1) operation */
if (head == tail || func (data, tail->data) >= 0)
return gsl_ring_append (head, data);
/* walk forward while data >= tmp (skipping equal nodes) */
for (tmp = head->next; tmp != tail; tmp = tmp->next)
if (func (data, tmp->data) < 0)
break;
/* insert before sibling which is greater than data */
gsl_ring_prepend (tmp, data); /* keep current head */
return head;
}
else /* cmp < 0 */
return gsl_ring_prepend (head, data);
}
/* --- GslThread --- */
typedef struct
{
GslThreadFunc func;
gpointer data;
gint wpipe[2];
volatile gint abort;
guint64 awake_stamp;
GslDebugFlags auxlog_reporter;
const gchar *auxlog_section;
} ThreadData;
static GslMutex global_thread = { 0, };
static GslRing *global_thread_list = NULL;
static GslCond global_thread_cond = { 0, };
static GslRing *awake_tdata_list = NULL;
static ThreadData *main_thread_tdata = NULL;
static GslThread *main_thread = NULL;
static inline ThreadData*
thread_data_from_gsl_thread (GslThread *thread)
{
GThread *gthread = (GThread*) thread;
/* if gthread->data==NULL, we assume this is the main thread */
return gthread->data ? gthread->data : main_thread_tdata;
}
static gpointer
thread_wrapper (gpointer arg)
{
GslThread *self = gsl_thread_self ();
ThreadData *tdata = arg;
g_assert (tdata == thread_data_from_gsl_thread (gsl_thread_self ()));
GSL_SYNC_LOCK (&global_thread);
global_thread_list = gsl_ring_prepend (global_thread_list, self);
gsl_cond_broadcast (&global_thread_cond);
GSL_SYNC_UNLOCK (&global_thread);
tdata->func (tdata->data);
GSL_SYNC_LOCK (&global_thread);
global_thread_list = gsl_ring_remove (global_thread_list, self);
if (tdata->awake_stamp)
awake_tdata_list = gsl_ring_remove (awake_tdata_list, tdata);
gsl_cond_broadcast (&global_thread_cond);
GSL_SYNC_UNLOCK (&global_thread);
close (tdata->wpipe[0]);
tdata->wpipe[0] = -1;
close (tdata->wpipe[1]);
tdata->wpipe[1] = -1;
gsl_delete_struct (ThreadData, tdata);
return NULL;
}
static ThreadData*
create_tdata (void)
{
ThreadData *tdata;
glong d_long;
gint error;
tdata = gsl_new_struct0 (ThreadData, 1);
tdata->func = NULL;
tdata->data = NULL;
tdata->wpipe[0] = -1;
tdata->wpipe[1] = -1;
tdata->abort = FALSE;
tdata->auxlog_reporter = 0;
tdata->auxlog_section = NULL;
error = pipe (tdata->wpipe);
if (error == 0)
{
d_long = fcntl (tdata->wpipe[0], F_GETFL, 0);
/* g_printerr ("pipe-readfd, blocking=%ld\n", d_long & O_NONBLOCK); */
d_long |= O_NONBLOCK;
error = fcntl (tdata->wpipe[0], F_SETFL, d_long);
}
if (error == 0)
{
d_long = fcntl (tdata->wpipe[1], F_GETFL, 0);
/* g_printerr ("pipe-writefd, blocking=%ld\n", d_long & O_NONBLOCK); */
d_long |= O_NONBLOCK;
error = fcntl (tdata->wpipe[1], F_SETFL, d_long);
}
if (error)
{
close (tdata->wpipe[0]);
close (tdata->wpipe[1]);
gsl_delete_struct (ThreadData, tdata);
tdata = NULL;
}
return tdata;
}
GslThread*
gsl_thread_new (GslThreadFunc func,
gpointer user_data)
{
gpointer gthread = NULL;
ThreadData *tdata;
GError *gerror = NULL;
g_return_val_if_fail (func != NULL, FALSE);
tdata = create_tdata ();
if (tdata)
{
const gboolean joinable = FALSE;
/* don't dare setting joinable to TRUE, that prevents the thread's
* resources from being freed, since we don't offer pthread_join().
* so we'd just rn out of stack at some point.
*/
tdata->func = func;
tdata->data = user_data;
gthread = g_thread_create_full (thread_wrapper, tdata, 0, joinable, FALSE,
G_THREAD_PRIORITY_NORMAL, &gerror);
}
if (gthread)
{
GSL_SYNC_LOCK (&global_thread);
while (!gsl_ring_find (global_thread_list, gthread))
gsl_cond_wait (&global_thread_cond, &global_thread);
GSL_SYNC_UNLOCK (&global_thread);
}
else
{
if (tdata)
{
close (tdata->wpipe[0]);
close (tdata->wpipe[1]);
gsl_delete_struct (ThreadData, tdata);
}
g_warning ("Failed to create thread: %s", gerror->message);
g_error_free (gerror);
}
return gthread;
}
GslThread*
gsl_thread_self (void)
{
gpointer gthread = g_thread_self ();
if (!gthread)
g_error ("gsl_thread_self() failed");
return gthread;
}
GslThread*
gsl_thread_main (void)
{
return main_thread;
}
guint
gsl_threads_get_count (void)
{
guint count;
GSL_SYNC_LOCK (&global_thread);
count = gsl_ring_length (global_thread_list);
GSL_SYNC_UNLOCK (&global_thread);
return count;
}
static void
thread_wakeup_I (ThreadData *tdata)
{
guint8 data = 'W';
gint r;
do
r = write (tdata->wpipe[1], &data, 1);
while (r < 0 && (errno == EINTR || errno == ERESTART));
}
/**
* gsl_thread_wakeup
* @thread: thread to wake up
* Wake up a currently sleeping thread. In practice, this
* function simply causes the next call to gsl_thread_sleep()
* within @thread to last for 0 seconds.
*/
void
gsl_thread_wakeup (GslThread *thread)
{
ThreadData *tdata;
g_return_if_fail (thread != NULL);
GSL_SYNC_LOCK (&global_thread);
g_assert (gsl_ring_find (global_thread_list, thread));
GSL_SYNC_UNLOCK (&global_thread);
tdata = thread_data_from_gsl_thread (thread);
thread_wakeup_I (tdata);
}
/**
* gsl_thread_abort
* @thread: thread to abort
* Abort a currently running thread. This function does not
* return until the thread in question terminated execution.
* Note that the thread handle gets invalidated with invocation
* of gsl_thread_abort() or gsl_thread_queue_abort().
*/
void
gsl_thread_abort (GslThread *thread)
{
ThreadData *tdata;
g_return_if_fail (thread != NULL);
g_return_if_fail (thread != main_thread);
GSL_SYNC_LOCK (&global_thread);
g_assert (gsl_ring_find (global_thread_list, thread));
GSL_SYNC_UNLOCK (&global_thread);
tdata = thread_data_from_gsl_thread (thread);
GSL_SYNC_LOCK (&global_thread);
tdata->abort = TRUE;
thread_wakeup_I (tdata);
while (gsl_ring_find (global_thread_list, thread))
gsl_cond_wait (&global_thread_cond, &global_thread);
GSL_SYNC_UNLOCK (&global_thread);
}
/**
* gsl_thread_queue_abort
* @thread: thread to abort
* Same as gsl_thread_abort(), but returns as soon as possible,
* even if thread hasn't stopped execution yet.
* Note that the thread handle gets invalidated with invocation
* of gsl_thread_abort() or gsl_thread_queue_abort().
*/
void
gsl_thread_queue_abort (GslThread *thread)
{
ThreadData *tdata;
g_return_if_fail (thread != NULL);
g_return_if_fail (thread != main_thread);
GSL_SYNC_LOCK (&global_thread);
g_assert (gsl_ring_find (global_thread_list, thread));
GSL_SYNC_UNLOCK (&global_thread);
tdata = thread_data_from_gsl_thread (thread);
GSL_SYNC_LOCK (&global_thread);
tdata->abort = TRUE;
thread_wakeup_I (tdata);
GSL_SYNC_UNLOCK (&global_thread);
}
/**
* gsl_thread_aborted
* @returns: %TRUE if the thread should abort execution
* Find out if the currently running thread should be aborted (the thread is
* supposed to return from its main thread function).
*/
gboolean
gsl_thread_aborted (void)
{
ThreadData *tdata = thread_data_from_gsl_thread (gsl_thread_self ());
gboolean aborted;
GSL_SYNC_LOCK (&global_thread);
aborted = tdata->abort != FALSE;
GSL_SYNC_UNLOCK (&global_thread);
return aborted;
}
/**
* gsl_thread_sleep
* @max_msec: maximum amount of milli seconds to sleep (-1 for infinite time)
* @returns: %TRUE if the thread should continue execution
* Sleep for the amount of time given. This function may get interrupted
* by wakeup or abort requests, it returns whether the thread is supposed
* to continue execution after waking up. This function also processes
* remaining data from the thread's poll fd.
*/
gboolean
gsl_thread_sleep (glong max_msec)
{
ThreadData *tdata = thread_data_from_gsl_thread (gsl_thread_self ());
struct pollfd pfd;
gint r, aborted;
pfd.fd = tdata->wpipe[0];
pfd.events = G_IO_IN;
pfd.revents = 0;
r = poll (&pfd, 1, max_msec);
if (r < 0 && errno != EINTR)
g_message (G_STRLOC ": poll() error: %s\n", g_strerror (errno));
else if (pfd.revents & G_IO_IN)
{
guint8 data[64];
do
r = read (tdata->wpipe[0], data, sizeof (data));
while ((r < 0 && (errno == EINTR || errno == ERESTART)) || r == sizeof (data));
}
GSL_SYNC_LOCK (&global_thread);
aborted = tdata->abort != FALSE;
GSL_SYNC_UNLOCK (&global_thread);
return !aborted;
}
/**
* gsl_thread_awake_after
* RETURNS: GPollFD for the current thread
* Get the GPollfd for the current thread which is used
* to signal thread wakeups (e.g. due to
* gsl_thread_abort() or gsl_thread_wakeup()).
*/
void
gsl_thread_get_pollfd (GPollFD *pfd)
{
ThreadData *tdata = thread_data_from_gsl_thread (gsl_thread_self ());
pfd->fd = tdata->wpipe[0];
pfd->events = G_IO_IN;
pfd->revents = 0;
}
/**
* gsl_thread_awake_after
* @tick_stamp: tick stamp update to trigger wakeup
* Wakeup the currently running thread after the global tick stamp
* (see gsl_tick_stamp()) has been updated to @tick_stamp.
* (If the moment of wakeup has already passed by, the thread is
* woken up at the next global tick stamp update.)
*/
void
gsl_thread_awake_after (guint64 tick_stamp)
{
ThreadData *tdata = thread_data_from_gsl_thread (gsl_thread_self ());
g_return_if_fail (tick_stamp > 0);
GSL_SYNC_LOCK (&global_thread);
if (!tdata->awake_stamp)
{
awake_tdata_list = gsl_ring_prepend (awake_tdata_list, tdata);
tdata->awake_stamp = tick_stamp;
}
else
tdata->awake_stamp = MIN (tdata->awake_stamp, tick_stamp);
GSL_SYNC_UNLOCK (&global_thread);
}
/**
* gsl_thread_awake_before
* @tick_stamp: tick stamp update to trigger wakeup
* Wakeup the currently running thread upon the last global tick stamp
* update (see gsl_tick_stamp()) that happens prior to updating the
* global tick stamp to @tick_stamp.
* (If the moment of wakeup has already passed by, the thread is
* woken up at the next global tick stamp update.)
*/
void
gsl_thread_awake_before (guint64 tick_stamp)
{
g_return_if_fail (tick_stamp > 0);
if (tick_stamp > global_tick_stamp_leaps)
gsl_thread_awake_after (tick_stamp - global_tick_stamp_leaps);
else
gsl_thread_awake_after (tick_stamp);
}
/**
* gsl_tick_stamp
* @RETURNS: GSL's execution tick stamp as unsigned 64bit integer
*
* Retrive the GSL global tick stamp.
* GSL increments its global tick stamp at certain intervals,
* by specific amounts (refer to gsl_engine_init() for further
* details). The tick stamp is a non-wrapping, unsigned 64bit
* integer greater than 0. Threads can schedule sleep interruptions
* at certain tick stamps with gsl_thread_awake_after() and
* gsl_thread_awake_before(). Tick stamp updating occours at
* GSL engine block processing boundaries, so code that can
* guarantee to not run across those boundaries (for instance
* GslProcessFunc() functions) may use the macro %GSL_TICK_STAMP
* to retrive the current tick in a faster manner (not involving
* mutex locking). See also gsl_module_tick_stamp().
* This function is MT-safe and may be called from any thread.
*/
guint64
gsl_tick_stamp (void)
{
guint64 stamp;
GSL_SYNC_LOCK (&global_thread);
stamp = gsl_externvar_tick_stamp;
GSL_SYNC_UNLOCK (&global_thread);
return stamp;
}
void
_gsl_tick_stamp_set_leap (guint ticks)
{
GSL_SYNC_LOCK (&global_thread);
global_tick_stamp_leaps = ticks;
GSL_SYNC_UNLOCK (&global_thread);
}
/**
* gsl_time_system
* @RETURNS: Current system time in micro seconds
*
* Get the current system time in micro seconds.
* Subsequent calls to this function do not necessarily
* return growing values. In fact, a second call may return
* a value smaller than the first call under certainsystem
* conditions.
* This function is MT-safe and may be called from any thread.
*/
guint64
gsl_time_system (void)
{
struct timeval tv;
guint64 csys_time;
gint error;
error = gettimeofday (&tv, NULL);
if (error)
g_error ("gettimeofday() failed: %s", g_strerror (errno));
csys_time = tv.tv_sec;
csys_time = csys_time * 1000000 + tv.tv_usec;
return csys_time;
}
/**
* gsl_tick_stamp_last
* @RETURNS: Current tick stamp and system time in micro seconds
*
* Get the system time of the last GSL global tick stamp update.
* This function is MT-safe and may be called from any thread.
*/
GslTickStampUpdate
gsl_tick_stamp_last (void)
{
GslTickStampUpdate ustamp;
GSL_SYNC_LOCK (&global_thread);
ustamp.tick_stamp = gsl_externvar_tick_stamp;
ustamp.system_time = tick_stamp_system_time;
GSL_SYNC_UNLOCK (&global_thread);
return ustamp;
}
void
_gsl_tick_stamp_inc (void)
{
volatile guint64 newstamp;
GslRing *ring;
guint64 systime;
g_return_if_fail (global_tick_stamp_leaps > 0);
systime = gsl_time_system ();
newstamp = gsl_externvar_tick_stamp + global_tick_stamp_leaps;
GSL_SYNC_LOCK (&global_thread);
gsl_externvar_tick_stamp = newstamp;
tick_stamp_system_time = systime;
for (ring = awake_tdata_list; ring; )
{
ThreadData *tdata = ring->data;
if (tdata->awake_stamp <= GSL_TICK_STAMP)
{
GslRing *next = gsl_ring_walk (awake_tdata_list, ring);
tdata->awake_stamp = 0;
awake_tdata_list = gsl_ring_remove (awake_tdata_list, tdata);
thread_wakeup_I (tdata);
ring = next;
}
else
ring = gsl_ring_walk (awake_tdata_list, ring);
}
GSL_SYNC_UNLOCK (&global_thread);
}
/* --- GslMutex --- */
static gboolean is_smp_system = FALSE;
static void
default_mutex_init (GslMutex *mutex)
{
g_return_if_fail (mutex != NULL);
mutex->mutex_pointer = g_mutex_new ();
}
static int
default_mutex_trylock (GslMutex *mutex)
{
return g_mutex_trylock (mutex->mutex_pointer) ? 0 : -1;
}
static void
default_mutex_lock (GslMutex *mutex)
{
/* spin locks should be held only very short times,
* so frequently we should succeed here
*/
if (g_mutex_trylock (mutex->mutex_pointer))
return;
if (!is_smp_system)
{
/* on uni processor systems, there's no point in busy spinning */
do
{
#if defined(_POSIX_PRIORITY_SCHEDULING)
sched_yield ();
#endif
if (g_mutex_trylock (mutex->mutex_pointer))
return;
}
while (TRUE);
}
else
{
/* for multi processor systems, mutex_lock() is hopefully implemented
* via spinning. note that we can't implement spinning ourselves with
* mutex_trylock(), since on some architectures that'd block memory
* bandwith due to constant bus locks
*/
g_mutex_lock (mutex->mutex_pointer);
}
}
static void
default_mutex_unlock (GslMutex *mutex)
{
g_mutex_unlock (mutex->mutex_pointer);
}
static void
default_mutex_destroy (GslMutex *mutex)
{
g_mutex_free (mutex->mutex_pointer);
memset (mutex, 0, sizeof (*mutex));
}
static void
default_rec_mutex_init (GslRecMutex *rec_mutex)
{
rec_mutex->depth = 0;
rec_mutex->owner = NULL;
gsl_mutex_init (&rec_mutex->sync_mutex);
}
static int
default_rec_mutex_trylock (GslRecMutex *rec_mutex)
{
gpointer self = gsl_thread_self ();
if (rec_mutex->owner == self)
{
g_assert (rec_mutex->depth > 0); /* paranoid */
rec_mutex->depth += 1;
return 0;
}
else
{
if (gsl_mutex_trylock (&rec_mutex->sync_mutex))
{
g_assert (rec_mutex->owner == NULL && rec_mutex->depth == 0); /* paranoid */
rec_mutex->owner = self;
rec_mutex->depth = 1;
return 0;
}
}
return -1;
}
static void
default_rec_mutex_lock (GslRecMutex *rec_mutex)
{
gpointer self = gsl_thread_self ();
if (rec_mutex->owner == self)
{
g_assert (rec_mutex->depth > 0); /* paranoid */
rec_mutex->depth += 1;
}
else
{
GSL_SYNC_LOCK (&rec_mutex->sync_mutex);
g_assert (rec_mutex->owner == NULL && rec_mutex->depth == 0); /* paranoid */
rec_mutex->owner = self;
rec_mutex->depth = 1;
}
}
static void
default_rec_mutex_unlock (GslRecMutex *rec_mutex)
{
gpointer self = gsl_thread_self ();
if (rec_mutex->owner == self && rec_mutex->depth > 0)
{
rec_mutex->depth -= 1;
if (!rec_mutex->depth)
{
rec_mutex->owner = NULL;
GSL_SYNC_UNLOCK (&rec_mutex->sync_mutex);
}
}
else
g_warning ("unable to unlock recursive mutex with self %p != %p or depth %u < 1",
rec_mutex->owner, self, rec_mutex->depth);
}
static void
default_rec_mutex_destroy (GslRecMutex *rec_mutex)
{
if (rec_mutex->owner || rec_mutex->depth)
{
g_warning (G_STRLOC ": recursive mutex still locked during destruction");
return;
}
gsl_mutex_destroy (&rec_mutex->sync_mutex);
g_assert (rec_mutex->owner == NULL && rec_mutex->depth == 0);
}
static void
default_cond_init (GslCond *cond)
{
cond->cond_pointer = g_cond_new ();
}
static void
default_cond_wait (GslCond *cond,
GslMutex *mutex)
{
/* infinite wait */
g_cond_wait (cond->cond_pointer, mutex->mutex_pointer);
}
static void
default_cond_signal (GslCond *cond)
{
g_cond_signal (cond->cond_pointer);
}
static void
default_cond_broadcast (GslCond *cond)
{
g_cond_broadcast (cond->cond_pointer);
}
static void
default_cond_destroy (GslCond *cond)
{
g_cond_free (cond->cond_pointer);
}
static void
default_cond_wait_timed (GslCond *cond,
GslMutex *mutex,
gulong abs_secs,
gulong abs_usecs)
{
GTimeVal gtime;
gtime.tv_sec = abs_secs;
gtime.tv_usec = abs_usecs;
g_cond_timed_wait (cond->cond_pointer, mutex->mutex_pointer, &gtime);
}
GslMutexTable gsl_mutex_table = {
default_mutex_init,
default_mutex_lock,
default_mutex_trylock,
default_mutex_unlock,
default_mutex_destroy,
default_rec_mutex_init,
default_rec_mutex_lock,
default_rec_mutex_trylock,
default_rec_mutex_unlock,
default_rec_mutex_destroy,
default_cond_init,
default_cond_signal,
default_cond_broadcast,
default_cond_wait,
default_cond_wait_timed,
default_cond_destroy,
};
void
gsl_cond_wait_timed (GslCond *cond,
GslMutex *mutex,
glong max_useconds)
{
if (max_useconds < 0)
gsl_cond_wait (cond, mutex);
else
{
struct timeval now;
glong secs;
gettimeofday (&now, NULL);
secs = max_useconds / 1000000;
now.tv_sec += secs;
max_useconds -= secs * 1000000;
now.tv_usec += max_useconds;
if (now.tv_usec >= 1000000)
{
now.tv_usec -= 1000000;
now.tv_sec += 1;
}
/* linux on x86 with pthread has actually 10ms resolution */
gsl_mutex_table.cond_wait_timed (cond, mutex, now.tv_sec, now.tv_usec);
}
}
/* --- GslMessage --- */
const gchar*
gsl_strerror (GslErrorType error)
{
switch (error)
{
case GSL_ERROR_NONE: return "Everything went well";
case GSL_ERROR_INTERNAL: return "Internal error (please report)";
case GSL_ERROR_UNKNOWN: return "Unknown error";
case GSL_ERROR_IO: return "I/O error";
case GSL_ERROR_PERMS: return "Insufficient permission";
case GSL_ERROR_BUSY: return "Resource currently busy";
case GSL_ERROR_EXISTS: return "Resource exists already";
case GSL_ERROR_TEMP: return "Temporary error";
case GSL_ERROR_EOF: return "File empty or premature EOF";
case GSL_ERROR_NOT_FOUND: return "Resource not found";
case GSL_ERROR_OPEN_FAILED: return "Open failed";
case GSL_ERROR_SEEK_FAILED: return "Seek failed";
case GSL_ERROR_READ_FAILED: return "Read failed";
case GSL_ERROR_WRITE_FAILED: return "Write failed";
case GSL_ERROR_FORMAT_INVALID: return "Invalid format";
case GSL_ERROR_FORMAT_UNKNOWN: return "Unknown format";
case GSL_ERROR_DATA_CORRUPT: return "Data corrupt";
case GSL_ERROR_CONTENT_GLITCH: return "Data glitch (junk) detected";
case GSL_ERROR_NO_RESOURCE: return "Out of memory, disk space or similar resource";
case GSL_ERROR_CODEC_FAILURE: return "CODEC failure";
default: return NULL;
}
}
static const GDebugKey gsl_static_debug_keys[] = {
{ "notify", GSL_MSG_NOTIFY },
{ "dcache", GSL_MSG_DATA_CACHE },
{ "dhandle", GSL_MSG_DATA_HANDLE },
{ "loader", GSL_MSG_LOADER },
{ "osc", GSL_MSG_OSC },
{ "engine", GSL_MSG_ENGINE },
{ "jobs", GSL_MSG_JOBS },
{ "fjobs", GSL_MSG_FJOBS },
{ "sched", GSL_MSG_SCHED },
{ "master", GSL_MSG_MASTER },
{ "slave", GSL_MSG_SLAVE },
};
static const gchar*
reporter_name (GslDebugFlags reporter)
{
switch (reporter)
{
case GSL_MSG_NOTIFY: return "Notify";
case GSL_MSG_DATA_CACHE: return "DataCache";
case GSL_MSG_DATA_HANDLE: return "DataHandle";
case GSL_MSG_LOADER: return "Loader";
case GSL_MSG_OSC: return "Oscillator";
case GSL_MSG_ENGINE: return "Engine"; /* Engine */
case GSL_MSG_JOBS: return "Jobs"; /* Engine */
case GSL_MSG_FJOBS: return "FlowJobs"; /* Engine */
case GSL_MSG_SCHED: return "Sched"; /* Engine */
case GSL_MSG_MASTER: return "Master"; /* Engine */
case GSL_MSG_SLAVE: return "Slave"; /* Engine */
default: return "Custom";
}
}
const GDebugKey *gsl_debug_keys = gsl_static_debug_keys;
const guint gsl_n_debug_keys = G_N_ELEMENTS (gsl_static_debug_keys);
void
gsl_message_send (GslDebugFlags reporter,
const gchar *section,
GslErrorType error,
const gchar *messagef,
...)
{
struct {
GslDebugFlags reporter;
gchar reporter_name[64];
gchar section[64]; /* auxillary information about reporter code portion */
GslErrorType error;
const gchar *error_str; /* gsl_strerror() of error */
gchar message[1024];
} tmsg, *msg = &tmsg;
gchar *string;
va_list args;
g_return_if_fail (messagef != NULL);
/* create message */
memset (msg, 0, sizeof (*msg));
msg->reporter = reporter;
strncpy (msg->reporter_name, reporter_name (msg->reporter), 63);
if (section)
strncpy (msg->section, section, 63);
msg->error = error;
msg->error_str = error ? gsl_strerror (msg->error) : NULL;
/* vsnprintf() replacement */
va_start (args, messagef);
string = g_strdup_vprintf (messagef, args);
va_end (args);
strncpy (msg->message, string, 1023);
g_free (string);
/* in current lack of a decent message queue, puke the message to stderr */
g_printerr ("GSL-%s%s%s: %s%s%s\n",
msg->reporter_name,
msg->section ? ":" : "",
msg->section ? msg->section : "",
msg->message,
msg->error_str ? ": " : "",
msg->error_str ? msg->error_str : "");
}
void
gsl_debug_enable (GslDebugFlags dbg_flags)
{
gsl_debug_flags |= dbg_flags;
}
void
gsl_debug_disable (GslDebugFlags dbg_flags)
{
gsl_debug_flags &= dbg_flags;
}
gboolean
gsl_debug_check (GslDebugFlags dbg_flags)
{
return (gsl_debug_flags & dbg_flags) != 0;
}
void
gsl_debug (GslDebugFlags reporter,
const gchar *section,
const gchar *format,
...)
{
g_return_if_fail (format != NULL);
if (reporter & gsl_debug_flags)
{
va_list args;
gchar *string;
va_start (args, format);
string = g_strdup_vprintf (format, args);
va_end (args);
g_printerr ("DEBUG:GSL-%s%s%s: %s\n",
reporter_name (reporter),
section ? ":" : "",
section ? section : "",
string);
g_free (string);
}
}
void
gsl_auxlog_push (GslDebugFlags reporter,
const gchar *section)
{
ThreadData *tdata = thread_data_from_gsl_thread (gsl_thread_self ());
if (tdata)
{
tdata->auxlog_reporter = reporter;
tdata->auxlog_section = section;
}
}
void
gsl_auxlog_debug (const gchar *format,
...)
{
ThreadData *tdata = thread_data_from_gsl_thread (gsl_thread_self ());
GslDebugFlags reporter = GSL_MSG_NOTIFY;
const gchar *section = NULL;
va_list args;
gchar *string;
if (tdata)
{
reporter = tdata->auxlog_reporter;
section = tdata->auxlog_section;
tdata->auxlog_reporter = 0;
tdata->auxlog_section = NULL;
}
g_return_if_fail (format != NULL);
va_start (args, format);
string = g_strdup_vprintf (format, args);
va_end (args);
gsl_debug (reporter, section, "%s", string);
g_free (string);
}
void
gsl_auxlog_message (GslErrorType error,
const gchar *format,
...)
{
ThreadData *tdata = thread_data_from_gsl_thread (gsl_thread_self ());
GslDebugFlags reporter = GSL_MSG_NOTIFY;
const gchar *section = NULL;
va_list args;
gchar *string;
if (tdata)
{
reporter = tdata->auxlog_reporter;
section = tdata->auxlog_section;
tdata->auxlog_reporter = 0;
tdata->auxlog_section = NULL;
}
g_return_if_fail (format != NULL);
va_start (args, format);
string = g_strdup_vprintf (format, args);
va_end (args);
gsl_message_send (reporter, section, error, "%s", string);
g_free (string);
}
/* --- misc --- */
const gchar*
gsl_byte_order_to_string (guint byte_order)
{
g_return_val_if_fail (byte_order == G_LITTLE_ENDIAN || byte_order == G_BIG_ENDIAN, NULL);
if (byte_order == G_LITTLE_ENDIAN)
return "little_endian";
if (byte_order == G_BIG_ENDIAN)
return "big_endian";
return NULL;
}
guint
gsl_byte_order_from_string (const gchar *string)
{
g_return_val_if_fail (string != NULL, 0);
while (*string == ' ')
string++;
if (strncasecmp (string, "little", 6) == 0)
return G_LITTLE_ENDIAN;
if (strncasecmp (string, "big", 3) == 0)
return G_BIG_ENDIAN;
return 0;
}
GslErrorType
gsl_check_file (const gchar *file_name,
const gchar *mode)
{
guint access_mask = 0;
guint check_file, check_dir, check_link;
if (strchr (mode, 'r')) /* readable */
access_mask |= R_OK;
if (strchr (mode, 'w')) /* writable */
access_mask |= W_OK;
if (strchr (mode, 'x')) /* executable */
access_mask |= X_OK;
if (access_mask && access (file_name, access_mask) < 0)
goto have_errno;
check_file = strchr (mode, 'f') != NULL; /* open as file */
check_dir = strchr (mode, 'd') != NULL; /* open as directory */
check_link = strchr (mode, 'l') != NULL; /* open as link */
if (check_file || check_dir || check_link)
{
struct stat st;
if (check_link)
{
if (lstat (file_name, &st) < 0)
goto have_errno;
}
else if (stat (file_name, &st) < 0)
goto have_errno;
if ((check_file && !S_ISREG (st.st_mode)) ||
(check_dir && !S_ISDIR (st.st_mode)) ||
(check_link && !S_ISLNK (st.st_mode)))
return GSL_ERROR_OPEN_FAILED;
}
return GSL_ERROR_NONE;
have_errno:
return gsl_error_from_errno (errno, GSL_ERROR_OPEN_FAILED);
}
GslErrorType
gsl_error_from_errno (gint sys_errno,
GslErrorType fallback)
{
switch (sys_errno)
{
case ELOOP:
case ENAMETOOLONG:
case ENOTDIR:
case ENOENT: return GSL_ERROR_NOT_FOUND;
case EROFS:
case EPERM:
case EACCES: return GSL_ERROR_PERMS;
case ENOMEM:
case ENOSPC:
case EFBIG:
case ENFILE:
case EMFILE: return GSL_ERROR_NO_RESOURCE;
case EISDIR:
case ESPIPE:
case EIO: return GSL_ERROR_IO;
case EEXIST: return GSL_ERROR_EXISTS;
case ETXTBSY:
case EBUSY: return GSL_ERROR_BUSY;
case EAGAIN:
case EINTR: return GSL_ERROR_TEMP;
case EINVAL:
case EFAULT:
case EBADF: return GSL_ERROR_INTERNAL;
default: return fallback;
}
}
/* --- global initialization --- */
static guint
get_n_processors (void)
{
#ifdef _SC_NPROCESSORS_ONLN
{
gint n = sysconf (_SC_NPROCESSORS_ONLN);
if (n > 0)
return n;
}
#endif
return 1;
}
static const GslConfig *gsl_config = NULL;
const GslConfig*
gsl_get_config (void)
{
return gsl_config;
}
#define ROUND(dblval) ((GslLong) ((dblval) + .5))
void
gsl_init (const GslConfigValue values[],
GslMutexTable *mtable)
{
const GslConfigValue *config = values;
static GslConfig pconfig = { /* DEFAULTS */
1, /* n_processors */
2, /* wave_chunk_padding */
4, /* wave_chunk_big_pad */
512, /* dcache_block_size */
1024 * 1024, /* dcache_cache_memory */
69, /* midi_kammer_note */
440, /* kammer_freq */
};
g_return_if_fail (gsl_config == NULL); /* assert single initialization */
/* get mutexes going first */
if (mtable)
gsl_mutex_table = *mtable;
gsl_externvar_tick_stamp = 1;
/* configure permanent config record */
if (config)
while (config->value_name)
{
if (strcmp ("wave_chunk_padding", config->value_name) == 0)
pconfig.wave_chunk_padding = ROUND (config->value);
else if (strcmp ("wave_chunk_big_pad", config->value_name) == 0)
pconfig.wave_chunk_big_pad = ROUND (config->value);
else if (strcmp ("dcache_cache_memory", config->value_name) == 0)
pconfig.dcache_cache_memory = ROUND (config->value);
else if (strcmp ("dcache_block_size", config->value_name) == 0)
pconfig.dcache_block_size = ROUND (config->value);
else if (strcmp ("midi_kammer_note", config->value_name) == 0)
pconfig.midi_kammer_note = ROUND (config->value);
else if (strcmp ("kammer_freq", config->value_name) == 0)
pconfig.kammer_freq = config->value;
config++;
}
/* constrain (user) config */
pconfig.wave_chunk_padding = MAX (1, pconfig.wave_chunk_padding);
pconfig.wave_chunk_big_pad = MAX (2 * pconfig.wave_chunk_padding, pconfig.wave_chunk_big_pad);
pconfig.dcache_block_size = MAX (2 * pconfig.wave_chunk_big_pad + sizeof (GslDataType), pconfig.dcache_block_size);
pconfig.dcache_block_size = gsl_alloc_upper_power2 (pconfig.dcache_block_size - 1);
/* pconfig.dcache_cache_memory = gsl_alloc_upper_power2 (pconfig.dcache_cache_memory); */
/* non-configurable config updates */
pconfig.n_processors = get_n_processors ();
/* export GSL configuration */
gsl_config = &pconfig;
/* initialize subsystems */
is_smp_system = GSL_CONFIG (n_processors) > 1;
gsl_mutex_init (&global_memory);
gsl_mutex_init (&global_thread);
gsl_cond_init (&global_thread_cond);
main_thread_tdata = create_tdata ();
g_assert (main_thread_tdata != NULL);
main_thread = gsl_thread_self ();
global_thread_list = gsl_ring_prepend (global_thread_list, main_thread);
_gsl_init_signal ();
_gsl_init_fd_pool ();
_gsl_init_data_caches ();
_gsl_init_engine_utils ();
_gsl_init_loader_gslwave ();
_gsl_init_loader_wav ();
_gsl_init_loader_oggvorbis ();
_gsl_init_loader_mad ();
}